
Increased 

Relevance of 

Ranking Prediction

Increased 

Complexity of 

ranking function   

t =1

T

F(x) = f0(x) + Σ αtht(x)·I(ft-1(x)≥ θt)

f1(x) = f0(x) + α1h1(x)·I(f0(x)≥ θ1)

fT(x) = fT-1(x) + αThT(x)·I(fT-1(x)≥ θT)

 Efficiently ranking and retrieving relevant data is increasingly

important for organizing / managing large-scale image/video 

collections

 Vast majority of users 

prefer to browse only 

a limited number of

top ranked examples, 

while completely

ignore the rest

 Imbalanced RankBoost (rank learning algorithm)

• merges RankBoost and iterative thresholding into 

unified loss optimization framework 

• distinguishes between top and bottom ranked data

Top Rank

Bottom Rank
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• Choices of reg. term Ω and parameter λ do not affect performances

Introduction
Imbalanced RankBoost

Experiments

Conclusions

 TRECVID 2007 collection: 52,347 keyframes, 20 concepts

 200 Ranking Features: RBF kernel SVM trained on bags of data 

and global features (color histogram, edge histogram, etc.)

RESULTS

• 6-fold speed up in ranking process

• 7% to 21% relative MAP improvement

• Benefit more relevant on top ranked samples       

(Mean Average Precision computed at limited depth)

Average precision for single concepts computed as function of the ranking time at full depth

Analysis of the influence of () to the mean average precision computed as function of the 

ranking time at full depth

Mean average precision computed as function of the ranking time at top ranked 100 samples (left), 

top ranked 500 samples (center), full depth (right)

• Imbalanced RankBoost automatically emphasizes top ranked data

and truncates computation for less important bottom-ranked ones

• Ranking process more efficient and effective wrt traditional 

RakBoost

• Future work: incorporate processing time of ranking features into 

learning process

Learning to Rank

RankBoost RankBoost ImbalancedRB
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 Goal: produce a ranked list of originally unordered examples X, so that 

the relevant ones are placed as close as possible to the top

 RankBoost 
• Combine a pool of K “weak” ranking features hk(x) into composite 

ranking function F(x)

• Exponential loss function minimization (~minimize # of ranking errors)

• Joint selection of hk(x) and optimization of combination weights αk

RankBoost vs. Imbalanced RankBoost

Solution:

Imbalanced RankBoost
:

• More ranking features 

for top ranked data

• Truncate ranking 

feature computation for 

the data ranked below 

learnt cutoff thresholds

• More efficient ranking 

process

No distinction between 

top- and bottom-ranked 

examples

Problem:

Suboptimal Ranking Process

. . 

Initialize pool of 

ranking features

Select optimal  

ranking feature

Compute 

optimal weight

Update ranking 

function

Output final Ranking 

Function

Select optimal  

cutoff threshold

X, h(x)

+
α1  h1 θ1

α0  h0
f0(x) = α0h0(x)

. 

αT  hT θT

 Bipartite setting: relevant and non-relevant examples x are grouped in 

disjoint sets X0 and X1 

 Ranking function F(x) contains cut-off thresholds t

 Goal: minimize exponential rank misclassification error wrt 
t =1

T

F(x) = f0(x) + Σ αtht(x)·I(ft-1(x)≥ θt)

X0,X1

Lt =        exp – ( ft-1(x0) – ft-1(x1) + αtht(x0)·I(ft-1(x0)≥ θt) - αtht(x1)·I(ft-1(x1)≥ t) )   + λΩ()∑

+

Example x

Evaluate 

current ranking 

function score

Update 

ranking 

function

Output final Ranking 

Function score

Score > cutoff 

threshold ?

yes

no

Learning Process

Ranking Process

αt  ht θt


