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NP VP these criticismsseriously take

We describe a novel approach for syntax- V\|/e mmw
based statistical MT, which builds on a |

. . also
variant of tree adjoining grammar (TAG).
|nspired by work in discriminative depen- wir miissen auch diese kritik ernst nehmen
dency parsing, the key idea in our ap-
proach is to allow highly flexible reorder- TAG parsing operations are then used to combine

ing operations during parsing, in combina-  these fragments into a full parse tree, giving the
tion with a discriminative model that can final English translatiorwe must also take these
condition on rich features of the source-  criticisms seriously

language string. Experiments on trans- Some key aspects of our approach are as fol-
lation from German to English show im- lows:

provements over phrase-based systems, o We impose no constraints on entries in the
both in terms of BLEU scores and in hu-  phrasal lexicon. The method thereby retains the
man evaluations. full set of lexical entries of phrase-based systems

(e.g., (Koehn et al., 2003).

e The model allows a straightforward integra-
tion of lexicalized syntactic language models—for
example the models of (Charniak, 2001)—in addi-
Syntax-based models for statistical machine transjon to a surface |anguage model.
lation (SMT) have recently shown impressive re- o The operations used to combine tree frag-
sults; many such approaches are based on @nents into a complete parse tree are signifi-
ther synchronous grammars (e.g., (Chiang, 2005)hant generalizations of standard parsing operations
or tree transducers (e.g., (Marcu et al., 2006))found in TAG; specifically, they are modified to be
This paper describes an alternative approach fohignly flexible, potentially allowing any possible
syntax-based SMT, which directly leverages methnermutation (reordering) of the initial fragments.
ods from non-projective dependency parsing. The ag gne example of the type of parsing opera-
key idea in our approach is to allow highly flexible jons that we will consider, we might allow the
reordering operations, in combination with a dis-{ge fragments shown above fitese criticisms
criminative model that can condition on rich fea- 5,qtaketo be combined to form a new structure
tures of the source-language input string. with the sub-stringake these criticismsThis step

Our approach builds on a variant of tree adjoin-in the derivation is necessary to achieve the correct
ing grammar (TAG; (Joshi and Schabes, 1997)fnglish word order, and is novel in a couple of re-
(specifically, the formalism of (Carreras et al., Spects: firstthese criticismss initially seen to the
2008)). The models we describe make use ofeft of take but after the adjunction this order is
phrasal entries augmented with subtrees that prdeversed; second, and more unusually, the treelet
vide syntactic information in the target language.for seriouslyhas been skipped over, with the re-
As one examp|e’ when trans|ating the sentenc8ult that the German words translated at this point
wir missen auch diese kritik ernst nehnfeom  (diese kritik, andnehmeform a non-contiguous
German into English, the following sequence ofsequence. More generally, we will allow any two
syntactic phrasal entries might be used (we show—; . .

Note that in the above example each English phrase con-

each English SymaCt_'C fragment above its ass0Clists of a completely connected syntactic structure; ¢hist,
ated German sub-string): however, a required constraint, see section 3.2 for digmuss

1 Introduction



tree fragments to be combined during the translapora.
tion process, irrespective of the reorderings which A critical difference in our work is to allow
are introduced, or the non-projectivity of the pars-arbitrary reorderings of the source language sen-
ing operations that are required. tence (as in phrase-based systems), through the
The use of flexible parsing operations raises twaise of flexible parsing operations. Rather than
challenges that will be a major focus of this paperstating reordering rules at the level of source or
First, these operations will allow the model to cap-target language parse trees, we capture reorder-
ture complex reordering phenomena, but will ining phenomena using a discriminative dependency
addition introduce many spurious possibilities. In-model. Other factors that distinguish us from pre-
spired by work in discriminative dependency pars-vious work are the use of all phrases proposed by a
ing (e.g., (McDonald et al., 2005)), we add proba-phrase-based system, and the use of a dependency
bilistic constraints to the model through a discrim-language model that also incorporates constituent
inative model that links lexical dependencies in thenformation (although see (Charniak et al., 2003;
target language to features of the source languagghen et al., 2008) for related approaches).
string. We also investigate hard constraintg on th% A Syntactic Translation Model
dependency structures that are created during par.
ing. Second, there is a need to develop efficien
decoding algorithms for the models. We describeQur work builds on the variant of tree adjoin-
approximate search methods that involve a signifing grammar (TAG) introduced by (Carreras et
icant extension of decoding algorithms originally @l., 2008). In this formalism the basic units
developed for phrase-based translation systems. in the grammar are spines, which associate tree
Experiments on translation from German to En-fragments with lexical items. These spines can
glish show a 0.5% improvement in BLEU score be combined using aister-adjunctionoperation
over a phrase-based system. Human evaluatiod&ambow et al., 1995), to form larger pieces of
show that the syntax-based system gives a sigﬁt“J_Cturez- For example, we might have the fol-
nificant improvement over the phrase-based sydowing operation:

1 Background

tem. The discriminative dependency model gives NP S = s
a 1.5% BLEU point improvement over a basic | | =N
e there VP NP VP
model that does not condition on the source lan- | | |
guage string; the hard constraints on dependency is there s
structures give a 0.8% BLEU improvement. In this case the spine faherehas sister-adjoined
2 Relationship to Previous Work into the S node in the spine foris; we re-

. fer to the spine forthere as being the modifier
A number of syntax-based translation systems‘&'pine, and the spine fds being the head spine.

have framed translation as a parsing prot_)lemThere are close connections to dependency for-
where search for the most probable translation IShalisms: in particular in this operation we see

achieved gsing algorithms that are generalizationg lexical dependency between the modifier word
of conventional parsing methods. Early example§here and the head woris. It is possible to de-

of this work include (_Alshawi, 1996; Wu, 199_7); fine syntactic language models, similar to (Char-
more recent models include (Yamada and Knighty; .. “>001), which associate probabilities with

2901; Eisner, 2093? Melamed, 2904; Zhang anc1hese dependencies, roughly speaking of the form
Gildea, 2005; Chiang, 2005; Quirk et al., 2005;P(w $m|Wn, 51, p0S, o), Wherew,, ands,, are

Marc.u et al., 2006; Zollmann and Venulgopal,the identities of the modifier word and spine;,
2006; Nesson et al., 2006; Cherry, 2008; Mi land sy are the identities of the head word and

al., 2008; Shen et al., 2008). The majority OfSpine,pos is the position in the head spine that is
these methods make use of synchronous grarT?)'eing adjoined into, and is some additional state

mars, .or tree transducers, which operate over par?@.g., state that tracks previous modifiers that have
trees in the source and/or target languages. R%(djoined into the same spine)

ordering rules are typically specified through rota-

tions or transductions stated at the level of context-  “We also make use of the r-adjunction operation defined in
(Carreras et al., 2008), which, together with sister-action,

free rules, or larger fragments, within parse treesallows us to model the full range of structures found in the

These rules can be learned automatically from corPenn treebank.



S es gibt keine hierarchie der

NP VP S NP
/\
TN NP VP DT NFE PP
I | |
there is  NO hierarchy of
NPB PP
nmarchy Of/\NP Figure 2:Example syntactic phrase entries. We show Ger-

[ man sub-strings above their associated sequence of géelet
discrimination

es gibt keine hierarchie der diskriminierung For each phrase entry, we add syntactic infor-

Figure 1:A training example consisting of an English (tar- mation to the En_g"Sh string. To continue our ex-
get language) tree and a German (source language) sentenénple, the resulting entry would be as follows:

In this paper we will also considetreelets esgbt = s

which are a generalization of spines, and which NP VP
allow lexical entries that include more than one
word. These treelets can again be combined us-
ing a sister-adjunction operation. As an example
consider the following operation:

there is
To give a more formal description of how syn-

tactic structures are derived for phrases, first note
that each parse tréds mapped to a TAG deriva-

VP SG = VP tion using the method described in (Carreras et al.,

be/}DJP to/\\/P 2008). This procedure uses the head finding rules
| be ADJIP of (Collins, 1997). The resulting derivation con-

able respond able/\sG sists of a TAG spine for each word seen in the sen-

tence, together with a set of adjunction operations
| which each involve a modifier spine and a head
respond spine. Given an English string= ey ... e,, with

In this case the treelet foo respondister-adjoins 2" associated parse treethe syntactic structure
associated with a substring . . . ¢; (e.9.,there ig

into the treelet folbe able This operation intro- ¢ '

duces a bi-lexical dependency between the modiS then defined as follows:
fier wordto and the head wordble e For each word in the English sub-string, in-
clude its associated TAG spinetin

e In addition, include any adjunction operations
t where both the head and modifier word are in
e sub-string; . . . ey.

/\
to VP

3.2 S-phrases
This section describes how phrase entries from
phrase-based translation systems can be modifie{a
to include associated English syntactic structures.
These syntactic phrase-entries (from here on re- In the above example, the resulting structure
ferred to as “s-phrases”) will form the basis of the(i.e., the structure fothere i9 is a single treelet.
translation models that we describe. In other cases, however, we may get a sequence of
We extract s-phrases from training exampledreelets, which are disconnected from each other.
consisting of a source-language string paired with-or example, another likely phrase-entry for this
a target-language parse tree. For example, corraining example iges gibt keine= there is no
sider the training example in figure 1. We as-resulting in the first lexical entry in figure 2, which
sume some method that enumerates a set of pokas two treelets. Allowing s-phrases with multiple
sible phrase entriesfor each training example: treelets ensures that all phrases used by phrase-
each phrase entry is a pa((i,j), (k,1)) speci- based systems can be used within our approach.
fying that source-language word$. .. f; corre- As a final step, we add additionalign-
spond to target-language worés. . . ¢; in the ex- ment information to each s-phrase. Con-
ample. For example, one phrase entry for the exsider an s-phrase which contains source-language
ample might be((1,2),(1,2)), representing the wordsf; ... f, paired with target-language words
pair (es gibt= there i3. In our experiments e;...e,. The alignment information is a vec-
we use standard methods in phrase-based systens ((a1,b1) ... (am, b)) that specifies for each
(Koehn et al., 2003) to define the set of phrase erword e; its alignment to wordsf,, ... f, in the
tries for each sentence in training data. source language. For example, for the phrase en-



: ; ; 1(a) [die verwaltung] [muss] [kiinftig] [schneller] [reizgen]
try (es gibt=- there '$ a correct alignment would [kdnnen] 1(b) the administration must be able to respond

be <(1, 1), (2, 2)>, SpeCifying tha1thel’e iS alignEd more qu|ck|y in future

to es andis is aligned togibt (note that in many, 1c) we s PP ADWP  SG VP

but not all, cases; = b;, i.e., a target language de Vb infbwe mhe & Vb oAb
. . . admin . . | quickly | |

word is aligned to a single source language word). must respond able

The alignment information in s-phrases will 2(a) [meiner ansicht nach] [darf] [der erweiterungsprsies

be useful in tying syntactic dependencies cre{nicht] [unndtig] [verzogert] [werden] 2(b) in my opinfthe

ated in the target language to positions in theexpansion process should not be delayed unnecessarily

source language string. In particular, we will con-2(c) RS e RBAove Ve
sider discriminative models (analogous to models ~ nm VP the....process not umecessariy delayed be
for dependency parsing, e.g., see (McDonald et should

al., 2009)) that eStIm"_’lte the p_rqbablllty of targeF'Figure 3: Examples of translations. In each example (a)
language dependencies conditioned on propertigs the original German string, with a possible segmentation
of the source-language string. Alignments may benarked with “[* and " (b) is a translation for (a); and (c)

. . . is a sequence of phrase entries, including syntactic sirest
derived in a number of ways; in our method Wey,, e segmentation given in (a).
directly use phrase entries proposed by a phrase-
based system. Specifically, for each target word for these criticismsnight adjoin into the treelet for

in a phrase entryfi ... fn,e1...e,) for atrain-  take giving the following new sequence:

ing example, we find the smallésphrase entry s ADVP VP
in the same training example that includgson & e seiowsy
the target side, and is a subsetfof .. f,, on the we  mi ove ke these driiciems

source side; the worel is then aligned to the sub- |

also

set of source language words in this “minimal” In the next derivation stegeriouslyis adjoined to

phrase. the right oftake giving the following treelets:
In conclusion, s-phrases are defined as follows: s VP
Definition 1 An s-phrase is a 4-tupléf,e,t,a) T AL
we  mist ADVP v NP ADVP

where: f is a sequence of foreign wordg; is : | |

. . take these criticisms  seriously
a sequence of English words;is a sequence of . also S
q 9 9 In the final step the second treelet adjoins into the

treelets specifying a TAG spine for each Englisf\/P abovemust giving a parse tree for the string

word, and potentially some adjunctions between o .
. . . we must also take these criticisms seriouslyd
these spines; and is an alignment. For an s-

. . completing the translation.
phraseq we will sometimes refer to the 4 elements . . o
Formally, given an input senten€gea derivation

of g as f(q), e(q), t(q) anda(q). d is a pair(q, 7) where:

3.3 The Model eq = q1...qp IS asequence of s-phrases such
We now introduce a model that makes use of sthatf = f(q1)® f(q2) B ... ® f(gn) (Whereud v
phrases, and which is flexible in the reorderingsdenotes the concatenation of stringandv).
that it allows. To provide some intuition, and some e 7 is a set of adjunction operations that
motivation for the use of reordering operations,connects the sequence of treelets contained in
figure 3 gives several examples of German string$t(qi),t(q2), - .. ,t(¢n)) into a parse tree in the
which have different word orders from English. target language. The operations allow a com-
The crucial idea will be to use TAG adjunction plete relaxation of word order, potentially allow-
operations to combine treelets to form a completéng any of then! possible orderings of the s-
parse tree, but with a complete relaxation on thgphrases. We make use of both sister-adjunction
order in which the treelets are combined. For exand r-adjunction operations, as defined in (Car-
ample, consider again the example given in theeras et al., 2008).
introduction to this paper. In the first step of amwe allow any treelet to adjoin into any other

derivation that builds on these treelets, the treelefeelet—for example there are no hard, grammar-based con-

- straints ruling out the combination of certain pairs of non-

>The “size” of a phrase entry is defined to be + n: terminals. Note however that in some cases operations will
wheren is the number of source language words in thehave probabilityd under the syntactic language model intro-
phrasepn: is the number of target language words. duced later in this section.



DT NP NP = NP NP

Constraints on reorderings. Relaxing the op-
erations in the parsing model will allow complex
reorderings to be captured, but will also introduce
many spurious possibilities. As one example, con-
sider the derivation step shown in figure 4. This
step may receive a high probability from a syntac-

Given a derivationl = (q, 7), we definee(d) tic or surface language modehe discrimination
to be the target-language string defined by thdS @ quite plausibleNP in English—but it should
derivation, andt(d) to be the complete target- be ruled out for other reasons, for example be-
language parse tree created by the derivation. THeause it does not respect the dependencies in the
most likely derivation for a foreign sentende original German (i.e.keinéno is not a modifier
is arg max ey score(d), whereG(f) is the set to diskriminierungddiscrimination in the German
of possible derivations fof, and the score for a string). The challenge will be to develop either

no  NPB pp discrimination  NPB PP Dmﬂnation
|

| | | |
hierarchy  of hierarchy  of o

Figure 4. A spurious derivation step. The treelets arise
from [keine] [hierarchie der] [diskriminierung]

derivation is defined ds hard constraints which rule out spurious derivation
steps such as these, or soft constraints, encapsu-
score(d) = scorepn(e(d)) + scoresyn(t(d)) |ated inscorep(d), which penalize them.

+ scoreg(d) + Y scorep(q;) (1) Efficient search. Exact search for the derivation
g=1 which maximizes the score in Eg. 1 cannot be
accomplished efficiently using dynamic program-
ming (as in phrase-based systems, it is easy to
. ; . show that the decoding problem is NP-complete).
English string under a trigram language model. Approximate search methods will be needed.

o scoresyn(t(d)) is the log probability of the "o 1oyt vo sections of this paper describe so-
English parse tree under a syntactic language . < o these two challenges
model, similar to (Charniak, 2001), that associates '

probabilities with lexical dependencies. 4 Constraints on Reorderings

e scorer(d) will be used to score the pars- 4.1 A Discriminative Dependency Model

Ing operations inr, based on the source—language_zWe now describe the modetorer introduced in

string and the alignments in the s-phrases. Th|§.ne previous section. Recall thatspecifiess ad-

Esrr]t;)fltr;?tm:(;?plzrdescnbed extensively in Sec]unction operations that are used to build a full

. parse tree, wherk > n is the number of treelets
e scorep(q) is the score for an s-phrasg

. . _ o within the sequence of s-phrasgs= (q1 ... ¢n).
This score is a log-linear combination of var- d phrasgs- (gi ... dn)

. . . Each of thek adjunction operations creates a
ious features, including features that are com-

monly found in phrase-based systems: for exam(_]lependency between a modifier warg, within

ple loz P/ (1)]e(a)), log P(e(q) 1 (1), and lex- & P S0 8 e s
ical translation probabilities. In addition, we in- L . ) '
. wherethese criticismavas combined withtake
clude a featurdog P(t(q)!/(q), (g)), Which Cap- 0 ifier word iscriticismsand the head word
_tures the proba_blhty of the phrase in question haV'is take The modifier and head words have TAG
ing the syntactic structurétg). . spiness,,, andsy, respectively. In addition we can
Note that a model t:at includes the termsdefine(am,bm) to be the start and end indices of
scorepp(e(d)) —and 375, scorep(q;) alone {he words in the foreign string to which the word
would es_sentlally_ be_ a basic phrase-base Wy, is aligned; this information can be recovered
model (with no distortion terms). ~The ter_ms because the s-phragg contains alignment infor-
scoresyn(t(d)) and scoreg(d) add syntactic ouon for all target words in the phrase, includ-

information to this basic model. _ing wy,. Similarly, we can definéay, b;,) to be
A key motivation for this model is the flexibility alignment information for the head word,. Fi-

of the reordering operations that it allows. How- nally, we can defing to be a binary flag speci-
ever, the approach raises two major challenges: g, \hether or not the adjunction operation in-

"In practice, MERT training (Och, 2003) will be used to Vo_lves reforde”ng (in theake cr|t|C|smexampIe,
train relative weights for the different model components.  this flag is set td r ue, because the order in En-

The components of the model are as follows:
e scorepy(e(d)) is the log probability of the



- VP i = 1...N from our training data as follows:
1 K—Nb for each pair of target-language wor@s,,,, wy,)
DT N N seen in the training data, we can extract associ-

h‘ e | ‘ ated spinegs,, s;) from the relevant parse tree,
Ihese criticisms Jake and also extract a labglindicating whether or not

a head-modifier dependency is seen between the
two words in the parse tree. Given an s-phrase in
the training example that includes,,, we can ex-

Figure 5: An adjunction operation that involves the mod- tract alignment informatioria.... b..) from the s-
ifier criticismsand the headake The phrases involved are 9 m m m)

underlined; the dotted lines show alignments within s-pasa  Phrase; we can extract similar informatit, , by,)
between English words and positions in the German stringfor wy,. The end result is a training example of the

TheT'-dependency in this case includes the head and modi 8 i i
fier words, together with their spines, and their alignments form (y,’y, f>' We then eStImatéj(y\’y,f) using

positions in the German stringritik andnehme a sir_nple.backed-off moqlel that takes into account
glish is reversed from that in German). This Ieadsthe |der_1t|ty of the two spines, the value for the flag
{0 the following definition: r, the distance betwe€n,,,, b,,) and(ay, by,), and

part-of-speech information in the source language.

wir miissen auch diese kritiernst nehmen

Definition 2 Given a derivationd = (q, ), we
define I'(d) to be the set ofl’-dependencies
in d. Each I'-dependency is a tuple
(Winy Sy Ay Oy W, S, apy, by, p) Of €lements as
described above.

4.2 Contiguity of m-Constituents

We now describe a second type of constraint,
which limits the amount of non-projectivity in
derivations. Consider again theadjunction op-
erations inw, which are used to connect treelets
Figure 5 gives an illustration of how an adjunctioninto a full parse tree. Each adjunction operation

creates one sudh-dependency. involves a head treelet thabminatesa modifier
The model is then defined as treelet. Thus for any treeleéf we can consider its
scoreg(d) = S score.(y,f) descendanisthat is, the entire set of treelets that
~eT(d) are directly or indirectly dominated by We de-

) ] ] fine aw-constituentfor treelett to be the subset
wherescore,(v,f) is a score associated with the source-language words dominatedtbgnd its

I-dependencyy. This score can potentially be yegcendants. We then introduce the following con-
sensitive to any information iR or the source- g qint onr-constituents:

language string; in particular, note that the align- e . )
ment indices (am, bn) and (aj,by) essentially Deflnl_non 3 _(w—co_nstltue_nt. constr_alnt.) Ar-
anchor the target-language dependency to posp__onstltuent iscontiguousiff |'F consists of a con-
tions in the source-language string, allowing thel!dUOUS sequence of words in the source language.
score for the dependency to be based on featurds derivation = satisfies ther-constituent con-
that have been widely used in discriminative de_stral_nt iff all 7-constituents that it contains are
pendency parsing, for example features based dfPtiguous.
the proximity of the two positions in the source- In this paper we constrain all derivations to sat-
language string, the part-of-speech tags in the suisfy the w-constituent constraint (future work may
rounding context, and so on. These features haveonsider probabilistic versions of the constraint).
been shown to be powerful in the context of regu- The intuition behind the constraint deserves
lar dependency parsing, and our intent is to levermore discussion. The constraint specifies that the
age them in the translation problem. modifiers to each treelet can appear in any or-
In our model, we definecore, as follows. We der around the treelet, with arbitrary reorderings
estimate a modeP(y|v,f) wherey € {—1,+1}, or non-projective operations. However, once a
andy = +1 indicates that a dependency does existreelet has taken all its modifiers, the resulting
betweenw,, andwy,, andy = —1 indicates that a constituent must form a contiguous sub-sequence
dependency does not exist. We then define Teprecise, there may be multiple (or even zero) s-
phrases which include,, or wy, and these s-phrases may

include conflicting alignment information. Given,, differ-

. . ent alignments seen far,,, andn,, different alignments seen
To estimateP(y|v, f), we first extract a set of la- ¢, wr,, We createn,, x ny, training examples, which include

beled training examples of the for(y;, ~;, f;) for  all possible combinations of alignments.

scorer (7, f) = log P(+1]v, f)



of the source-language string. As one set of exanf2- Patastructuresg; fori =1. .. n is a set of hypotheses
for each length, S is a set of chart entries

ples, consider the translations in figure 3, and thg, s .
example given in the introduction. These exam-=2. Initialize Q. ... Q, with basic chart entries derived
; ; ; from phrase entries
ples involve reordering of arguments and adjunct§ Forie1  .m
within clauses, a very common case of reordering;. For any A € BEAM(Q,)
in translation from German to English. The re-5. If S contains a chart entry with the same signature
orderings in these translations are quite flexible as(i’n?m:’hmh has a higher inside score,
but in all cases satisfy the-constituent constraint. 7. Else

As an illustration of a derivation that violates 8- AddAtoS _
th traint ider again the derivation ste 9. For any chart entrg’ that can be derived from
€ constraint, consi g P A together with another chart entfy € S,

shown in figure 4. This step has formed a par- addC to the setQ; where;j = length(C)
tial hypothesis,no discrimination which corre- 10- Retum Q. a setof items of length
sponds to the German word®ine and diskrim-  Figure 6: A beam search algorithm. A dynamic-
inierung which do not form a contiguous sub- programm!ngsignature consists.of the regular dynamict

. . . programming state for the parsing algorithm, together with
string in the German. Consider now a completéne span (bit-string) associated with a constituent.
derivation, which derives the strirthere is hier-
archy of no discriminationand which includes the segment the German input infiir miissen auch]
w-constituentno discriminationshown in the fig- [diese kritik] [ernst] [nehmen] and the treelets are
ure (i.e., where the treeldiscriminationtakesno  as shown in the introduction. Each of these treelets
as its only modifier). This derivation will violate Will form a basic entry in the chart, and will have
the r-constituent constrairkt. an associated bit-string indicating which German
5 Decoding words have peen translat_ed by that entry. _

. . . These basic chart entries can then be combined
we how describe de(_:odmg alg_orlthms for the SYM0 form larger pieces of structure. For example,
tactic models: we flrs_t des_,crlbe inference ruleﬁ(§1e following inferential step is possible:
that are used to combine pieces of structure, an
then describe heuristic search algorithms that use NP0001100 VP/0000001=- VP/0001101
these inference rules. Throughout this section, ihese ériticisms \|,
for brevity and simplicity, we describe algorithms
that apply under the assumption that each s-phrase
has a single associated treelet. The generalizatiopye have shown the bit-string representation for
to the case where an s-phrase may have multipleach consituent: for example, the new constituent
treelets is discussed in section 5.3. has the bit-stringd001101 representing the fact
5.1 Inference Rules that the non-contiguous sub-stringisese kritik
Parsing operations for the TAG grammars de-andnehmerhave been translated at this point. Any
scribed in (Carreras et al., 2008) are based otwo constituents can be combined, providing that
the dynamic programming algorithms in (Eisner,the logicalAND of their bit-strings is alD’s.

2000). A critical idea in dynamic programming al-  Inference steps such as that shown above will
gorithms such as these is to associate constituent@ve an associated score corresponding to the
in a chart withspansof the input sentence, and TAG adjunction that is involved: in our mod-
to introduce inference rules that combine con-els, bothscoresy y andscoreg will contribute to
stituents into larger pieces of structure. The cruciathis score. In addition, we add state—specifically,
step in generalizing these algorithms to the nonword bigrams at the start and end of constituents—
projective case, and to translation, will be to makethat allows trigram language model scores to be
use ofbit-stringsthat keep track of which words in calculated as constituents are combined.

the German have already been translated in a chagt, Approximate Search

entry. To return to the example from the intro- There are2" possible bit-strings for a sentence of
duction, again assume that the selected s-phrasgsgth 5, hence the search space is of exponen-
°Note, however, that the derivation step show in figure 4tial size; approximate algorithms are therefore re-
will be considered in the search, becauselificrimination  quired in search for the highest scoring derivation.
takes additional modifiers, and thereby forms-eonstituent Eigure 6 shows a beam search algorithm which

that dominates a contiguous sub-string in the German, the ) X ;
the resulting derivation will be valid. makes use of the inference rules described in the

\Y NP

| |
take take these criticisms



previous section. The algorithm stores s@s System BLEU score
for i h is th | Syntax-based 25.2

ori = 1...n, wheren is the source-language Syntax (noScore) 23.7 (-1.5)
sentence length; each 38} stores hypotheses of Syntax (nor-c constraint)| 24.4 (-0.8)

Ien_gthz _(I'e,"' hypotheses with an gs_s_oc_lated t_)lt_Table 1: Development set results showing the effect of re-
string withi ones). These sets are initialized with moving Scorer or ther-constituent constraint.
basic entries derived from s-phrases.

The function BEAMQ;) returns all items
W|th|n QZ that have a h|gh enough score to fa”The dECOding algorithms that we have described
within a beam (more details for BEAM are given @pply in the case where each s-phrase has a sin-
below)_ At each iteration (Step 4), each |tem ingle treelet. The extenSion Of these algorithms
turn is taken from BEAMOQ;) and added to a t0 the case where a phrase may have multiple
chart; the inference rules described in the previireelets (e.g., see figure 2) is straightforward, but
ous section are used to derive new items which arfor brevity the details are omitted. The basic idea
added to the appropriate s8f, wherej > i. IS to exte_nd bit-string rep_resentations with a recprd

We have found the definition of BEAW;) to of “pending” treelets which have not yet been in-

be critical to the success of the method. As a ﬁrSFIuded in a derivation. Itis also possible to enforce
step, each item i, receives a score that is asumthe w-constituent_ constraint during decodin_g, as
of an inside score (the cost of all derivation stepaVe!l as aconstraint that ensures that reordering op-
used to create the item) and a future score (an estfrations do not “oreak apart” English sub-strings
mate of the cost to complete the translation). Th&Vithin s-phrases that have multiple treelets (for ex-
future score is based on the source-language word@nPI€, for the s-phrase in figure 2, we ensure that

that are still to be translated—this can be directlyt€r€ IS noremains as a contiguous sequence of
inferred from the item’s bit-string—this is similar WOrds in any translation using this s-phrase).

to the use of future scores in Pharoah (Koehnetalg Experiments
2003), and in fact we use Pharoah’s future score
in our model. We then give the following defini-
tion, wherelN is a parameter (the beam size):

5.3 Allowing Multiple Treelets per s-Phrase

We trained the syntax-based system on 751,088
German-English translations from the Europarl
corpus (Koehn, 2005). A syntactic language
Definition 4 (BEAM) GivenQ;, defineQ; ; for model was also trained on the English sentences
in the training data. We used Pharoah (Koehn et
al., 2003) as a baseline system for comparison; the
source language word translated). Defi@d to s-_phrases used in our system include all phrases,
be theN highest scoring elements @; ;. Then with the same scores, as those used by Pharoah,
BEAMQ;) = U"_, Q.. allowing a direct comparison. For efficiency rea-
J=ET sons we report results on sentences of length 30
To motivate this definition, note that a naive words or les$? The syntax-based method gives
method would simply define BEAMD;) to be a BLEU (Papineni et al., 2002) score of 25.04,
the N highest scoring elements @;. This def- a 0.46 BLEU point gain over Pharoah. This re-
inition, however, assumes that constituents whictsult was found to be significanp & 0.021) under
form translations of different parts of a sentencethe paired bootstrap resampling method of Koehn
have scores that can be compared—an assumpti¢a004), and is close to significani & 0.058) un-
that would be true if the future scores were highlyder the sign test of Collins et al. (2005).
accurate, but which quickly breaks down when fu- Table 1 shows results for the full syntax-based
ture scores are inaccurate. In contrast, the defsystem, and also results for the system with the
nition above ensures that the tdp analyses for discriminative dependency scores (see section 4.1)
each of then source language words are stored aand ther-contituent constraint removed from the
each stage, and hence that all parts of the sourcystem. In both cases we see a clear impact of
sentence are well represented. In experiments, tHBese components of the model, with 1.5 and 0.8
naive approach was essentially a failure, with parsBLEU point decrements respectively.

ing of some sentences either failing or being hope————
g g g "op 10Both Pharoah and our system have weights trained using

lessly |neff|C|en_t,_ erenO!mg on the choice /vt MERT (Och, 2003) on sentences of length 30 words or less,
In contrast, definition 4 gives good results. to ensure that training and test conditions are matched.

j = 1...nto be the subset of items {®; which
have theirj’th bit equal to one (i.e., have thgth



R:in our eyes , the opportunity created by this directiventifdducing longer buses on international routes is efficien
S: the opportunity now presented by this directive is eff®edin our opinion , to use long buses on international routes
P: the need for this directive now possibility of longer baisa international routes to is in our opinion , efficiently .

R: europe and asia must work together to intensify the bagtnst drug trafficking , money laundering , internatiofal
crime , terrorism and the sexual exploitation of minors .
S: europe and asia must work together in order to strengtieefight against drug trafficking , money laundering , against
international crime , terrorism and the sexual exploitatdéminors .
P: europe and asia must cooperate in the fight against drffigkiiag , money laundering , against international crimg ,
terrorism and the sexual exploitation of minors strengticen
R: equally important for the future of europe - at biarritzidater at nice - will be the debate on the charter of fundaaieht
rights .

S: itis equally important for the future of europe to speaktmncharter of fundamental rights in biarritz , and then geni
P: just as important for the future of europe , it will be infoi@ and then in nice on the charter of fundamental rights
speak .

R: the convention was thus a muddled system , generatirgporsibility , and not particularly favourable to well-eréd
democracy .

S: therefore , the convention has led to a system of a prombtaesponsibility of the lack of clarity and hardly coinlead
with the rules of a proper democracy .

P: the convention therefore led to a system of full of lacklafity and hardly a promoter of the irresponsibility of theas
of orderly was a democracy .

—

(o]

Figure 7: Examples where both annotators judged the syntactic syistejive an improved translation when compared to
the baseline system. 51 out of 200 translations fall ints thitegory. These examples were chosen at random from these 5
examples.R is the human (reference) translatidis the translation from the syntax-based systénis the output from the
baseline (phrase-based) system.

R Symsalx PE - Togal' the w-constituent constraint, and an approximate
y PR 1 25 11| 37 sgarch algorithm. A key area for_futgrg Wgrk
= 21 14 67| 102 will be further development of the discriminative

Total 73 42 85| 200 dependency model (section 4.1). The model of

Table 2: Human annotator judgements. Rows show re-score, (7, f) that we have described in this paper is

sults for annotator 1, and columns for annotator@ntax relatively simple; in general, however, there is the
and PB show the number of cases where an annotator re-

spectively preferred/dispreferred the syntax-basecsyst ~ Potential forscore; to link target language depen-
gives counts of translations judged to be equal in quality.  dencies to arbitrary properties of the source lan-
In addition, we obtained human evaluations onguage stringf (recall thaty contains a head and
200 sentences chosen at random from the test dat®@odifier spine in the target language, along with
using two annotators. For each example, the refPositions in the source-language string to which
erence translation was presented to the annotdbese spines are aligned). For example, we might
tor, followed by translations from the syntax-basedintroduce features that: a) condition dependencies
and phrase-based systems (in a random order). Féfeated in the target language on dependency re-
each example, each annotator could either decidations between their aligned words in the source
that the two translations were of equal quality, orl@nguage; b) condition target-language dependen-
that one translation was better than the other. Ta€ies on whether they are aligned to words that
ble 2 shows results of this evaluation. Both an-are in the same clause or segment in the source
notators show a clear preference for the syntaxlanguage string; or, c) condition the grammatical
based system: for annotator 1, 73 translations aré@les of nouns in the target language on grammat-
judged to be better for the syntax-based Systerﬁ'(’:al roles of aligned words in the source language.
with 42 translations being worse; for annotator 2,These features should improve translation qual-
61 translations are improved with 37 being worseity by giving a tighter link between syntax in the
both annotators’ results are statistically significangource and target languages, and would be easily
with p < 0.05 under the sign test. Figure 7 showsincorporated in the approach we have described.
some translation examples where the syntax-bas

e
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