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Abstract

This paper describes discriminative language modeling for a large vocabulary speech recog-
nition task. We contrast two parameter estimation methods: the perceptron algorithm, and
a method based on maximizing the regularized conditional log-likelihood. The models are
encoded as deterministic weighted finite state automata, and are applied by intersecting the
automata with word-lattices that are the output from a baseline recognizer. The perceptron
algorithm has the benefit of automatically selecting a relatively small feature set in just a
couple of passes over the training data. We describe a method based on regularized likeli-
hood that makes use of the feature set given by the perceptron algorithm, and initialization
with the perceptron’s weights; this method gives an addition 0.5% reduction in word error
rate (WER) over training with the perceptron alone. The final system achieves a 1.8% abso-
lute reduction in WER for a baseline first-pass recognition system (from 39.2% to 37.4%),
and a 0.9% absolute reduction in WER for a multi-pass recognition system (from 28.9% to
28.0%).
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1 Introduction

A crucial component of any speech recognizer is thelanguage model(LM), which
assigns scores or probabilities to candidate output strings in a speech recognizer.
The language model is used in combination with an acoustic model, to give an
overall score to candidate word sequences that ranks them in order of probability
or plausibility.

A dominant approach in speech recognition has been to use a “source-channel”, or
“noisy-channel” model. In this approach, language modeling is effectively framed
as probability estimation: the language model’s task is to define a distribution over
the source – i.e., the possible strings in the language. Markov (n-gram) models are
often used for this task, whose parameters are optimized to maximize the likelihood
of a large amount of training text. Recognition performance is a direct measure
of the effectiveness of a language model; an indirect measure which is frequently
proposed within these approaches is the perplexity of the LM (i.e., the negative log
probability it assigns to some held-out data set).

This paper explores alternative methods for language modeling, which comple-
ment the source-channel approach through discriminatively trained models. The
language models we describe do not attempt to estimate a generative modelP (w)
over strings. Instead, they are trained on acoustic sequences with their transcrip-
tions, in an attempt to directly optimize error-rate. In particular, we use the percep-
tron algorithm to build a discriminative global linear model, and we also explore
global conditional log-linear models (GCLMs) as a parameter estimation method.3

We describe how these models can be trained over lattices that are the output from
a baseline recognizer. We also give a number of experiments comparing the two
approaches. The perceptron method gave a 1.3% absolute improvement in first-
pass recognition error on the Switchboard domain, and a 0.5% multi-pass improve-
ment; the GCLM methods we describe provide absolute gains of 1.8% for first-pass
recognition and 0.9% for multi-pass.

A central issue that we discuss is feature selection. The number of distinct n-grams

∗ Corresponding Author
Email addresses:roark@cslu.ogi.edu (Brian Roark),

murat.saraclar@boun.edu.tr (Murat Saraclar),mcollins@csail.mit.edu
(Michael Collins).
1 Parts of this study were presented in conferences (Roark et al., 2004a,b).
2 The authors were with AT&T Labs-Research when the work presented here was per-
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3 In a previous paper (Roark et al., 2004b), we described these models as an instance of
Conditional random fields (CRFs) (Lafferty et al., 2001). While certainly similar to CRFs,
our models are technically not CRFs (see section 2.2 for discussion), so we will not use this
term in the current paper for our models.
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in our training data is close to 45 million, and we show that GCLM training con-
verges very slowly even when trained with a subset (of size 12 million) of these
features. Because of this, we have explored methods for picking a small subset of
the available features.4 The perceptron algorithm can be used as one method for
feature selection, selecting around 1.5 million features in total. The GCLM trained
with this feature set, and initialized with parameters from perceptron training, con-
verges much more quickly than other approaches, and also gives the best perfor-
mance on the held-out set. We explored other approaches to feature selection, but
found that the perceptron-based approach gave the best results in our experiments.

While we focus on n-gram models, we stress that our methods are applicable to
more general language modeling features – for example, syntactic features, as ex-
plored in, e.g., Khudanpur and Wu (2000). We intend to explore methods with new
features in the future. Experimental results with n-gram models on 1000-best lists
show a very small drop in accuracy compared to the use of lattices. This is en-
couraging, in that it suggests that models with more flexible features than n-gram
models, which therefore cannot be efficiently used with lattices, may not be unduly
harmed by their restriction to n-best lists.

1.1 Related Work

Large vocabulary ASR has benefited from discriminative estimation of hidden Markov
model (HMM) parameters in the form of maximum mutual information estimation
(MMIE) or conditional maximum likelihood estimation (CMLE). Woodland and
Povey (2000) have shown the effectiveness of lattice-based MMIE/CMLE in large–
scale ASR tasks such as Switchboard. Povey and Woodland (2002) have introduced
minimum phone error (MPE) and minimum word error (MWE) criteria for the dis-
criminative training of HMM systems. In fact, state-of-the-art acoustic modeling,
as seen, for example, at annual Switchboard evaluations, invariably includes some
kind of discriminative training.

Discriminative estimation of language models has also been proposed in recent
years. Jelinek (1996) suggested an acoustic–sensitive language model whose pa-
rameters are estimated by minimizingH(W |A), the expected uncertainty of the
spoken text W given A, the acoustic sequence. Stolcke and Weintraub (1998) ex-
perimented with various discriminative approaches, including MMIE, with mixed
results. This work was followed up with some success by Stolcke et al. (2000)
where an “anti-LM”, estimated from weighted N-best hypotheses of a baseline
ASR system, was used with a negative weight in combination with the baseline
LM. Chen et al. (2000) presented a method based on changing the trigram counts
discriminatively, together with changing the lexicon to add new words. Kuo et al.

4 Note also that in addition to concerns about training time, a language model with fewer
features is likely to be considerably more efficient when decoding new utterances.
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(2002) used the generalized probabilistic descent (GPD) algorithm to train rela-
tively small language models which attempt to minimize string error rate on the
DARPA Communicator task. This is an instance of the widely known minimum
classification error (MCE) training. Banerjee et al. (2003) used a language model
modification algorithm in the context of a reading tutor that listens. Their algorithm
first uses a classifier to predict what effect each parameter has on the error rate, and
then modifies the parameters to reduce the error rate based on this prediction.

Of the above approaches, only Stolcke and Weintraub (1998) experimented with
an objective function of the sort used to estimate the GCLMs we describe in this
paper: a straightforward maximum conditional likelihood objective, conditioned
on the entire input sequence.5 This was one of two objectives they investigated for
estimation of a unigram model, and it yielded no gain over their baseline unigram
model. Our GCLM approach is also similar to the work of Rosenfeld et al. (2001),
with the difference that GCLMs are estimated using discriminative methods.

Various other approaches have been proposed that attempt to estimate parameters
in a way that minimizes word error rate (Bahl et al., 1993; Goel and Byrne, 2000;
Mangu et al., 2000; Mangu and Padmanabhan, 2001; Ringger and Allen, 1996),
ranging from discriminative parameter adjustment algorithms (Bahl et al., 1993)
to post-processing on recognizer output (Mangu and Padmanabhan, 2001; Ringger
and Allen, 1996) and confusion network construction (Mangu et al., 2000; Mangu
and Padmanabhan, 2001). One of the earliest papers on the topic (Bahl et al., 1993)
motivated its approach by reference to the perceptron algorithm, and, proposed a
technique for corrective training of discrete output HMM parameters for acoustic
modeling.

2 Global Linear Models

This section describes a general framework, global linear models, and two pa-
rameter estimation methods within the framework, the perceptron algorithm and
a method based on maximizing the regularized conditional log-likelihood. The lin-
ear models we describe are general enough to be applicable to a diverse range of
NLP and speech tasks – this section gives a general description of the approach.
In section 3 of the paper we describe how global linear models can be applied to
speech recognition. In particular, we focus on how the decoding and parameter
estimation problems can be implemented over lattices using finite-state techniques.

We follow the framework outlined in Collins (2002, 2004). The task is to learn a
mapping from inputsx ∈ X to outputsy ∈ Y. We assume the following compo-

5 Note, however, that the objective in Stolcke and Weintraub (1998) was unregularized,
which, based on our results, is one likely reason that it failed to yield improvements.
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Inputs: Training examples(xi, yi)
Initialization: Setᾱ = 0
Algorithm:

For t = 1 . . . T
For i = 1 . . . N

Calculatezi = argmaxz∈GEN(xi) Φ(xi, z) · ᾱ
If(zi 6= yi) thenᾱ = ᾱ + Φ(xi, yi)− Φ(xi, zi)

Output: Parameters̄α

Fig. 1. A variant of the perceptron algorithm. The value forT , the number of passes over
the training set, is chosen by validation on a held out set. In practice we used theaveraged
parameter values afterT iterations, see the text for details.

nents: (1) Training examples(xi, yi) for i = 1 . . . N . (2) A functionGEN which
enumerates a finite set of candidatesGEN(x) ⊆ Y for each possible inputx. (3) A
representationΦ mapping each(x, y) ∈ X × Y to a feature vectorΦ(x, y) ∈ Rd.
(4) A parameter vector ᾱ ∈ Rd.

The componentsGEN, Φ and ᾱ define a mapping from an inputx to an output
F (x) through

F (x) = argmax
y∈GEN(x)

Φ(x, y) · ᾱ (1)

whereΦ(x, y) · ᾱ is the inner product
∑

s αsΦs(x, y). The learning task is to set the
parameter values̄α using the training examples as evidence. Thedecoding algo-
rithm is a method for searching for they that maximizes Eq. 1.

2.1 The Perceptron algorithm

We now turn to methods for training the parametersᾱ of the model, given a set of
training examples(x1, y1) . . . (xN , yN). This section describes the perceptron algo-
rithm and the next section describes an alternative method, based on maximizing
the regularized conditional log-likelihood.

The perceptron algorithm is shown in figure 1. At each training example(xi, yi),
the current best-scoring hypothesiszi is found, and if it differs from the reference
yi, then the weight of each feature is increased by the count of that feature inyi and
decreased by the count of that feature inzi. The weights in the model are updated,
and the algorithm moves to the next utterance.

We will now give a first theorem regarding the convergence of this algorithm. First,
we need the following definition:

Definition 1 Let GEN(xi) = GEN(xi) − {yi}. In other wordsGEN(xi) is the set of
incorrectcandidates for an examplexi. We will say that a training sequence(xi, yi) for
i = 1 . . . n is separable with margin δ > 0 if there exists some vectorU with ||U|| = 1
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such that
∀i,∀z ∈ GEN(xi), U · Φ(xi, yi)−U · Φ(xi, z) ≥ δ (2)

(||U|| is the 2-norm ofU, i.e.,||U|| =
√∑

s U2
s.)

Next, defineNe to be the number of times an error is made by the algorithm in
figure 1 – that is, the number of times that the conditionzi 6= yi is met at any point
in the algorithm. We can then state the following theorem (see Collins, 2002, for a
proof):

Theorem 1 For any training sequence(xi, yi) that is separable with marginδ, for any
value ofT , then for the perceptron algorithm in figure 1

Ne ≤
R2

δ2

whereR is a constant such that∀i,∀z ∈ GEN(xi) ||Φ(xi, yi)− Φ(xi, z)|| ≤ R.

This theorem implies that if there is a parameter vectorU which makes zero errors
on the training set, then after at mostR2

δ2 passes over the training set the training
algorithm will converge to parameter values with zero training errors.6 A crucial
point is that the number of mistakes is independent of the number of candidates
for each example (i.e. the size ofGEN(xi) for eachi), depending only on the
separation of the training data, where separation is defined above. This is important
because in ASR the number of candidates inGEN(x) is generally exponential in
the length of the utterance. All of the convergence and generalization results in
(Collins, 2002) depend on notions of separability rather than the size ofGEN. 7

Two questions come to mind. First, are there guarantees for the algorithm if the
training data is not separable? Second, how well does the algorithm generalizes to
newly drawn test examples (under an assumption that both training and test exam-
ples are drawn from the same, unknown distributionP (x, y))? Freund and Schapire
(1999) discuss how the theory for classification problems can be extended to deal
with both of these questions; Collins (2002) describes how these results apply to
NLP problems.

6 To see this, note that if the algorithm makes a complete pass over the training examples
without making any errors, then it must have converged; and furthermore, in the worst case
it makesNe ≤ R2

δ2 passes over the training set, each with a single error, before converging.
7 Note, however, that in practice as the size ofGEN becomes larger, the separability of
problems may well diminish, although this is not necessarily the case. Even so, the lack
of direct dependence on|GEN(x)| for the perceptron algorithm is somewhat surprising.
For example, under the same assumptions for the training set, the tightest known general-
ization bounds for the support vector machine or large margin solution (which explicitly
searches for the parameter vector with the largest separation on training examples) contains
a log |GEN(x)| factor which is not present in the perceptron convergence or generaliza-
tion bounds – see (Collins, 2002) for discussion. (Note that Taskar et al. (2003) do describe
a tighter bound, but this depends on a modified definition of margins on the training exam-
ples.)
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Following Collins (2002), we used theaveragedparameters from the training al-
gorithm in decoding held-out and test examples in our experiments. Sayᾱt

i is the
parameter vector after thei’th example is processed on thet’th pass through the
data in the algorithm in figure 1. Then the averaged parametersᾱAV G are defined
asᾱAV G =

∑
i,t ᾱ

t
i/NT . Freund and Schapire (1999) originally proposed the av-

eraged parameter method; it was shown to give substantial improvements over the
regular perceptron in accuracy for tagging tasks in Collins (2002). The averaged
perceptron can be seen as an approximation of the “voted perceptron”, an algorithm
also described by Freund and Schapire (1999). The voted perceptron is motivated
by statistical bounds on generalization performance given in Freund and Schapire
(1999).

2.2 Global Conditional Log-Linear Models

Global conditional log-linear models (GCLMs) use the parametersᾱ to define a
conditional distribution over the members ofGEN(x) for a given inputx:

pᾱ(y|x) =
1

Z(x, ᾱ)
exp (Φ(x, y) · ᾱ) (3)

whereZ(x, ᾱ) =
∑

y∈GEN(x) exp (Φ(x, y) · ᾱ) is a normalization constant that de-
pends onx andᾱ.

Early work on GCLMs for NLP applied them to parsing (Ratnaparkhi et al., 1994;
Johnson et al., 1999). In (Ratnaparkhi et al., 1994),n-best output from an exist-
ing probabilistic parser was used to defineGEN(x) for each input sentencex.
In (Johnson et al., 1999) all parses from a deterministic parser defined the set
GEN(x). In both of these papersΦ(x, y) was allowed to include essentially ar-
bitrary features of parse treesy and their yieldsx.

Conditional random fields (CRFs) (Lafferty et al., 2001; Sha and Pereira, 2003;
McCallum and Li, 2003; Pinto et al., 2003) are a sub-class of GCLMs that are par-
ticularly relevant to our problem. CRFs defineGEN(x) to be the space of vectors
{y1, y2 . . . yl(x)} ∈ Y1 × Y2 . . .× Yl(x), where eachYk is a finite “label set” for the
k’th random variable, andl(x) is a “size” that can vary with the inputx. As a sim-
ple example, in part-of-speech tagging, for a sentencex of lengthl(x), Yk would
be the set of possible part-of-speech tags for thek’th word in the sentence. Cru-
cially, in CRFs,Φ(x, y) is defined through a graphical structure over the variables
{y1, y2 . . . yl(x)}. The representationΦ(x, y) is defined as a sum of feature-vectors
associated with cliques in the graph. Under these assumptions, assuming that the
underlying graph has good properties,8 CRFs can be trained efficiently in spite

8 More specifically, the graph must have relatively low “tree-width” for there to be efficient
training and decoding algorithms.
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of the size ofGEN(x) being exponential in the number of labelsl(x). The train-
ing algorithm makes use of standard dynamic programming algorithms in Markov
random fields to calculate the gradient of the log-likelihood under the model. See
(Lafferty et al., 2001) for full details.

The GCLMs that we present for language modeling in the current paper are similar
to CRFs, in thatGEN(x) is again exponential in size, and we rely on the “local”
nature of our feature vector representationΦ(x, y) to give us dynamic programming
algorithms for training and decoding. As for CRFs, these algorithms are efficient
in spite of the large size ofGEN(x). Our approach differs from CRFs, however,
in that our problem is not structured in an undirected graphical model, or Markov
random field. Instead, we will make use of algorithms and concepts from weighted
finite-state automata—as opposed to Markov random fields—in this paper.

Given the definition in Eq. 3, the log-likelihood of the training data under parame-
tersᾱ is

LL(ᾱ) =
N∑

i=1

log pᾱ(yi|xi) =
N∑

i=1

[Φ(xi, yi) · ᾱ− log Z(xi, ᾱ)] (4)

Note that this is very similar to the objective functions used in other discriminative
training approaches. The objective function for MMIE/CMLE has the same form
and the one for MCE could be considered as an extension.

Following Johnson et al. (1999) and Lafferty et al. (2001), we use a zero-mean
Gaussian prior on the parameters resulting in the regularized objective function:

LLR(ᾱ) =
N∑

i=1

[Φ(xi, yi) · ᾱ− log Z(xi, ᾱ)]− ||ᾱ||
2

2σ2
(5)

The valueσ dictates the relative influence of the log-likelihood term vs. the prior,
and is typically estimated using held-out data. (For example, in the experiments in
this paper we choose a value ofσ that minimizes the word-error-rate on a develop-
ment data set.) The optimal parameters under this criterion areᾱ∗ = argmaxᾱ LLR(ᾱ).

We use alimited memory variable metricmethod (Benson and Moré, 2002) to
optimizeLLR. There is a general implementation of this method in the Tao/PETSc
software libraries (Balay et al., 2002; Benson et al., 2002). This technique has been
shown to be very effective in a variety of NLP tasks (Malouf, 2002; Wallach, 2002).
The main interface between the optimizer and the training data is a procedure which
takes a parameter vector̄α as input, and in turn returnsLLR(ᾱ) as well as the
gradient ofLLR at ᾱ. The derivative of the objective function with respect to a
parameterαs at parameter values̄α is
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∂LLR

∂αs

=
N∑

i=1

Φs(xi, yi)−
∑

y∈GEN(xi)

pᾱ(y|xi)Φs(xi, y)

− αs

σ2
(6)

Note thatLLR(ᾱ) is a convex function9 , so that there are no issues with local max-
ima in the objective function, and the optimization methods we use converge to the
globally optimal solution. The use of the Gaussian prior term||ᾱ||2/2σ2 in the ob-
jective function has been found to be useful in several NLP settings. It effectively
ensures that there is a large penalty for parameter values in the model becoming
too large – as such, it tends to control over-training. The choice ofLLR as an ob-
jective function can be justified as maximum a-posteriori (MAP) training within a
Bayesian approach. An alternative justification comes through a connection to sup-
port vector machines and other large margin approaches. SVM-based approaches
use an optimization criterion that is closely related toLLR – see Collins (2004) for
more discussion.

3 Linear models for speech recognition

We now describe how the formalism and algorithms in section 2 can be applied to
language modeling for speech recognition.

3.1 The basic approach

As described in the previous section, linear models require definitions ofX , Y, xi,
yi, GEN, Φ and a parameter estimation method. In the language modeling setting
we takeX to be the set of all possible acoustic inputs;Y is the set of all possible
strings,Σ∗, for some vocabularyΣ. Eachxi is an utterance (a sequence of acoustic
feature-vectors), andGEN(xi) is the set of possible transcriptions under a first
pass recognizer. (GEN(xi) is a huge set, but will be represented compactly using
a lattice – we will discuss this in detail shortly). We takeyi to be the member of
GEN(xi) with lowest error rate with respect to the reference transcription ofxi.

All that remains is to define the feature-vector representation,Φ(x, y). In the gen-
eral case, each componentΦs(x, y) could be essentially any function of the acous-
tic inputx and the candidate transcriptiony. The first feature we define isΦ0(x, y),

9 This is a well known property of the regularized likelihood function in Eq. 5. Convexity

follows because: 1)||ᾱ||
2

2σ2 is convex inᾱ; 2) log Z(xi, ᾱ) is convex inᾱ for any value of
xi (the latter property is central to the theory of exponential families in statistics, see for
example section 3 of Wainwright and Jordan (2002)); 3) a function that is a sum of convex
functions is also convex.
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which is defined asthe log-probability ofx, y in the lattice produced by the baseline
recognizer. Thus this feature will include contributions from the acoustic model and
the original language model.

Note that the baseline recognizer has a standard language model weight parameter-
ization, which dictates how the language model combines with the acoustic model
to produce the baseline score for the word sequence. We did not change this stan-
dard parameterization for the work in this paper, i.e. we took the log score output
by the baseline recognizer unmodified for use in training and applying the models.
The lattice is deterministic, so that any word sequence has at most one path through
the lattice. Thus multiple time-alignments for the same word sequence are not rep-
resented; the path associated with a word sequence is the path that receives the
highest probability among all competing time alignments for that word sequence.

The remaining features are restricted to be functions over the transcriptiony alone
and they track all n-grams up to some length (sayn = 3), for example:

Φ1(x, y) = Number of times “the the of” is seen iny

At one level of abstraction, features of this form are introduced forall n-grams
up to length3 seen in some training data lattice, i.e., n-grams seen in any word
sequence within the lattices. In practice, we consider methods that search for sparse
parameter vectors̄α, thus assigning many n-grams0 weight. This will lead to more
efficient algorithms, which avoid dealing explicitly with the entire set of n-grams
seen in training data.

3.2 Implementation using WFA

We now give a brief sketch of how weighted finite-state automata (WFA) can be
used to implement linear models for speech recognition. There are several papers
describing the use of weighted automata and transducers for speech in detail, e.g.,
Mohri et al. (2002), but for clarity and completeness this section gives a brief de-
scription of the operations which we use.

For our purpose, a WFAA is a tuple(Σ, Q, qs, F, E, ρ), whereΣ is the vocabulary,
Q is a (finite) set of states,qs ∈ Q is a unique start state,F ⊆ Q is a set of final
states,E is a (finite) set of transitions, andρ : F → R is a function from final states
to final weights. Each transitione ∈ E is a tuplee = (l[e], p[e], n[e], w[e]), where
l[e] ∈ Σ is a label (in our case, a word),p[e] ∈ Q is the origin state ofe, n[e] ∈ Q is
the destination state ofe, andw[e] ∈ R is the weight of the transition. A successful
pathπ = e1 . . . ej is a sequence of transitions, such thatp[e1] = qs, n[ej] ∈ F , and
for 1 < k ≤ j, n[ek−1] = p[ek]. Let ΠA be the set of successful pathsπ in a WFA

10



A. For anyπ = e1 . . . ej, l[π] = l[e1] . . . l[ej].

The weights of the WFA in our case are always in the log semiring, which means
that the weight of a pathπ = e1 . . . ej ∈ ΠA is defined as:

wA[π] =

 j∑
k=1

w[ek]

 + ρ(ej) (7)

All WFA that we will discuss in this paper are deterministic, i.e. there are noε
transitions, and for any two transitionse, e′ ∈ E, if p[e] = p[e′], thenl[e] 6= l[e′].
Thus, for any stringw = w1 . . . wj, there is at most one successful pathπ ∈ ΠA,
such thatπ = e1 . . . ej and for1 ≤ k ≤ j, l[ek] = wk, i.e. l[π] = w. The set of
stringsw such that there exists aπ ∈ ΠA with l[π] = w define a regular language
LA ⊆ Σ.

We can now define some operations that will be used in this paper.

• λA. For a set of transitionsE andλ ∈ R, defineλE = {(l[e], p[e], n[e], λw[e]) : e ∈ E}.
Then, for any WFAA = (Σ, Q, qs, F, E, ρ), defineλA for λ ∈ R as follows:
λA = (Σ, Q, qs, F, λE, λρ).

• A ◦A′. The intersection of two deterministic WFAsA ◦A′ in the log semiring is
a deterministic WFA such thatLA◦A′ = LA

⋂
LA′. For anyπ ∈ ΠA◦A′, wA◦A′ [π] =

wA[π1] + wA′ [π2], wherelA◦A′ [π] = lA[π1] = lA′ [π2].

• BestPath(A). This operation takes a WFAA, and returns the best scoring path
π̂ = argmaxπ∈ΠA

wA[π].

•MinErr(A, y). Given a WFAA, a stringy, and an error-functionE(y,w), this
operation returnŝπ = argminπ∈ΠA

E(y, l[π]). This operation will generally be used
with y as the reference transcription for a particular training example, andE(y,w)
as some measure of the number of errors inw when compared toy. In this case,
theMinErr operation returns the pathπ ∈ ΠA suchl[π] has the smallest number
of errors when compared toy.

•Norm(A). Given a WFAA, this operation yields a WFAA′ such thatLA = LA′

and for everyπ ∈ ΠA there is aπ′ ∈ ΠA′ such thatl[π] = l[π′] and

wA′ [π′] = wA[π]− log

 ∑
π̄∈ΠA

exp(wA[π̄])

 (8)

Note that
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∑
π∈Norm(A)

exp(wNorm(A)[π]) = 1 (9)

In other words the weights define a probability distribution over the paths.

• ExpCount(A,w). Given a WFAA and an n-gramw, we define the expected
count ofw in A as

ExpCount(A,w) =
∑

π∈ΠA

exp(wNorm(A)[π])C(w, l[π])

whereC(w, l[π]) is defined to be the number of times the n-gramw appears in a
stringl[π].

Given an acoustic inputx, let Lx be a deterministic word-lattice produced by the
baseline recognizer. The latticeLx is an acyclic WFA, representing a weighted set
of possible transcriptions ofx under the baseline recognizer. The weights represent
the combination of acoustic and language model scores in the original recognizer.

The new, discriminative language model constructed during training consists of
a deterministic WFA which we will denoteD, together with a single parameter
α0. The parameterα0 is the weight for the log probability featureΦ0 given by the
baseline recognizer. The WFAD is constructed so thatLD = Σ∗ and for allπ ∈ ΠD

wD[π] =
d∑

j=1

Φj(x, l[π])αj

Recall thatΦj(x,w) for j > 0 is the count of thej’th n-gram inw, andαj is the
parameter associated with that n-gram. Then, by definition,α0L ◦ D accepts the
same set of strings asL, but

wα0L◦D[π] =
d∑

j=0

Φj(x, l[π])αj

and
argmax

π∈L
Φ(x, l[π]) · ᾱ = BestPath(α0L ◦ D).

Thus decoding under our new model involves first producing a latticeL from the
baseline recognizer; second, scalingL with α0 and intersecting it with the discrim-
inative language modelD; third, finding the best scoring path in the new WFA.

We now turn to training a model, or more explicitly, deriving a discriminative lan-
guage model(D, α0) from a set of training examples. Given a training set(xi, ri)
for i = 1 . . . N , wherexi is an acoustic sequence, andri is a reference transcrip-
tion, we can construct latticesLi for i = 1 . . . N using the baseline recognizer. We
can also derive target transcriptionsyi = MinErr(Li, ri). The training algorithm
is then a mapping from(Li, yi) for i = 1 . . . N to a pair(D, α0). Note that the con-
struction of the language model requires two choices. The first concerns the choice
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Fig. 2. Representation of a trigram model with failure transitions.

of the set of n-gramfeaturesΦj for j = 1 . . . d implemented byD. The second
concerns the choice ofparametersαj for j = 0 . . . d which assign weights to the
n-gram features as well as the baseline featureΦ0.

Before describing methods for training a discriminative language model, we give
a little more detail about the structure ofD, focusing on how n-gram language
models can be implemented with finite-state techniques.

3.3 Representation of n-gram language models

An n-gram model can be efficiently represented in a deterministic WFA, through
the use of failure transitions (Allauzen et al., 2003). Every string accepted by such
an automaton has a single path through the automaton, and the weight of the string
is the sum of the weights of the transitions in that path. In such a representation,
every state in the automaton represents an n-gram historyh, e.g.wi−2wi−1, and
there are transitions leaving the state for every wordwi such that the featurehwi

has a weight. There is also a failure transition leaving the state, labeled with some
reserved symbolφ, which can only be traversed if the next symbol in the input
does not match any transition leaving the state. This failure transition points to the
backoff stateh′, i.e. the n-gram historyh minus its initial word. Figure 2 shows
how a trigram model can be represented in such an automaton. See Allauzen et al.
(2003) for more details.

Note that in such a deterministic representation, the entire weight of all features
associated with the wordwi following historyh must be assigned to the transition
labeled withwi leaving the stateh in the automaton. For example, ifh = wi−2wi−1,
then the trigramwi−2wi−1wi is a feature, as is the bigramwi−1wi and the unigram
wi. In this case, the weight on the transitionwi leaving stateh must be the sum of
the trigram, bigram and unigram feature weights. If only the trigram feature weight
were assigned to the transition, neither the unigram nor the bigram feature con-
tribution would be included in the path weight. In order to ensure that the correct
weights are assigned to each string, every transition encoding an orderk n-gram
must carry the sum of the weights for all n-gram features of orders≤ k. To ensure
that every string inΣ∗ receives the correct weight, for any n-gramhw represented
explicitly in the automaton,h′w must also be represented explicitly in the automa-
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ton, even if its weight is 0. Otherwise, there is no guarantee that a string containing
the n-gramh′w will be able to reach the state in the automaton corresponding to
this n-gram.

3.4 The perceptron algorithm

The perceptron algorithm is incremental, meaning that the language modelD is
built one training example at a time, during several passes over the training set.
Initially, we buildD to be the (trivial) automaton that accepts all strings inΣ∗ with
weight 0. For the perceptron experiments, we chose the parameterα0 to be a fixed
constant, chosen by optimization on the held-out set. The algorithm in figure 1 is
implemented as follows:

Inputs: LatticesLi and reference transcriptionsri for i = 1 . . . N . A value for the
parameterα0.

Initialization: SetD to be a WFA that accepts all strings inΣ∗ with weight0. Set
yi = MinErr(Li, ri) for i = 1 . . . N .

Algorithm: For t = 1 . . . T, i = 1 . . . N :
• Calculatezi = argmaxy∈GEN(xi)

Φ(xi, y) · ᾱ = BestPath(α0Li ◦ D).
• For all j for j = 1 . . . d such thatΦj(xi, yi) 6= Φj(xi, zi) apply the update

αj ← αj + Φj(xi, yi) − Φj(xi, zi). Modify D to incorporate these parameter
changes.

In addition, averaged parameters need to be stored (see section 2.1). These param-
eters will replace the un-averaged parameters inD once training is completed.

Note that the only n-gram features to be included inD at the end of the training
process are those that occur in either a best scoring pathzi or a minimum error path
yi at some point during training.10 Thus the perceptron algorithm is in effect doing
feature selection as a by-product of training. GivenN training examples, andT
passes over the training set,O(NT ) n-grams will have non-zero weight after train-
ing. Experiments suggest that the perceptron reaches optimal performance after a
small number of training iterations, for exampleT = 1 or T = 2. ThusO(NT )
can be very small compared to the full number of n-grams seen in all training lat-
tices. In our experiments, the perceptron method chose around 1.4 million n-grams
with non-zero weight. This compares to 43.65 million possible n-grams seen in the
training data.

This is a key contrast with conditional log-likelihood maximization, which opti-
mize the parameters of a fixed feature set. Feature selection can be critical in our

10 In fact, only features that differ in count between the best scoring path and the mini-
mum error path will be updated, resulting in an even smaller set of features with non-zero
parameters.
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domain, as training and applying a discriminative language model overall n-grams
seen in the training data (in either correct or incorrect transcriptions) may be com-
putationally very demanding. One training scenario that we will consider will be us-
ing the output of the perceptron algorithm (the averaged parameters) to provide the
feature set and the initial feature weights for use in the conditional log-likelihood
optimization algorithm. This leads to a model which is reasonably sparse, but has
the benefit of maximizing the conditional log-likelihood, which as we will see gives
gains in performance.

3.5 Global Conditional Log-Linear Models

The GCLM optimization methods that we use assume a fixed definition of the n-
gram featuresΦj for j = 1 . . . d in the model. In the experimental section we will
describe a number of ways of defining the feature set. The optimization methods
we use begin at some initial setting forᾱ, and then search for the parametersᾱ∗

which maximizeLLR(ᾱ) as defined in Eq. 5.

The optimization method requires calculation ofLLR(ᾱ) and the gradient ofLLR(ᾱ)
for a series of values for̄α. The first step in calculating these quantities is to take
the parameter values̄α, and to construct an acceptorD which accepts all strings in
Σ∗, such that

wD[π] =
d∑

j=1

Φj(x, l[π])αj

For each training latticeLi, we then construct a new latticeL′i = Norm(α0Li ◦
D). The latticeL′i represents (in the log domain) the distributionpᾱ(y|xi) over
stringsy ∈ GEN(xi). The value oflog pᾱ(yi|xi) for any i can be computed by
simply taking the path weight ofπ such thatl[π] = yi in the new latticeL′i. Hence
computation ofLLR(ᾱ) in Eq. 5 is straightforward.

Calculating the n-gram feature gradients for the GCLM optimization is also rela-
tively simple, onceL′i has been constructed. From the derivative in Eq. 6, for each
i = 1 . . . N, j = 1 . . . d the quantity

Φj(xi, yi)−
∑

y∈GEN(xi)

pᾱ(y|xi)Φj(xi, y) (10)

must be computed. The first term is simply the number of times thej’th n-gram
feature is seen inyi. The second term is the expected number of times that thej’th
n-gram is seen in the acceptorL′i. If the j’th n-gram isw1 . . . wn, then this can be
computed asExpCount(L′i, w1 . . . wn). The GRM library, which was presented
in Allauzen et al. (2003), has a direct implementation of the functionExpCount,
which simultaneously calculates the expected value of all n-grams of order less
than or equal to a givenn in a latticeL.
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The one non-ngram feature weight that is being estimated is the weightα0 given to
the baseline ASR negative log probability. Calculation of the gradient ofLLR with
respect to this parameter again requires calculation of the term in Eq. 10 forj = 0
andi = 1 . . . N . Computation of

∑
y∈GEN(xi) pᾱ(y|xi)Φ0(xi, y) turns out to be not

as straightforward as calculating n-gram expectations. To do so, we rely upon the
fact thatΦ0(xi, y), the negative log probability of the path, decomposes to the sum
of negative log probabilities of each transition in the path. We index each transition
in the latticeLi, and store its negative log probability under the baseline model. We
can then calculate the required gradient fromL′i, by calculating the expected value
in L′i of each indexed transition inLi.

We found that an approximation to the gradient ofα0, however, performed nearly
identically to this exact gradient, while requiring substantially less computation.
Let wn

1 be a string ofn words, labeling a path in word-latticeL′i. For brevity, let
Pi(w

n
1 ) = pᾱ(wn

1 |xi) be the conditional probability under the current model,
and letQi(w

n
1 ) be the probability ofwn

1 in the normalized baseline ASR lattice
Norm(Li). Let Li be the set of strings in the language defined byLi. Then we
wish to computeEi for i = 1 . . . N , where

Ei =
∑

wn
1∈Li

Pi(wn
1 ) log Qi(wn

1 )

=
∑

wn
1∈Li

∑
k=1...n

Pi(wn
1 ) log Qi(wk|wk−1

1 ) (11)

The approximation is to make the following Markov assumption:

Ei≈
∑

wn
1∈Li

∑
k=1...n

Pi(wn
1 ) log Qi(wk|wk−1

k−2)

=
∑

xyz∈Si

ExpCount(L′i, xyz) log Qi(z|xy) (12)

whereSi is the set of all trigrams seen inLi. The termlog Qi(z|xy) can be calcu-
lated once before training for every lattice in the training set; theExpCount term
is calculated as before using the GRM library. We have found this approximation
to be effective in practice, and it was used for the trials reported below.

When the gradients and conditional likelihoods are collected from all of the ut-
terances in the training set, the contributions from the regularizer are combined to
give an overall gradient and objective function value. These values are provided to
the parameter estimation routine, which then returns the parameters for use in the
next iteration. The accumulation of gradients for the feature set is the most time
consuming part of the approach, but this is parallelizable, so that the computation
can be divided among many processors.
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4 Empirical Results

We present empirical results on the Rich Transcription 2002 evaluation test set
(rt02), which we used as our development set, as well as on the Rich Transcription
2003 Spring evaluation CTS test set (rt03). The rt02 set consists of 6081 sentences
(63804 words) and has three subsets: Switchboard 1, Switchboard 2, Switchboard
Cellular. The rt03 set consists of 9050 sentences (76083 words) and has two sub-
sets: Switchboard and Fisher.

The training set consists of 276726 transcribed utterances (3047805 words), with
an additional 20854 utterances (249774 words) as held out data. For each utterance,
a weighted word-lattice was produced, representing alternative transcriptions, from
the ASR system. From each word-lattice, the oracle best path was extracted, which
gives the best word-error rate from among all of the hypotheses in the lattice. The
oracle word-error rate for the training set lattices was 12.2%. We also performed
trials with 1000-best lists for the same training set, rather than lattices. The oracle
score for the 1000-best lists was 16.7%.

To produce the word-lattices, each training utterance was processed by the base-
line ASR system. In a naive approach, we would simply train the baseline system
(i.e., an acoustic model and language model) on the entire training set, and then
decode the training utterances with this system to produce lattices. We would then
use these lattices with the perceptron or GCLM training algorithms. Unfortunately,
this approach is likely to produce a set of training lattices that are very different
from test lattices, in that they will have very low word-error rates, given that the
lattice for each utterance was produced by a model that was trained on that utter-
ance. To somewhat control for this, the training set was partitioned into 28 sets,
and baseline Katz backoff trigram models were built for each set by including only
transcripts from the other 27 sets. Lattices for each utterance were produced with an
acoustic model that had been trained on the entire training set, but with a language
model that was trained on the 27 data portions that did not include the current utter-
ance. Since language models are generally far more prone to overtrain than standard
acoustic models, this goes a long way toward making the training conditions similar
to testing conditions.

Our ASR system is based on the AT&T Switchboard system used in the RT03
Evaluations (see Ljolje et al., 2003, for details). The evaluation system was origi-
nally designed as a real-time system. For these experiments, we use the system at a
slower speed in order to avoid search errors. The system uses a multi-pass strategy
to incorporate speaker adaptation as well as more complex language and acoustic
models. In the first pass, the system produces an initial hypothesis which is used
for speaker normalization and adaptation. In the second pass, lattices are gener-
ated using the normalized features and the adapted acoustic models. Both of these
passes use a trigram language model, trained on approximately 4 million words of
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Fig. 3. Leaving all utterances in the training set for the language model that produces the
training lattice, versus removing utterances from the training for the language model that
produces their word-lattice. Word error rate on Switchboard 2002 eval set at various lattice
scale factors.

transcribed telephone conversations. The scores in the lattices are then replaced by
scores from a 6-gram language model, trained using MAP estimation (Bacchiani
et al., 2006), with the original 4 million words of in-domain data plus an additional
150 million words of out-of-domain text. Finally the lattices are rescored using
more complex adapted acoustic models (typically pentaphone models instead of
triphone models), and the final hypotheses are obtained.

In order to evaluate the performance of discriminative language modeling as well
as its interaction with other components of the ASR system, we used three different
configurations:

(1) A simple single-pass (or first pass) system. This configuration was used to
measure the performance of discriminative language modeling in isolation.

(2) A system that performs an additional rescoring pass which allows for better
silence modeling and replaces the trigram language model score with a 6-gram
model. This configuration was used to see the effects of lattice rescoring and
more complex language models.

(3) The full multi-pass system, with a modified final pass that generates lattices
instead of single hypotheses. This configuration was used to evaluate the in-
teraction of discriminative language modeling with acoustic model adaptation
and feature normalization. The effects of using more complex acoustic models
which were not used during the training of the discriminative language models
was also evaluated.

4.1 Perceptron results

The first trials using the perceptron algorithm look at a simple single-pass recog-
nition system that forms the basis of the AT&T Switchboard system. After each
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Fig. 4. Using the reference transcription as the gold standard, versus the oracle best path
through the lattice. Word error rate on Switchboard 2002 eval set at various lattice scale
factors.

iteration over the training set, the averaged perceptron model was evaluated against
the held-out training data, and the model with the lowest word-error-rate was cho-
sen for evaluation on the test set. For each training scenario, we built 5 models,
corresponding to 5 lattice scaling factorsα0, from 0.5 to 8.0. Each graph shows
the baseline performance, which is without a perceptron model; and performance
of a perceptron built under our standard training scenario. The standard training
scenario is defined as

(1) training lattices produced by removing utterances
from their own baseline LM training set

(2) using the oracle best path as the gold standard
(3) with trigram, bigram and unigram features
(4) no n-best extraction from the word lattices

Figure 3 compares the standard scenario just presented with the same scenario,
except that the lattices were produced without removing utterances from their own
baseline LM training set, i.e. number 1 above is changed. From this plot, we can see
several things. First, removing utterances from their own baseline LM training set
is necessary to get any improvement over the baseline results at all. This underlines
the importance of matching the testing and training conditions for this approach.
Our standard approach works best with a lattice scale of 4, which provides a 1.3
percent improvement over the baseline, 37.9 percent WER versus 39.2. All scales
α0 from 1 to 8 are within 0.3% of this best result.

Figure 4 compares the standard training scenario with the same scenario, except the
reference transcription is used as the gold standard instead of the oracle best path.
At the best scaling factors, the difference is 0.4 percent, but the reference trained
model is much more sensitive to the scaling factor.

Figure 5 shows the result of including fewer features in the perceptron model. In-
cluding all n-grams of order 3 or less is the best performer, but the gain is very small
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Fig. 5. Using feature sets with n-grams of different orders. Word error rate on Switchboard
2002 eval set at various lattice scale factors.
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Fig. 6. N-best extraction on training lattices with various values of N, versus using the
lattices. Word error rate on Switchboard 2002 eval set at various lattice scale factors.

versus using just bigrams and unigrams. Unigrams and bigrams both contribute a
fair amount to performance, but the trigrams add very little over and above those.
The lower order models are less sensitive to the lattice scale factor.

Finally, figure 6 shows the result of performing n-best extraction on the training and
testing lattices.11 With n=1000, the performance is essentially the same as with full
lattices, and the performance degrades as fewer candidates are included. The n-best
extracted models are less sensitive to the lattice scale factor.

The AT&T Switchboard system performs a rescoring pass, which allows for bet-
ter silence modeling and replaces the trigram language model score with a 6-gram
model. Table 1 gives the rt02 and rt03 results for the ASR baselines and percep-
tron trained on lattices or 1000-best lists for both first-pass recognition and the
rescoring-pass. The magnitude of the gain in the rescoring pass is less than for the
first pass, but the 0.5 and 0.7 percent improvements over the rescoring-pass base-

11 The oracle word-error rates for the 50-best, 100-best and 1000-best training sets are 20.8,
19.7, and 16.7 percent, respectively.
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Dev Test

Trial Pass Iterations Features (rt02) (rt03)

ASR Baseline First - - 39.2 38.2

Perceptron, Lattice First 2 1408572 37.9 36.9

Perceptron, 1000-bestFirst 2 910322 38.0 37.2

ASR Baseline Rescore - - 37.1 36.4

Perceptron, Lattice Rescore 2 974159 36.6 35.7

Perceptron, 1000-bestRescore 3 884186 36.6 35.7
Table 1
Word-error rate results at convergence iteration for various trials, on both Switchboard 2002
test set (rt02), which was used as the dev set, and Switchboard 2003 test set (rt03).

line are also statistically significant (p < 0.001), using the Matched Pair Sentence
Segment test for WER included with SCTK (NIST, 2000).

4.2 Global conditional log-linear model results

We now describe results for global conditional log-linear models. There are three
baselines which we compare against. The first is the ASR baseline, with no reweight-
ing from a discriminatively trained n-gram model. The other two baselines are with
perceptron-trained n-gram model re-weighting. The first of these is for a pruned-
lattice trained trigram model, which showed a reduction in word error rate (WER)
of 1.3%, from 39.2% to 37.9% on rt02. The second is for a 1000-best list trained
trigram model, which performed only marginally worse than the lattice-trained per-
ceptron, at 38.0% on rt02.

4.2.1 Perceptron feature set

We use the perceptron-trained models as the starting point for our GCLM training
algorithm: the feature set given to the GCLM training algorithm is the feature set
selected by the perceptron algorithm; the feature weights are initialized to those
of the averaged perceptron. Figure 7 shows the performance of our three baselines
versus three trials of the GCLM training algorithm. In the first two trials, the train-
ing set consists of the pruned lattices, and the feature set is from the perceptron
algorithm trained on pruned lattices. There were 1.4 million features in this feature
set. The first trial set the regularizer constantσ = ∞, so that the algorithm was
optimizing raw conditional likelihood. The second trial is with the regularizer con-
stantσ = 0.5, which we found empirically to be a good parameterization on the
held-out set. As can be seen from these results, regularization is critical.
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The third trial in this set uses the feature set from the perceptron algorithm trained
on 1000-best lists, and uses GCLM optimization on these on these same 1000-
best lists. There were 0.9 million features in this feature set. For this trial, we also
usedσ = 0.5. As with the perceptron baselines, the n-best trial performs nearly
identically with the pruned lattices, here also resulting in 37.4% WER. This may
be useful for techniques that would be more expensive to extend to lattices versus
n-best lists (e.g. models with unbounded dependencies).

These trials demonstrate that the GCLM training algorithm can do a better job of
estimating parameter weights than the perceptron algorithm for the same feature
set. As mentioned in the earlier section, feature selection is a by-product of the
perceptron algorithm, but the GCLM training algorithm uses a fixed set of features.
The next two trials looked at selecting feature sets other than those provided by the
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perceptron algorithm.

4.2.2 Other feature sets

In order for the feature weights to be non-zero in this approach, they must be ob-
served in the training set. The number of unigram, bigram and trigram features
with non-zero observations in the training set lattices is 43.65 million, or roughly
30 times the size of the perceptron feature set. Many of these features occur only
rarely with very low conditional probabilities, and hence cannot meaningfully im-
pact system performance. We pruned this feature set to include all unigrams and
bigrams, but only those trigrams with an expected count of greater than 0.01 in
the training set. That is, to be included, a trigram must occur in a set of paths, the
sum of the conditional probabilities of which must be greater than our threshold
θ = 0.01. This threshold resulted in a feature set of roughly 12 million features,
nearly 10 times the size of the perceptron feature set. For better comparability with
that feature set, we set our thresholds higher, so that trigrams were pruned if their
expected count fell belowθ = 0.9, and bigrams were pruned if their expected count
fell belowθ = 0.1. We were concerned that this may leave out some of the features
on the oracle paths, so we added back in all bigram and trigram features that oc-
curred on oracle paths, giving a feature set of 1.5 million features, roughly the same
size as the perceptron feature set.

Figure 8 shows the results for three GCLM trials versus our ASR baseline and the
perceptron algorithm baseline trained on lattices. First, the result using the percep-
tron feature set provides us with a WER of 37.4%, as previously shown. The WER
at convergence for the big feature set (12 million features) is 37.6%; the WER at
convergence for the smaller feature set (1.5 million features) is 37.5%. While both
of these other feature sets converge to performance close to that using the percep-
tron features, the number of iterations over the training data that are required to
reach that level of performance are many more than for the perceptron-initialized
feature set.

Tables 2 and 3 show the word-error rate at the best performing iteration on the
development set for the various trials, on both rt02 and rt03, for first-pass and
rescoring pass, respectively. All of the first-pass GCLM trials are significantly bet-
ter than the perceptron performance, using the Matched Pair Sentence Segment
test for WER included with SCTK (NIST, 2000). On rt02, the N-best and percep-
tron initialized GCLM trials were significantly better than the lattice perceptron at
p < 0.001; the other two GCLM trials were significantly better than the lattice per-
ceptron atp < 0.01. On rt03, the N-best GCLM trial was significantly better than
the lattice perceptron atp < 0.002; the other three GCLM trials were significantly
better than the lattice perceptron atp < 0.001.

Table 4 presents several trials investigating other methods for selecting features for

23



Trial Pass Features Iterations rt02 rt03

ASR Baseline First - - 39.2 38.2

Perceptron, Lattice First 1408572 2 37.9 36.9

Perceptron, 1000-best First 910322 2 38.0 37.2

GCLM, Lattice, Percep feats First 1408572 220 37.3 36.5

GCLM Exact, Lattice, Percep feats First 1408572 144 37.4 36.7

GCLM, 1000-best, Percep feats First 910322 140 37.4 36.7

GCLM Exact, 1000-best, Percep featsFirst 910322 220 37.4 36.6

GCLM, Lattice,θ = 0.01 First 11816862 2530 37.5 36.6

GCLM, Lattice,θ = 0.9 First 1540260 1432 37.5 36.5
Table 2
First-pass word-error rate results at best-dev-set-performance iteration for various trials, on
both Switchboard 2002 test set (rt02), which was used as the dev set, and Switchboard 2003
test set (rt03).

Trial Pass Features Iterations rt02 rt03

ASR Baseline Rescore - - 37.1 36.4

Perceptron, Lattice Rescore 974159 2 36.6 35.7

Perceptron, 1000-best Rescore 884186 3 36.6 35.7

GCLM, Lattice, Percep feats Rescore 974159 132 36.2 35.5

GCLM Exact, Lattice, Percep feats Rescore 974159 177 36.2 35.5

GCLM, 1000-best, Percep feats Rescore 884186 113 36.3 35.4

GCLM Exact, 1000-best, Percep featsRescore 884186 100 36.3 35.4
Table 3
Rescoring-pass word-error rate results at best-dev-set-performance iteration for various tri-
als, on both Switchboard 2002 test set (rt02), which was used as the dev set, and Switch-
board 2003 test set (rt03).

use in GCLM modeling. The first method is inspired by the fact that the perceptron
algorithm only selects features from the best scoring and oracle (minimum error
rate) paths. One can do something similar without perceptron training, by restrict-
ing features to those occurring in the baseline model 1-best or oracle paths. The
first two rows of table 4 demonstrate this to be a viable approach, reaching compet-
itive levels of performance in both first pass and rescoring trials. In the absence of
parameter weight starting values provided by the perceptron algorithm, however, it
takes many more iterations to reach convergence.

The second two rows of table 4 show the result of restricting the features in the
perceptron algorithm to those with an expected count in the corpus greater than a
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Trial Pass Features Iterations rt02 rt03

GCLM, Oracle & Bestpath feats First 384090 467 37.4 36.6

GCLM, Oracle & Bestpath feats Rescore 357616 367 36.3 35.5

Perceptron, Lattice, prunedθ = 0.2 Rescore 334156 2 36.6 35.8

GCLM, Lattice, Percep feats prunedθ = 0.2 Rescore 334156 123 36.3 35.6
Table 4
Word-error rate results at best-dev-set-performance iteration for various trials with smaller
feature sets, on both Switchboard 2002 test set (rt02), which was used as the dev set, and
Switchboard 2003 test set (rt03).

GCLM

Features Percep approx exact

Lattice, Percep Feats (1.4M) 7.10 1.69 3.61

N-best, Percep Feats (0.9M) 3.40 0.96 1.40

Lattice,θ = 0.01 (12M) - 2.24 4.75
Table 5
Time (in hours) for one iteration on a single Intel Xeon 2.4Ghz processor with 4GB RAM.

thresholdθ = 0.2. This leads to a feature set of roughly the same size as the trials in
the first two rows of the table. Two iterations of the perceptron algorithm provides a
starting point to GCLM training with this feature set, which converges to the same
performance point as the trial in row 2 of the table, but takes about one third of the
iterations to do so.

Finally, we measured the time of a single iteration over the training data on a single
machine for the perceptron algorithm, the GCLM training algorithm using the ap-
proximation to the gradient ofα0, and the GCLM training algorithm using an exact
gradient ofα0. Table 5 shows these times in hours. Because of the frequent update
of the weights in the model, the perceptron algorithm is more expensive than the
GCLM training algorithm for a single iteration. Further, the GCLM training algo-
rithm is parallelizable, so that most of the work of an iteration can be shared among
multiple processors. Our most common training setup for the GCLM training al-
gorithm was parallelized between 20 processors, using the approximation to the
gradient. In that setup, using the 1.4M feature set, one iteration of the perceptron
algorithm took the same amount of real time as approximately 80 iterations of the
GCLM training algorithm.
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Trial Pass Triphone AM Pentaphone AM

Baseline Final 28.9 27.4

Perceptron Final 28.4 27.1

GCLM, Percep feats Final 28.0 26.9
Table 6
Multi-pass word-error rate results using the discriminative language model with triphone
and pentaphone acoustic models for the final pass on the Switchboard 2003 test set (rt03).

4.3 Results with a multi-pass ASR system

Finally we present results using the multi-pass AT&T Switchboard system used in
the RT03 Evaluations (see Ljolje et al., 2003, for details). For simplicity we apply
the discriminative language model only at the final pass. Note that results may be
improved further by applying the discriminative language model at earlier, adap-
tation passes in recognition. In fact, application of the perceptron method at each
decoding step was shown to improve the performance in Bacchiani et al. (2004).

The word-error rate performance of the system on the rt03 test set is presented
in Table 6. Recall that the discriminative language models were estimated using
lattices generated by triphone acoustic models. When the final pass uses triphone
acoustic models an improvement of 0.9% in WER is observed. This is a 3.1% rel-
ative error rate reduction, compared to the 4.6% relative error rate reduction for
first-pass recognition. This result demonstrates that the speaker normalization and
acoustic model adaptation techniques utilized do not create a significant mismatch.
On the other hand, using pentaphone acoustic models we get a 0.5% absolute im-
provement in WER (1.8% relative reduction), suggesting that the mismatch be-
tween the training conditions using triphone acoustic models and the testing con-
ditions using pentaphone acoustic models result in reduced but still significant im-
provements.

As in Bacchiani et al. (2004), reductions in WER are retained after unsupervised
acoustic model adaptation. These results indicate that it is not necessary to perform
unsupervised acoustic model adaptation when producing training lattices for this
approach, even if such techniques are used at test time.

5 Conclusion

We have contrasted two approaches to discriminative language model estimation on
a difficult large vocabulary task, showing that they can indeed scale effectively to
handle this size of a problem. Both algorithms have their benefits. The perceptron
algorithm selects a relatively small subset of the total feature set, and requires just a
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couple of passes over the training data. The GCLM training algorithm does a better
job of parameter estimation for the same feature set, and is parallelizable, so that
each pass over the training set can require just a fraction of the real time of the
perceptron algorithm.

The best scenario from among those that we investigated was a combination of both
approaches, with the output of the perceptron algorithm taken as the starting point
for GCLM estimation.

We have shown that reducing the mismatch between the training lattices and the test
lattices is crucial. A leave-one-partition-out strategy was utilized while estimating
the language models used in generating the training lattices. This strategy is hard
to employ while estimating the acoustic models and our results suggest that this is
not as necessary, at least for the case of acoustic model adaptation.

As a final point, note that the methods we describe do not replace an existing lan-
guage model, but rather complement it. The existing language model has the bene-
fit that it can be trained on a large amount of text that does not have corresponding
speech data, as was done for the 6-gram language model employed in the rescoring
pass of the system described here. It has the disadvantage of not being a discrim-
inative model. The new language model is trained on the speech transcriptions,
meaning that it has less training data, but that it has the advantage of discriminative
training – and in particular, the advantage of being able to learn negative evidence
in the form of negative weights on n-grams which are rarely or never seen in natu-
ral language text (e.g., “the of”), but are produced too frequently by the recognizer.
The methods we describe combine the two language models, making use of their
complementary strengths.
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