Machine Learning Methods in Natural Language Processing

Michael Collins MIT CSAIL

Some NLP Problems

- Information extraction
 - Named entities
 - Relationships between entities
- Finding linguistic structure
 - Part-of-speech tagging
 - Parsing
- Machine translation

Common Themes

- Need to learn mapping from one discrete structure to another
 - Strings to hidden state sequences
 Named-entity extraction, part-of-speech tagging
 - Strings to strings
 Machine translation
 - Strings to underlying treesParsing
 - Strings to relational data structures
 Information extraction
- Speech recognition is similar (and shares many techniques)

Two Fundamental Problems

TAGGING: Strings to Tagged Sequences

a b e e a f h j \Rightarrow a/C b/D e/C e/C a/D f/C h/D j/C

PARSING: Strings to Trees

Information Extraction

Named Entity Recognition

INPUT: Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT: Profits soared at [Company Boeing Co.], easily topping forecasts on [Location Wall Street], as their CEO [Person Alan Mulally] announced first quarter results.

Relationships between Entities

INPUT: Boeing is located in Seattle. Alan Mulally is the CEO.

OUTPUT:

Part-of-Speech Tagging

INPUT:

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.

```
N = Noun
```

V = Verb

P = Preposition

Adv = Adverb

Adj = Adjective

. . .

Named Entity Extraction as Tagging

INPUT:

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

NA = No entity

SC = Start Company

CC = Continue Company

SL = Start Location

CL = Continue Location

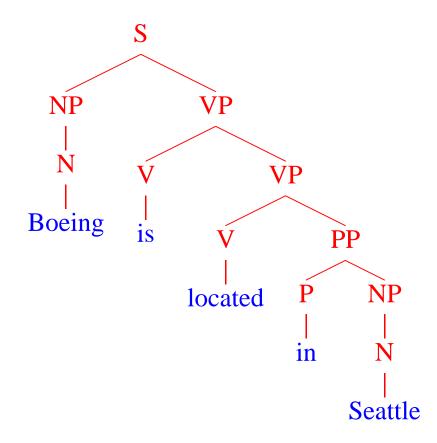
. . .

Parsing (Syntactic Structure)

INPUT:

Boeing is located in Seattle.

OUTPUT:



Machine Translation

INPUT:

Boeing is located in Seattle. Alan Mulally is the CEO.

OUTPUT:

Boeing ist in Seattle. Alan Mulally ist der CEO.

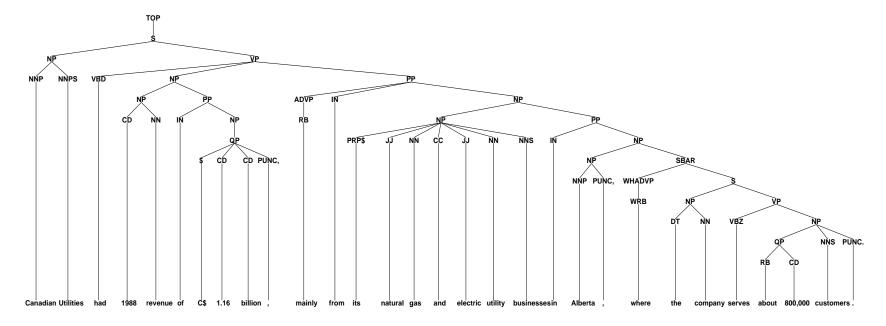
Techniques Covered in this Tutorial

- Generative models for parsing
- Log-linear (maximum-entropy) taggers
- Learning theory for NLP

Data for Parsing Experiments

- Penn WSJ Treebank = 50,000 sentences with associated trees
- Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

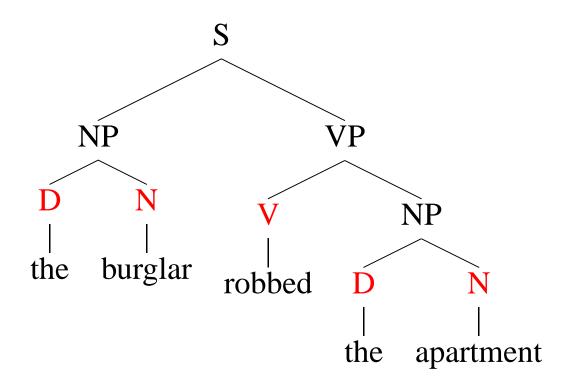


Canadian Utilities had 1988 revenue of C\$ 1.16 billion, mainly from its natural gas and electric utility businesses in Alberta, where the company serves about 800,000 customers.

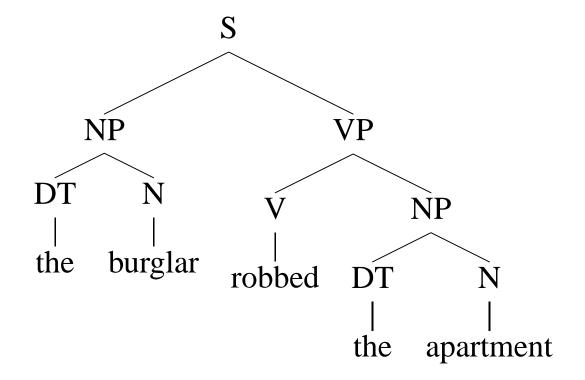
The Information Conveyed by Parse Trees

1) Part of speech for each word

$$(N = noun, V = verb, D = determiner)$$



2) Phrases

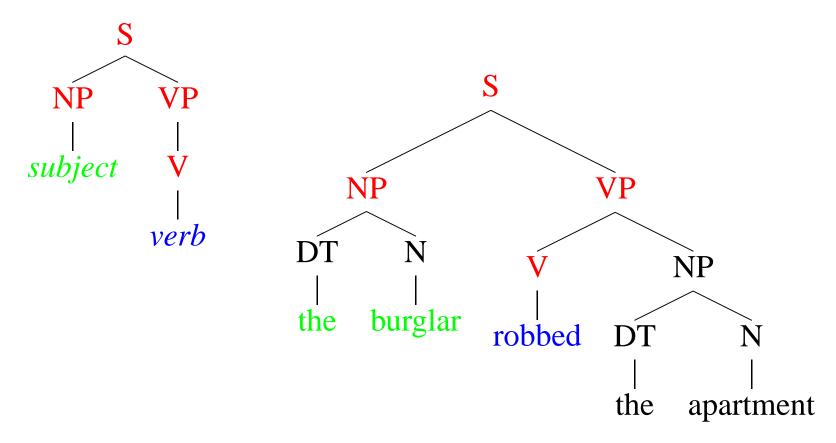


Noun Phrases (NP): "the burglar", "the apartment"

Verb Phrases (VP): "robbed the apartment"

Sentences (S): "the burglar robbed the apartment"

3) Useful Relationships



⇒ "the burglar" is the subject of "robbed"

An Example Application: Machine Translation

• English word order is subject - verb - object

• Japanese word order is subject – object – verb

English: IBM bought Lotus

Japanese: IBM Lotus bought

English: Sources said that IBM bought Lotus yesterday

Japanese: Sources yesterday IBM Lotus bought that said

Context-Free Grammars

[Hopcroft and Ullman 1979]

A context free grammar $G = (N, \Sigma, R, S)$ where:

- N is a set of non-terminal symbols
- Σ is a set of terminal symbols
- R is a set of rules of the form $X \to Y_1 Y_2 \dots Y_n$ for $n \ge 0, X \in N, Y_i \in (N \cup \Sigma)$
- $S \in N$ is a distinguished start symbol

A Context-Free Grammar for English

$$N = \{S, NP, VP, PP, D, Vi, Vt, N, P\}$$

 $S = S$
 $\Sigma = \{\text{sleeps, saw, man, woman, telescope, the, with, in}\}$

D				
R =	S	\Rightarrow	NP	VP
	VP	\Rightarrow	Vi	
	VP	\Rightarrow	Vt	NP
	VP	\Rightarrow	VP	PP
	NP	\Rightarrow	D	N
	NP	\Rightarrow	NP	PP
	PP	\Rightarrow	P	NP

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
N	\Rightarrow	man
N	\Rightarrow	woman
N	\Rightarrow	telescope
D	\Rightarrow	the
P	\Rightarrow	with
P	\Rightarrow	in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, D=determiner, Vi=intransitive verb, Vt=transitive verb, N=noun, P=preposition

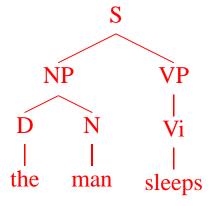
Left-Most Derivations

A left-most derivation is a sequence of strings $s_1 \dots s_n$, where

- $s_1 = S$, the start symbol
- $s_n \in \Sigma^*$, i.e. s_n is made up of terminal symbols only
- Each s_i for $i=2\ldots n$ is derived from s_{i-1} by picking the left-most non-terminal X in s_{i-1} and replacing it by some β where $X \to \beta$ is a rule in R

For example: [S], [NP VP], [D N VP], [the N VP], [the man VP], [the man Vi], [the man sleeps]

Representation of a derivation as a tree:

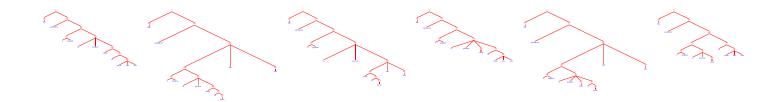


The Problem with Parsing: Ambiguity

INPUT:

She announced a program to promote safety in trucks and vans

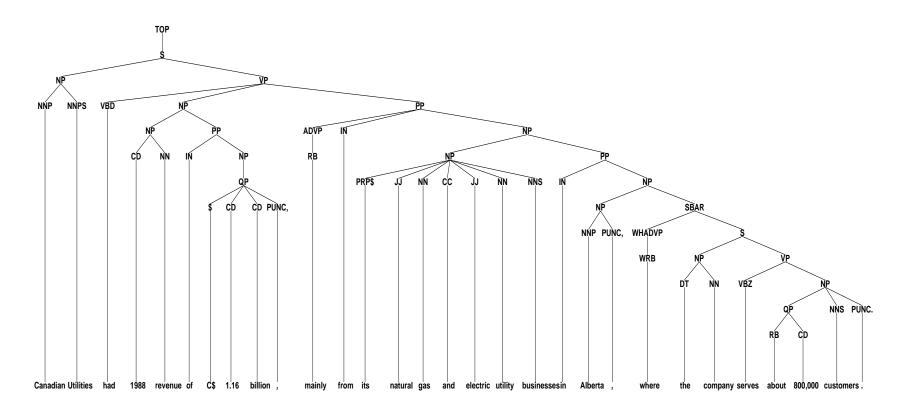
POSSIBLE OUTPUTS:



And there are more...

An Example Tree

Canadian Utilities had 1988 revenue of C\$ 1.16 billion, mainly from its natural gas and electric utility businesses in Alberta, where the company serves about 800,000 customers.



A Probabilistic Context-Free Grammar

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	D	N	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	P	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
N	\Rightarrow	man	0.7
N	\Rightarrow	woman	0.2
N	\Rightarrow	telescope	0.1
D	\Rightarrow	the	1.0
P	\Rightarrow	with	0.5
P	\Rightarrow	in	0.5

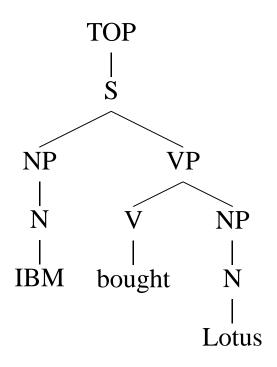
- Probability of a tree with rules $\alpha_i \to \beta_i$ is $\prod_i P(\alpha_i \to \beta_i | \alpha_i)$
- Maximum Likelihood estimation

$$P(VP \Rightarrow V NP \mid VP) = \frac{Count(VP \Rightarrow V NP)}{Count(VP)}$$

PCFGs

[Booth and Thompson 73] showed that a CFG with rule probabilities correctly defines a distribution over the set of derivations provided that:

- 1. The rule probabilities defi ne conditional distributions over the different ways of rewriting each non-terminal.
- 2. A technical condition on the rule probabilities ensuring that the probability of the derivation terminating in a fi nite number of steps is 1. (This condition is not really a practical concern.)



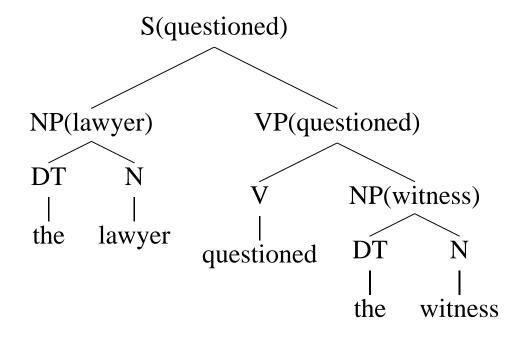
$$\begin{array}{ll} \mathsf{PROB} = & P(\mathsf{TOP} \to \mathsf{S}) \\ & \times P(\mathsf{S} \to \mathsf{NP} \ \mathsf{VP}) & \times P(\mathsf{N} \to IBM) \\ & \times P(\mathsf{VP} \to \mathsf{V} \ \mathsf{NP}) & \times P(\mathsf{V} \to bought) \\ & \times P(\mathsf{NP} \to \mathsf{N}) & \times P(\mathsf{N} \to Lotus) \\ & \times P(\mathsf{NP} \to \mathsf{N}) & \end{array}$$

The SPATTER Parser: (Magerman 95; Jelinek et al 94)

• For each rule, identify the "head" child

$$S \Rightarrow NP VP$$
 $VP \Rightarrow V NP$
 $NP \Rightarrow DT N$

Add word to each non-terminal



A Lexicalized PCFG

S(questioned)	\Rightarrow	NP(lawyer)	VP(questioned)	??
VP(questioned)	\Rightarrow	V(questioned)	NP(witness)	??
NP(lawyer)	\Rightarrow	D(the)	N(lawyer)	??
NP(witness)	\Rightarrow	D(the)	N(witness)	??

• The big question: how to estimate rule probabilities??

CHARNIAK (1997)

S(questioned)

 \Downarrow

 $P(NP VP \mid S(questioned))$

S(questioned)

NP VP(questioned)

 $\downarrow \downarrow$

 $P(\text{lawyer} \mid S, \text{VP,NP, questioned}))$

S(questioned)

NP(lawyer) VP(questioned)

Smoothed Estimation

 $P(NP VP \mid S(questioned)) =$

$$\lambda_1 \times \frac{\mathit{Count}(S(questioned) \rightarrow NP\ VP)}{\mathit{Count}(S(questioned))}$$

$$+\lambda_2 \times \frac{Count(S \rightarrow NP \ VP)}{Count(S)}$$

• Where $0 \le \lambda_1, \lambda_2 \le 1$, and $\lambda_1 + \lambda_2 = 1$

Smoothed Estimation

 $P(\text{lawyer} \mid S, NP, VP, \text{questioned}) =$

$$\lambda_1 \times \frac{\mathit{Count}(lawyer \mid S,NP,VP,questioned)}{\mathit{Count}(S,NP,VP,questioned)}$$

$$+\lambda_2 \times \frac{Count(lawyer | S,NP,VP)}{Count(S,NP,VP)}$$

$$+\lambda_3 \times \frac{Count(lawyer \mid NP)}{Count(NP)}$$

• Where $0 \le \lambda_1, \lambda_2, \lambda_3 \le 1$, and $\lambda_1 + \lambda_2 + \lambda_3 = 1$

P(NP(lawyer) VP(questioned) | S(questioned)) =

$$\left(\lambda_1 \times \frac{\mathit{Count}(S(questioned) \rightarrow NP\ VP)}{\mathit{Count}(S(questioned))} \right. \\ + \left. \lambda_2 \times \frac{\mathit{Count}(S \rightarrow NP\ VP)}{\mathit{Count}(S)} \right)$$

$$\times \left(\lambda_1 \times \frac{Count(lawyer \mid S,NP,VP,questioned)}{Count(S,NP,VP,questioned)}\right)$$

$$+\lambda_2 \times \frac{Count(lawyer \mid S,NP,VP)}{Count(S,NP,VP)}$$

$$+\lambda_3 \times \frac{Count(lawyer \mid NP)}{Count(NP)}$$
)

Lexicalized Probabilistic Context-Free Grammars

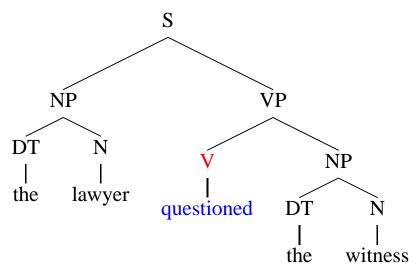
• Transformation to lexicalized rules

```
S \rightarrow NP \ VP
vs. S(questioned) \rightarrow NP(lawyer) \ VP(questioned)
```

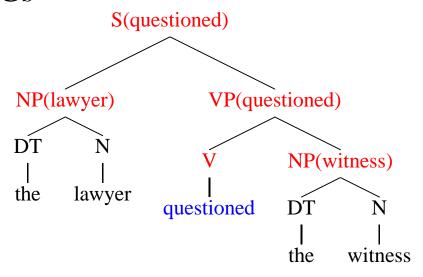
- Smoothed estimation techniques "blend" different counts
- Search for most probable tree through dynamic programming
- Perform vastly better than PCFGs (88% vs. 73% accuracy)

Independence Assumptions

• PCFGs



• Lexicalized PCFGs



Results

Method	Accuracy
PCFGs (Charniak 97)	73.0%
Conditional Models – Decision Trees (Magerman 95)	84.2%
Lexical Dependencies (Collins 96)	85.5%
Conditional Models – Logistic (Ratnaparkhi 97)	86.9%
Generative Lexicalized Model (Charniak 97)	86.7%
Generative Lexicalized Model (Collins 97)	88.2%
Logistic-inspired Model (Charniak 99)	89.6%
Boosting (Collins 2000)	89.8%

• Accuracy = average recall/precision

Parsing for Information Extraction: Relationships between Entities

INPUT:

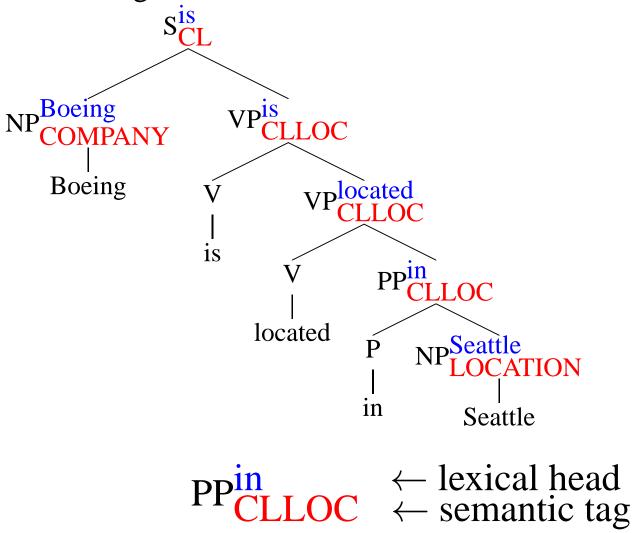
Boeing is located in Seattle.

OUTPUT:

```
{Relationship = Company-Location
Company = Boeing
Location = Seattle}
```

A Generative Model (Miller et. al)

[Miller et. al 2000] use non-terminals to carry lexical items and semantic tags



A Generative Model [Miller et. al 2000]

We're now left with an even more complicated estimation problem,

$$P(S_{CL}^{is} \Rightarrow NP_{COMPANY}^{Boeing} VP_{CLLOC}^{is})$$

See [Miller et. al 2000] for the details

- Parsing algorithm recovers annotated trees
 ⇒ Simultaneously recovers syntactic structure and named entity relationships
- Accuracy (precision/recall) is greater than 80% in recovering relations

Techniques Covered in this Tutorial

- Generative models for parsing
- Log-linear (maximum-entropy) taggers
- Learning theory for NLP

Tagging Problems

TAGGING: Strings to Tagged Sequences

a b e e a f h j \Rightarrow a/C b/D e/C e/C a/D f/C h/D j/C

Example 1: Part-of-speech tagging

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.

Example 2: Named Entity Recognition

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

Log-Linear Models

- ullet Assume we have sets ${\mathcal X}$ and ${\mathcal Y}$
- Goal: define $P(y \mid x)$ for any $x \in \mathcal{X}, y \in \mathcal{Y}$.
- A feature vector representation is $\phi: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^d$
- Parameters $\mathbf{W} \in \mathbb{R}^d$
- Defi ne

$$P(y \mid x, \mathbf{W}) = \frac{e^{\phi(x,y) \cdot \mathbf{W}}}{Z(x, \mathbf{W})}$$

where

$$Z(x, \mathbf{W}) = \sum_{y' \in \mathcal{Y}} e^{\phi(x, y') \cdot \mathbf{W}}$$

Log-Linear Taggers: Notation

- Set of possible words = V, possible tags = T
- Word sequence $w_{[1:n]} = [w_1, w_2 \dots w_n]$
- Tag sequence $t_{[1:n]} = [t_1, t_2 ... t_n]$
- Training data is n tagged sentences, where the i'th sentence is of length n_i

$$(w_{[1:n_i]}^i, t_{[1:n_i]}^i)$$
 for $i = 1 \dots n$

Log-Linear Taggers: Independence Assumptions

• The basic idea

$$P(t_{[1:n]} \mid w_{[1:n]}) = \prod_{j=1}^{n} P(t_j \mid t_{j-1} \dots t_1, w_{[1:n]}, j)$$
 Chain rule
$$= \prod_{j=1}^{n} P(t_j \mid t_{j-1}, t_{j-2}, w_{[1:n]}, j)$$
 Independence assumptions

- Two questions:
 - 1. How to parameterize $P(t_j | t_{j-1}, t_{j-2}, w_{[1:n]}, j)$?
 - 2. How to find $\arg\max_{t_{[1:n]}} P(t_{[1:n]} \mid w_{[1:n]})$?

The Parameterization Problem

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/?? from which Spain expanded its empire into the rest of the Western Hemisphere.

- There are many possible tags in the position ??
- Need to learn a function from (context, tag) pairs to a probability P(tag|context)

Representation: Histories

- A history is a 4-tuple $\langle t_{-1}, t_{-2}, w_{[1:n]}, i \rangle$
- t_{-1}, t_{-2} are the previous two tags.
- $w_{[1:n]}$ are the n words in the input sentence.
- i is the index of the word being tagged

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/?? from which Spain expanded its empire into the rest of the Western Hemisphere.

- $t_{-1}, t_{-2} = DT, JJ$
- $w_{[1:n]} = \langle Hispaniola, quickly, became, \dots, Hemisphere, . \rangle$
- i = 6

Feature–Vector Representations

- Take a history/tag pair (h, t).
- $\phi_s(h,t)$ for s=1...d are **features** representing tagging decision t in context h.

Example: POS Tagging [Ratnaparkhi 96]

• Word/tag features

$$\begin{array}{ll} \phi_{100}(h,t) &=& \left\{ \begin{array}{l} 1 & \text{if current word } w_i \text{ is base and } t = \text{VB} \\ 0 & \text{otherwise} \end{array} \right. \\ \phi_{101}(h,t) &=& \left\{ \begin{array}{l} 1 & \text{if current word } w_i \text{ ends in ing and } t = \text{VBG} \\ 0 & \text{otherwise} \end{array} \right. \end{array}$$

• Contextual Features

$$\phi_{103}(h,t) = \begin{cases} 1 & \text{if } \langle t_{-2}, t_{-1}, t \rangle = \langle \text{DT, JJ, VB} \rangle \\ 0 & \text{otherwise} \end{cases}$$

Part-of-Speech (POS) Tagging [Ratnaparkhi 96]

• Word/tag features

$$\phi_{100}(h,t) = \begin{cases} 1 & \text{if current word } w_i \text{ is base and } t = \text{VB} \\ 0 & \text{otherwise} \end{cases}$$

Spelling features

$$\begin{array}{ll} \phi_{101}(h,t) &=& \left\{ \begin{array}{l} 1 & \text{if current word } w_i \text{ ends in ing and } t = \text{VBG} \\ 0 & \text{otherwise} \end{array} \right. \\ \\ \phi_{102}(h,t) &=& \left\{ \begin{array}{l} 1 & \text{if current word } w_i \text{ starts with pre and } t = \text{NN} \\ 0 & \text{otherwise} \end{array} \right. \end{array}$$

Ratnaparkhi's POS Tagger

Contextual Features

$$\begin{array}{lll} \phi_{103}(h,t) & = & \left\{ \begin{array}{l} 1 & \text{if } \langle t_{-2},t_{-1},t \rangle = \langle \text{DT, JJ, VB} \rangle \\ 0 & \text{otherwise} \end{array} \right. \\ \\ \phi_{104}(h,t) & = & \left\{ \begin{array}{l} 1 & \text{if } \langle t_{-1},t \rangle = \langle \text{JJ, VB} \rangle \\ 0 & \text{otherwise} \end{array} \right. \\ \\ \phi_{105}(h,t) & = & \left\{ \begin{array}{l} 1 & \text{if } \langle t \rangle = \langle \text{VB} \rangle \\ 0 & \text{otherwise} \end{array} \right. \\ \\ \phi_{106}(h,t) & = & \left\{ \begin{array}{l} 1 & \text{if previous word } w_{i-1} = the \text{ and } t = \text{VB} \\ 0 & \text{otherwise} \end{array} \right. \\ \\ \phi_{107}(h,t) & = & \left\{ \begin{array}{l} 1 & \text{if next word } w_{i+1} = the \text{ and } t = \text{VB} \\ 0 & \text{otherwise} \end{array} \right. \end{array}$$

Log-Linear (Maximum-Entropy) Models

- Take a history/tag pair (h, t).
- $\phi_s(h,t)$ for $s=1\dots d$ are **features**
- \mathbf{W}_s for $s = 1 \dots d$ are parameters
- Parameters defi ne a conditional distribution

$$P(t|h) = \frac{e^{\sum_{s} \mathbf{W}_{s} \phi_{s}(h,t)}}{Z(h, \mathbf{W})}$$

where

$$Z(h, \mathbf{W}) = \sum_{t' \in \mathcal{T}} e^{\sum_s \mathbf{W}_s \phi_s(h, t')}$$

Log-Linear (Maximum Entropy) Models

- Word sequence $w_{[1:n]} = [w_1, w_2 \dots w_n]$
- Tag sequence $t_{[1:n]} = [t_1, t_2 \dots t_n]$
- Histories $h_i = \langle t_{i-1}, t_{i-2}, w_{[1:n]}, i \rangle$

$$\log P(t_{[1:n]} \mid w_{[1:n]}) = \sum_{i=1}^{n} \log P(t_i \mid h_i)$$

$$= \sum_{i=1}^{n} \sum_{s} \mathbf{W}_s \phi_s(h_i, t_i) - \sum_{i=1}^{n} \log Z(h_i, \mathbf{W})$$
Linear Score

Local Normalization

Local Normalization
Terms

Log-Linear Models

- Parameter estimation:
 Maximize likelihood of training data through gradient descent, iterative scaling
- Search for $\arg\max_{t_{[1:n]}} P(t_{[1:n]} \mid w_{[1:n]})$: Dynamic programming, $O(n|\mathcal{T}|^3)$ complexity
- Experimental results:
 - Almost 97% accuracy for POS tagging [Ratnaparkhi 96]
 - Over 90% accuracy for named-entity extraction
 [Borthwick et. al 98]
 - Better results than an HMM for FAQ segmentation
 [McCallum et al. 2000]

Techniques Covered in this Tutorial

- Generative models for parsing
- Log-linear (maximum-entropy) taggers
- Learning theory for NLP

Linear Models for Classification

- Goal: learn a function $F: \mathcal{X} \to \{-1, +1\}$
- Training examples (x_i, y_i) for $i = 1 \dots m$,
- A representation $\Phi: \mathcal{X} \to \mathbb{R}^d$, parameter vector $\mathbf{W} \in \mathbb{R}^d$.
- Classifi er is defi ned as

$$F(x) = Sign\left(\mathbf{\Phi}(x) \cdot \mathbf{W}\right)$$

• Unifying framework for many results: Support vector machines, boosting, kernel methods, logistic regression, margin-based generalization bounds, online algorithms (perceptron, winnow), mistake bounds, etc.

How can these methods be generalized beyond classification problems?

Linear Models for Parsing and Tagging

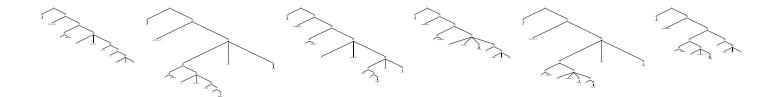
- Goal: learn a function $F: \mathcal{X} \to \mathcal{Y}$
- Training examples (x_i, y_i) for $i = 1 \dots m$,
- Three components to the model:
 - A function GEN(x) enumerating candidates for x
 - A representation $\Phi: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^d$.
 - A parameter vector $\mathbf{W} \in \mathbb{R}^d$.
- Function is defined as

$$F(x) = \arg \max_{y \in \mathbf{GEN}(x)} \mathbf{\Phi}(x, y) \cdot \mathbf{W}$$

Component 1: GEN

• GEN enumerates a set of candidates for a sentence

She announced a program to promote safety in trucks and vans

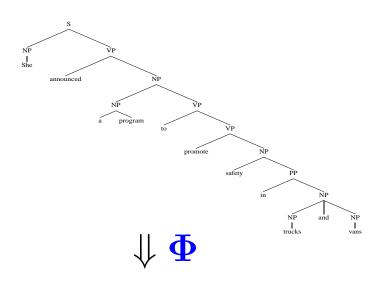


Examples of GEN

- A context-free grammar
- A fi nite-state machine
- ullet Top N most probable analyses from a probabilistic grammar

Component 2: Φ

- Φ maps a candidate to a **feature vector** $\in \mathbb{R}^d$
- \bullet defines the **representation** of a candidate



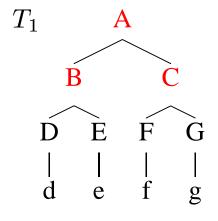
 $\langle 1, 0, 2, 0, 0, 15, 5 \rangle$

Features

• A "feature" is a function on a structure, e.g.,

$$h(x) =$$
Number of times

 $oxed{A}$ is seen in x



$$h(T_1) = 1$$

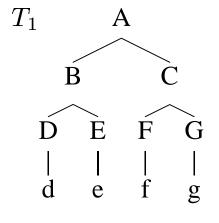
$$T_2$$
 B
 C
 D
 E
 F
 A
 d
 e
 h
 B
 C
 d
 e
 h
 C

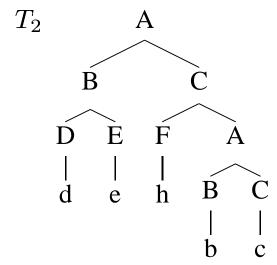
$$h(T_2) = 2$$

Feature Vectors

• A set of functions $h_1 \dots h_d$ define a **feature vector**

$$\Phi(x) = \langle h_1(x), h_2(x) \dots h_d(x) \rangle$$

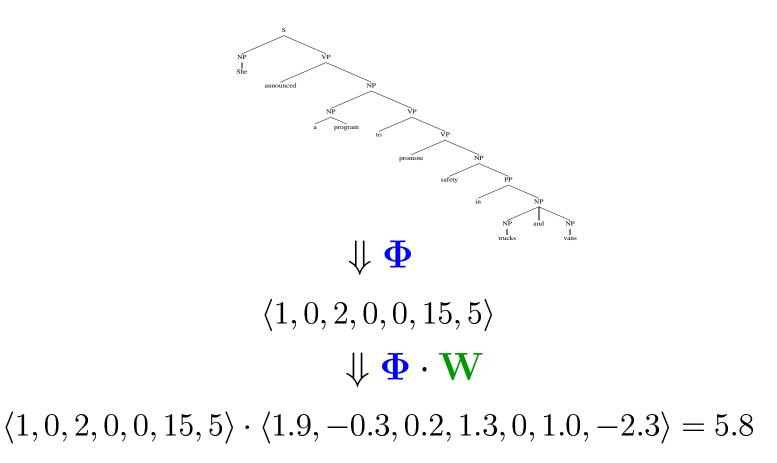




$$\Phi(T_1) = \langle 1, 0, 0, 3 \rangle$$
 $\Phi(T_2) = \langle 2, 0, 1, 1 \rangle$

Component 3: W

- W is a parameter vector $\in \mathbb{R}^d$
- • and W together map a candidate to a real-valued score



Putting it all Together

- \bullet \mathcal{X} is set of sentences, \mathcal{Y} is set of possible outputs (e.g. trees)
- Need to learn a function $F: \mathcal{X} \to \mathcal{Y}$
- **GEN**, Φ , W define

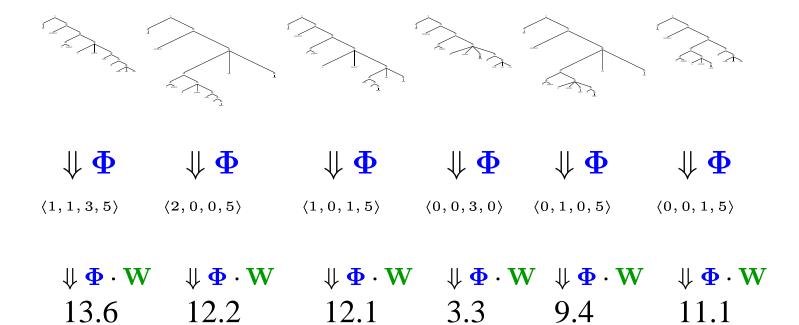
$$F(x) = \underset{y \in \mathbf{GEN}(x)}{\operatorname{arg max}} \Phi(x, y) \cdot \mathbf{W}$$

Choose the highest scoring tree as the most plausible structure

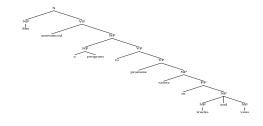
• Given examples (x_i, y_i) , how to set **W**?

She announced a program to promote safety in trucks and vans

↓ GEN



 $\Downarrow \arg \max$



Markov Random Fields

[Johnson et. al 1999, Lafferty et al. 2001]

• Parameters W define a conditional distribution over candidates:

$$P(y_i \mid x_i, \mathbf{W}) = \frac{e^{\mathbf{\Phi}(x_i, y_i) \cdot \mathbf{W}}}{\sum_{y \in \mathbf{GEN}(x_i)} e^{\mathbf{\Phi}(x_i, y) \cdot \mathbf{W}}}$$

- Gaussian prior: $\log P(\mathbf{W}) \sim -C||\mathbf{W}||^2/2$
- MAP parameter estimates maximise

$$\sum_{i} \log \frac{e^{\mathbf{\Phi}(x_{i}, y_{i}) \cdot \mathbf{W}}}{\sum_{y \in \mathbf{GEN}(x_{i})} e^{\mathbf{\Phi}(x_{i}, y) \cdot \mathbf{W}}} - C \frac{||\mathbf{W}||^{2}}{2}$$

Note: This is a 'globally normalised' model

A Variant of the Perceptron Algorithm

Inputs: Training set (x_i, y_i) for $i = 1 \dots n$

Initialization: W = 0

Define: $F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \Phi(x_i, y) \cdot \mathbf{W}$

Algorithm: For $t = 1 \dots T$, $i = 1 \dots n$ $z_i = F(x_i)$

If $(z_i \neq y_i)$ $\mathbf{W} = \mathbf{W} + \mathbf{\Phi}(x_i, y_i) - \mathbf{\Phi}(x_i, z_i)$

Output: Parameters W

Theory Underlying the Algorithm

- Definition: $\overline{\mathbf{GEN}}(x_i) = \mathbf{GEN}(x_i) \{y_i\}$
- **Definition:** The training set is **separable with margin** δ , if there is a vector $\mathbf{U} \in \mathbb{R}^d$ with $||\mathbf{U}|| = 1$ such that

$$\forall i, \forall z \in \overline{\mathbf{GEN}}(x_i) \quad \mathbf{U} \cdot \mathbf{\Phi}(x_i, y_i) - \mathbf{U} \cdot \mathbf{\Phi}(x_i, z) \geq \delta$$

Theorem: For any training sequence (x_i, y_i) which is separable with margin δ , then for the perceptron algorithm

Number of mistakes
$$\leq \frac{R^2}{\delta^2}$$

where R is such that $\forall i, \forall z \in \overline{\mathbf{GEN}}(x_i) \quad ||\Phi(x_i, y_i) - \Phi(x_i, z)|| \leq R$

Proof: Direct modification of the proof for the classification case. See [Crammer and Singer 2001b, Collins 2002a]

Results that Carry Over from Classification

- [Freund and Schapire 99] defi ne the **Voted Perceptron**, prove results for the inseparable case.
- Compression bounds [Littlestone and Warmuth, 1986]

Say the perceptron algorithm makes d mistakes when run to convergence over a training set of size m. Then for all distributions D(x,y), with probability at least $1-\delta$ over the choice of training set of size m drawn from D, if h is the hypothesis at convergence,

$$Err(h) \le \frac{1}{m-d} \left(d \log \frac{em}{d} + \log m + \log \frac{1}{\delta} \right)$$

NB.
$$d \leq \frac{R^2}{\delta^2}$$

Large-Margin (SVM) Hypothesis

An approach which is close to that of [Crammer and Singer 2001a]:

Minimize

$$\|\mathbf{W}\|^2 + C \sum \epsilon_i$$

with respect to \mathbf{W} , ϵ_i for $i = 1 \dots m$, subject to the constraints

$$\forall i, \forall y \in \mathbf{GEN}(x_i), y \neq y_i, \quad \mathbf{W} \cdot \mathbf{\Phi}(x_i, y_i) - \mathbf{W} \cdot \mathbf{\Phi}(x_i, y) \geq 1 - \epsilon_i$$

$$\forall i, \quad \epsilon_i \geq 0$$

• See [Altun, Tsochantaridis, and Hofmann, 2003]: "Hidden Markov Support Vector Machines"

Define:

- $F_{\mathbf{W}}(x) = \arg\max_{y \in \mathbf{GEN}(x)} \Phi(x, y) \cdot \mathbf{W}$
- $Err(F_{\mathbf{W}}) = \sum_{x,y} D(x,y)[[F_{\mathbf{W}}(x) \neq y]]$
- $\hat{L}(\mathbf{W}, \gamma) = \sum_{i=1}^{m} [[\mathbf{\Phi}(x_i, y_i) \cdot \mathbf{W} \max_{y \in \mathbf{\overline{GEN}}(x_i)} \mathbf{\Phi}(x_i, y) \cdot \mathbf{W} \le \gamma]]$

Generalization Theorem:

For all distributions D(x,y) generating examples, for all $\mathbf{W} \in \mathbb{R}^d$ with $||\mathbf{W}|| = 1$, for all $\gamma > 0$, with probability at least $1 - \delta$ over the choice of training set of size m drawn from D,

$$Err(F_{\mathbf{W}}) \le \hat{L}(\mathbf{W}, \gamma) + O\left(\sqrt{\frac{1}{m}\left(\frac{R^2(\log m + \log N)}{\gamma^2} + \log\frac{1}{\delta}\right)}\right)$$

where R is a constant such that $\forall x \in \mathcal{X}, \forall y \in \mathbf{GEN}(x), \forall z \in \mathbf{GEN}(x), ||\Phi(x,y) - \Phi(x,z)|| \leq R$. The variable N is the smallest positive integer such that $\forall x \in \mathcal{X}, |\mathbf{GEN}(x)| - 1 \leq N$.

Proof: See [Collins 2002b]. Based on [Bartlett 1998, Zhang, 2002]; closely related to multiclass bounds in e.g., [Schapire et al., 1998].

Perceptron Algorithm 1: Tagging

Going back to tagging:

- Inputs x are sentences $w_{[1:n]}$
- GEN $(w_{[1:n]}) = \mathcal{T}^n$ i.e. all tag sequences of length n
- Global representations Φ are composed from local feature vectors ϕ

$$\Phi(w_{[1:n]}, t_{[1:n]}) = \sum_{j=1}^{n} \phi(h_j, t_j)$$

where $h_j = \langle t_{j-2}, t_{j-1}, w_{[1:n]}, j \rangle$

Perceptron Algorithm 1: Tagging

• Typically, local features are indicator functions, e.g.,

$$\phi_{101}(h,t) = \begin{cases} 1 & \text{if current word } w_i \text{ ends in ing and } t = \text{VBG} \\ 0 & \text{otherwise} \end{cases}$$

and global features are then counts,

 $\Phi_{101}(w_{[1:n]},t_{[1:n]})=$ Number of times a word ending in ing is tagged as VBG in $(w_{[1:n]},t_{[1:n]})$

Perceptron Algorithm 1: Tagging

• Score for a $(w_{[1:n]}, t_{[1:n]})$ pair is

$$F(w_{[1:n]}, t_{[1:n]}) = \sum_{i} \sum_{s} \mathbf{W}_{s} \phi_{s}(h_{i}, t_{i}) = \sum_{s} \mathbf{W}_{s} \mathbf{\Phi}_{s}(t_{[1:n]}, w_{[1:n]})$$

Viterbi algorithm for

$$\arg\max_{t_{[1:n]}\in\mathcal{T}^n} F(w_{[1:n]}, t_{[1:n]})$$

Log-linear taggers (see earlier part of the tutorial) are locally normalised models:

$$\log P(t_{[1:n]} \mid w_{[1:n]}) = \underbrace{\sum_{j=1}^{n} \sum_{s} \mathbf{W}_{s} \phi_{s}(h_{j}, t_{j})}_{\text{Linear Model}} - \underbrace{\sum_{j=1}^{n} \log Z(h_{j}, \mathbf{W})}_{\text{Local Normalization}}$$

Training the Parameters

Inputs: Training set $(w_{[1:n_i]}^i, t_{[1:n_i]}^i)$ for i = 1 ... n.

Initialization: W = 0

Algorithm: For $t = 1 \dots T, i = 1 \dots n$

$$z_{[1:n_i]} = \arg\max_{u_{[1:n_i]} \in \mathcal{T}^{n_i}} \sum_{s} \mathbf{W}_s \Phi_s(w_{[1:n_i]}^i, u_{[1:n_i]})$$

 $z_{[1:n_i]}$ is output on i'th sentence with current parameters

If
$$z_{[1:n_i]} \neq t^i_{[1:n_i]}$$
 then

$$\mathbf{W}_{s} = \mathbf{W}_{s} + \underbrace{\Phi_{s}(w_{[1:n_{i}]}^{i}, t_{[1:n_{i}]}^{i})}_{\mathbf{Correct\ tags'}} - \underbrace{\Phi_{s}(w_{[1:n_{i}]}^{i}, z_{[1:n_{i}]})}_{\mathbf{Incorrect\ tags'}}$$

Output: Parameter vector W.

An Example

Say the correct tags for i'th sentence are

the/DT man/NN bit/VBD the/DT dog/NN

Under current parameters, output is

the/DT man/NN bit/NN the/DT dog/NN

Assume also that features track: (1) all bigrams; (2) word/tag pairs Parameters incremented:

$$\langle NN, VBD \rangle, \langle VBD, DT \rangle, \langle VBD \rightarrow bit \rangle$$

Parameters decremented:

$$\langle NN, NN \rangle, \langle NN, DT \rangle, \langle NN \rightarrow bit \rangle$$

Experiments

• Wall Street Journal part-of-speech tagging data

```
Perceptron = 2.89%, Max-ent = 3.28% (11.9% relative error reduction)
```

• [Ramshaw and Marcus 95] NP chunking data

```
Perceptron = 93.63%, Max-ent = 93.29% (5.1% relative error reduction)
```

See [Collins 2002a]

Perceptron Algorithm 2: Reranking Approaches

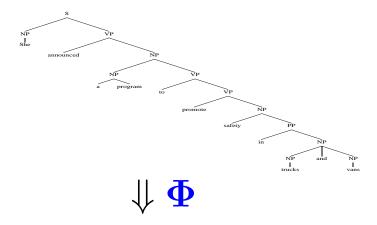
- **GEN** is the top n most probable candidates from a base model
 - Parsing: a lexicalized probabilistic context-free grammar
 - Tagging: "maximum entropy" tagger
 - Speech recognition: existing recogniser

Parsing Experiments

GEN Beam search used to parse training and test sentences: around 27 parses for each sentence

 $\Phi = \langle L(x), h_1(x) \dots h_m(x) \rangle$, where $L(x) = \text{log-likelihood from fi rst-pass parser}, <math>h_1 \dots h_m$ are $\approx 500,000$ indicator functions

$$e.g., \quad h_1(x) = \begin{cases} 1 & \text{if } x \text{ contains} \langle S \to NP & VP \rangle \\ 0 & \text{otherwise} \end{cases}$$



 $\langle -15.65, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, \dots, 1, 0, 0 \rangle$

Named Entities

GEN Top 20 segmentations from a "maximum-entropy" tagger

$$\Phi = \langle L(x), h_1(x) \dots h_m(x) \rangle,$$

$$e.g., \quad h_1(x) = \begin{cases} 1 & \text{if } x \text{ contains a boundary} = \text{``[The]} \\ 0 & \text{otherwise} \end{cases}$$

Whether you're an aging flower child or a clueless [Gen-Xer], "[The Day They Shot John Lennon]," playing at the [Dougherty Arts Center], entertains the imagination.

$$\downarrow \Phi$$
 $\langle -3.17, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, \dots, 0, 1, 1 \rangle$

Whether you're an aging flower child or a clueless [Gen-Xer], "[The Day They Shot John Lennon]," playing at the [Dougherty Arts Center], entertains the imagination.

$$\langle -3.17, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, \dots, 0, 1, 1 \rangle$$

Whether you're an aging flower child or a clueless Gen-Xer, "The Day [They Shot John Lennon]," playing at the [Dougherty Arts Center], entertains the imagination.

$$\Downarrow \Phi$$

$$\langle -3.51, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, \dots, 0, 1, 0 \rangle$$

Whether you're an aging flower child or a clueless [Gen-Xer], "The Day [They Shot John Lennon]," playing at the [Dougherty Arts Center], entertains the imagination.

$$\langle -2.87, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, \dots, 0, 1, 0 \rangle$$

Experiments

Parsing Wall Street Journal Treebank

Training set = 40,000 sentences, test = 2,416 sentences

State-of-the-art parser: 88.2% F-measure

Reranked model: 89.5% F-measure (11% relative error reduction)

Boosting: 89.7% F-measure (13% relative error reduction)

Recovering Named-Entities in Web Data

Training data = 53,609 sentences (1,047,491 words),

test data = 14,717 sentences (291,898 words)

State-of-the-art tagger: 85.3% F-measure

Reranked model: 87.9% F-measure (17.7% relative error reduction)

Boosting: 87.6% F-measure (15.6% relative error reduction)

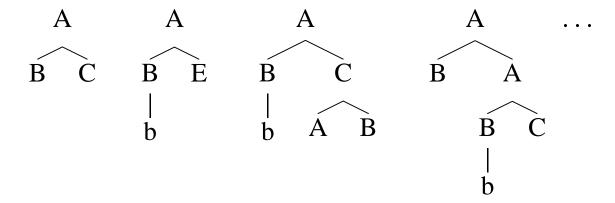
Perceptron Algorithm 3: Kernel Methods (Work with Nigel Duffy)

• It's simple to derive a "dual form" of the perceptron algorithm

If we can compute $\Phi(x) \cdot \Phi(y)$ efficiently we can learn efficiently with the representation Φ

'All Subtrees'' Representation [Bod 98]

- Given: Non-Terminal symbols $\{A, B, \ldots\}$ Terminal symbols $\{a, b, c \ldots\}$
- An infi nite set of subtrees



• Step 1:

Choose an (arbitrary) mapping from subtrees to integers

 $h_i(x) =$ Number of times subtree i is seen in x

$$\Phi(x) = \langle h_1(x), h_2(x), h_3(x) \dots \rangle$$

All Subtrees Representation

- **But** inner product $\Phi(T_1) \cdot \Phi(T_2)$ can be computed efficiently using dynamic programming. See [Collins and Duffy 2001, Collins and Duffy 2002]

Computing the Inner Product

Define $-N_1$ and N_2 are sets of nodes in T_1 and T_2 respectively.

$$-I_i(x) = \begin{cases} 1 \text{ if } i \text{'th subtree is rooted at } x. \\ 0 \text{ otherwise.} \end{cases}$$

Follows that:

$$h_i(T_1) = \sum_{n_1 \in N_1} I_i(n_1)$$
 and $h_i(T_2) = \sum_{n_2 \in N_2} I_i(n_2)$

$$\Phi(T_1) \cdot \Phi(T_2) = \sum_i h_i(T_1) h_i(T_2) = \sum_i \left(\sum_{n_1 \in N_1} I_i(n_1) \right) \left(\sum_{n_2 \in N_2} I_i(n_2) \right)$$

$$= \sum_{n_1 \in N_1} \sum_{n_2 \in N_2} \sum_i I_i(n_1) I_i(n_2)$$

$$= \sum_{n_1 \in N_1} \sum_{n_2 \in N_2} \Delta(n_1, n_2)$$

where $\Delta(n_1, n_2) = \sum_i I_i(n_1) I_i(n_2)$ is the number of common subtrees at n_1, n_2

An Example

$$\Phi(T_1) \cdot \Phi(T_2) = \Delta(A, A) + \Delta(A, B) \dots + \Delta(B, A) + \Delta(B, B) \dots + \Delta(G, G)$$

- Most of these terms are 0 (e.g. $\Delta(A, B)$).
- Some are non-zero, e.g. $\Delta(B, B) = 4$

Recursive Definition of $\Delta(n_1, n_2)$

• If the productions at n_1 and n_2 are different

$$\Delta(n_1, n_2) = 0$$

• Else if n_1, n_2 are pre-terminals,

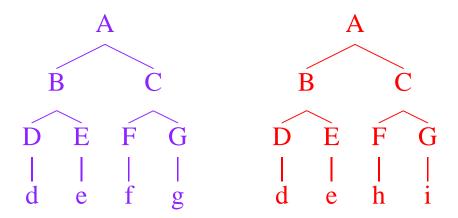
$$\Delta(n_1, n_2) = 1$$

• Else

$$\Delta(n_1, n_2) = \prod_{j=1}^{nc(n_1)} (1 + \Delta(ch(n_1, j), ch(n_2, j)))$$

 $nc(n_1)$ is number of children of node n_1 ; $ch(n_1, j)$ is the j'th child of n_1 .

Illustration of the Recursion



How many subtrees do nodes A and A have in common? i.e., What is $\Delta(A, A)$?

$$\Delta(B,B) = 4$$

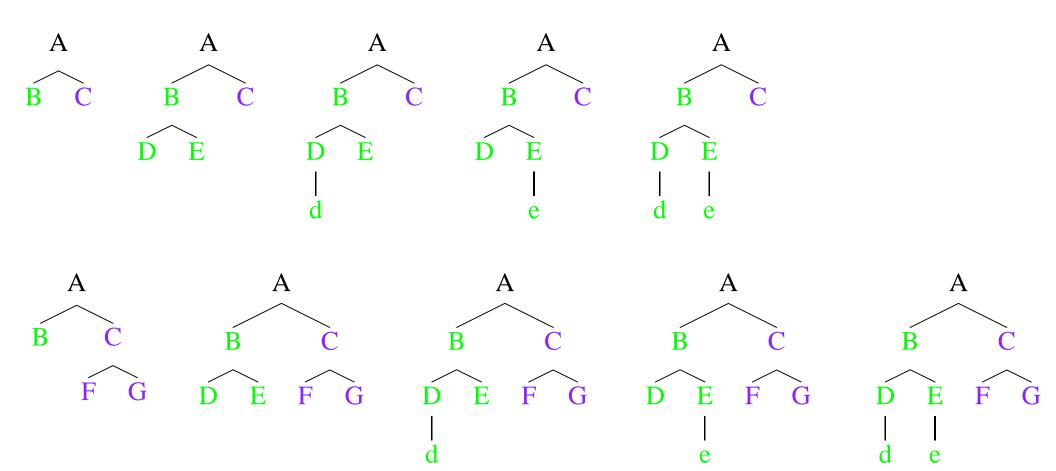
$$\Delta(C,C) = 1$$

$$D E D E D E D E F G$$

$$C F G$$

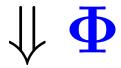
$$C F G$$

$$\Delta(A, A) = (\Delta(B, B) + 1) \times (\Delta(C, C) + 1) = 10$$



Similar Kernels Exist for Tagged Sequences

Whether you're an aging flower child or a clueless [Gen-Xer], '[The Day They Shot John Lennon],' playing at the [Dougherty Arts Center], entertains the imagination.



Whether [Gen-Xer], Day They John Lennon],"playing

Whether you're an aging fbwer child or a clueless [Gen

. . .

Experiments

Parsing Wall Street Journal Treebank

Training set = 40,000 sentences, test = 2,416 sentences

State-of-the-art parser: 88.5% F-measure

Reranked model: 89.1% F-measure

(5% relative error reduction)

Recovering Named-Entities in Web Data

Training data = 53,609 sentences (1,047,491 words),

test data = 14,717 sentences (291,898 words)

State-of-the-art tagger: 85.3% F-measure

Reranked model: 87.6% F-measure

(15.6% relative error reduction)

Open Questions

- Can the large-margin hypothesis be trained efficiently, even when GEN(x) is huge? (see [Altun, Tsochantaridis, and Hofmann, 2003])
- Can the large-margin bound be improved, to remove the $\log N$ factor?
- Which representations lead to good performance on parsing, tagging etc.?
- Can methods with "global" kernels be implemented efficiently?

Conclusions

Some Other Topics in Statistical NLP:

- Machine translation
- Unsupervised/partially supervised methods
- Finite state machines
- Generation
- Question answering
- Coreference
- Language modeling for speech recognition
- Lexical semantics
- Word sense disambiguation
- Summarization

References

- [Altun, Tsochantaridis, and Hofmann, 2003] Altun, Y., I. Tsochantaridis, and T. Hofmann. 2003. Hidden Markov Support Vector Machines. In *Proceedings of ICML 2003*.
- [Bartlett 1998] P. L. Bartlett. 1998. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network, IEEE Transactions on Information Theory, 44(2): 525-536, 1998.
- [Bod 98] Bod, R. (1998). Beyond Grammar: An Experience-Based Theory of Language. CSLI Publications/Cambridge University Press.
- [Booth and Thompson 73] Booth, T., and Thompson, R. 1973. Applying probability measures to abstract languages. *IEEE Transactions on Computers*, C-22(5), pages 442–450.
- [Borthwick et. al 98] Borthwick, A., Sterling, J., Agichtein, E., and Grishman, R. (1998). Exploiting Diverse Knowledge Sources via Maximum Entropy in Named Entity Recognition. *Proc. of the Sixth Workshop on Very Large Corpora*.
- [Collins and Duffy 2001] Collins, M. and Duffy, N. (2001). Convolution Kernels for Natural Language. In *Proceedings of NIPS 14*.
- [Collins and Duffy 2002] Collins, M. and Duffy, N. (2002). New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete Structures, and the Voted Perceptron. In *Proceedings* of ACL 2002.
- [Collins 2002a] Collins, M. (2002a). Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with the Perceptron Algorithm. In *Proceedings of EMNLP 2002*.
- [Collins 2002b] Collins, M. (2002b). Parameter Estimation for Statistical Parsing Models: Theory and Practice of Distribution-Free Methods. To appear as a book chapter.

- [Crammer and Singer 2001a] Crammer, K., and Singer, Y. 2001a. On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines. In *Journal of Machine Learning Research*, 2(Dec):265-292.
- [Crammer and Singer 2001b] Koby Crammer and Yoram Singer. 2001b. Ultraconservative Online Algorithms for Multiclass Problems In *Proceedings of COLT 2001*.
- [Freund and Schapire 99] Freund, Y. and Schapire, R. (1999). Large Margin Classification using the Perceptron Algorithm. In *Machine Learning*, 37(3):277–296.
- [Helmbold and Warmuth 95] Helmbold, D., and Warmuth, M. On Weak Learning. *Journal of Computer and System Sciences*, 50(3):551-573, June 1995.
- Computer and System Sciences, 50(3):551-573, June 1995. [Hopcroft and Ullman 1979] Hopcroft, J. E., and Ullman, J. D. 1979. Introduction to automata theory, languages, and computation. Reading, Mass.: Addison—Wesley.
- [Johnson et. al 1999] Johnson, M., Geman, S., Canon, S., Chi, S., & Riezler, S. (1999). Estimators for stochastic 'unification-based" grammars. In *Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics*. San Francisco: Morgan Kaufmann.
- [Lafferty et al. 2001] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fi elds: Probabilistic models for segmenting and labeling sequence data. In Proceedings of ICML-01, pages 282-289, 2001.
- [Littlestone and Warmuth, 1986] Littlestone, N., and Warmuth, M. 1986. Relating data compression and learnability. *Technical report, University of California, Santa Cruz*.
- [MSM93] Marcus, M., Santorini, B., & Marcinkiewicz, M. (1993). Building a large annotated corpus of english: The Penn treebank. *Computational Linguistics*, 19, 313-330.
- [McCallum et al. 2000] McCallum, A., Freitag, D., and Pereira, F. (2000) Maximum entropy markov models for information extraction and segmentation. In *Proceedings of ICML 2000*.

- [Miller et. al 2000] Miller, S., Fox, H., Ramshaw, L., and Weischedel, R. 2000. A Novel Use of Statistical Parsing to Extract Information from Text. In *Proceedings of ANLP 2000*.
- [Ramshaw and Marcus 95] Ramshaw, L., and Marcus, M. P. (1995). Text Chunking Using Transformation-Based Learning. In *Proceedings of the Third ACL Workshop on Very Large Corpora*, Association for Computational Linguistics, 1995.
- [Ratnaparkhi 96] A maximum entropy part-of-speech tagger. In *Proceedings of the empirical methods in natural language processing conference*.
- [Schapire et al., 1998] Schapire R., Freund Y., Bartlett P. and Lee W. S. 1998. Boosting the margin: A new explanation for the effectiveness of voting methods. *The Annals of Statistics*, 26(5):1651-1686.
- [Zhang, 2002] Zhang, T. 2002. Covering Number Bounds of Certain Regularized Linear Function Classes. In *Journal of Machine Learning Research*, 2(Mar):527-550, 2002.