
Increased

Relevance of

Ranking Prediction

Increased

Complexity of

ranking function

t =1

T

F(x) = f0(x) + Σ αtht(x)·I(ft-1(x)≥ θt)

f1(x) = f0(x) + α1h1(x)·I(f0(x)≥ θ1)

fT(x) = fT-1(x) + αThT(x)·I(fT-1(x)≥ θT)

 Efficiently ranking and retrieving relevant data is increasingly

important for organizing / managing large-scale image/video

collections

 Vast majority of users

prefer to browse only

a limited number of

top ranked examples,

while completely

ignore the rest

 Imbalanced RankBoost (rank learning algorithm)

• merges RankBoost and iterative thresholding into

unified loss optimization framework

• distinguishes between top and bottom ranked data

Top Rank

Bottom Rank

Michele Merler†, Rong Yan* and John R. Smith* † Columbia University, * IBM TJ Watson Research Center

Email: mmerler@cs.columbia.edu, {yanr, jsmith}@us.ibm.com

Imbalanced RankBoost for Efficiently Ranking

Large-Scale Image/Video Collections

#
 r

a
n

k
in

g
 f

e
a

tu
re

s
 a

p
p

lie
d

 i
n
 F

(x
n
)

Top Rank Bottom Rank

Examples xn

0

RankBoost

ImbalancedRB
80

90

100

60

70

40

50

20

30

10

fT(xi) < θT-1

f t-1(xj) < θt

xix1 xj

• Choices of reg. term Ω and parameter λ do not affect performances

Introduction
Imbalanced RankBoost

Experiments

Conclusions

 TRECVID 2007 collection: 52,347 keyframes, 20 concepts

 200 Ranking Features: RBF kernel SVM trained on bags of data

and global features (color histogram, edge histogram, etc.)

RESULTS

• 6-fold speed up in ranking process

• 7% to 21% relative MAP improvement

• Benefit more relevant on top ranked samples

(Mean Average Precision computed at limited depth)

Average precision for single concepts computed as function of the ranking time at full depth

Analysis of the influence of () to the mean average precision computed as function of the

ranking time at full depth

Mean average precision computed as function of the ranking time at top ranked 100 samples (left),

top ranked 500 samples (center), full depth (right)

• Imbalanced RankBoost automatically emphasizes top ranked data

and truncates computation for less important bottom-ranked ones

• Ranking process more efficient and effective wrt traditional

RakBoost

• Future work: incorporate processing time of ranking features into

learning process

Learning to Rank

RankBoost RankBoost ImbalancedRB

#
 r

a
n

k
in

g
 f
e

a
tu

re
s

Top Rank Bottom Rank

ImbalancedRB

 Goal: produce a ranked list of originally unordered examples X, so that

the relevant ones are placed as close as possible to the top

 RankBoost
• Combine a pool of K “weak” ranking features hk(x) into composite

ranking function F(x)

• Exponential loss function minimization (~minimize # of ranking errors)

• Joint selection of hk(x) and optimization of combination weights αk

RankBoost vs. Imbalanced RankBoost

Solution:

Imbalanced RankBoost
:

• More ranking features

for top ranked data

• Truncate ranking

feature computation for

the data ranked below

learnt cutoff thresholds

• More efficient ranking

process

No distinction between

top- and bottom-ranked

examples

Problem:

Suboptimal Ranking Process

. .

Initialize pool of

ranking features

Select optimal

ranking feature

Compute

optimal weight

Update ranking

function

Output final Ranking

Function

Select optimal

cutoff threshold

X, h(x)

+
α1 h1 θ1

α0 h0
f0(x) = α0h0(x)

.

αT hT θT

 Bipartite setting: relevant and non-relevant examples x are grouped in

disjoint sets X0 and X1

 Ranking function F(x) contains cut-off thresholds t

 Goal: minimize exponential rank misclassification error wrt
t =1

T

F(x) = f0(x) + Σ αtht(x)·I(ft-1(x)≥ θt)

X0,X1

Lt = exp – (ft-1(x0) – ft-1(x1) + αtht(x0)·I(ft-1(x0)≥ θt) - αtht(x1)·I(ft-1(x1)≥ t)) + λΩ()∑

+

Example x

Evaluate

current ranking

function score

Update

ranking

function

Output final Ranking

Function score

Score > cutoff

threshold ?

yes

no

Learning Process

Ranking Process

αt ht θt

