# An SVM Approach for Natural Language Learning 

Michael Collins

MIT EECS/CSAIL

Joint work with Peter Bartlett, David McAllester, Ben Taskar

## Supervised Learning in NLP

- Goal is to learn a function $F: \mathcal{X} \rightarrow \mathcal{Y}$, where $\mathcal{X}$ is a set of possible inputs, $\mathcal{Y}$ is a set of possible outputs.
- We have a training sample $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ where each $\left(x_{i}, y_{i}\right) \in \mathcal{X} \times \mathcal{Y}$
E.g., each $x_{i}$ is a sentence, each $y_{i}$ is a gold-standard parse


## Global Linear Models

- Three components:

GEN is a function from a string to a set of candidates
$\Phi$ maps a candidate to a feature vector
W is a parameter vector

## Component 1: GEN

- GEN enumerates a set of candidates for a sentence

She announced a program to promote safety in trucks and vans

```
\(\Downarrow\) GEN
```


## Component 2: $\Phi$

- $\Phi$ maps a candidate to a feature vector $\in \mathbb{R}^{d}$
- $\Phi$ defines the representation of a candidate

$\langle 1,0,2,0,0,15,5\rangle$


## Features

- A "feature" is a function on a structure, e.g.,

$$
h(x)=\text { Number of times } \widehat{\text { B C }} \text { A is seen in } x
$$


$T_{2}$


$$
h\left(T_{1}\right)=1
$$

$$
h\left(T_{2}\right)=2
$$

## Feature Vectors

- A set of functions $h_{1} \ldots h_{d}$ define a feature vector

$$
\mathbf{\Phi}(x)=\left\langle h_{1}(x), h_{2}(x) \ldots h_{d}(x)\right\rangle
$$


$\boldsymbol{\Phi}\left(T_{1}\right)=\langle 1,0,0,3\rangle$
$\boldsymbol{\Phi}\left(T_{2}\right)=\langle 2,0,1,1\rangle$

## Component 3: W

- $W$ is a parameter vector $\in \mathbb{R}^{d}$
- $\Phi$ and W together map a candidate to a real-valued score



## Putting it all Together

- $\mathcal{X}$ is set of sentences, $\mathcal{Y}$ is set of possible outputs (e.g. trees)
- Need to learn a function $\mathrm{F}: \mathcal{X} \rightarrow \mathcal{Y}$
- GEN, $\Phi, \mathrm{W}$ define

$$
\mathbb{F}(x)=\underset{y \in \operatorname{GEN}(x)}{\arg \max \Phi(x, y) \cdot \mathbf{W}, ~(x)}
$$

Choose the highest scoring tree as the most plausible structure

- Given examples $\left(x_{i}, y_{i}\right)$, how to set $\mathbf{W}$ ?

She announced a program to promote safety in trucks and vans

## $\Downarrow$ GEN



## Examples of Global Linear Models

- Parse Reranking, e.g., [Ratnaparkhi, Reynar and Roukos, 1994], [Johnson et. al, 1999], [Collins 2000], [Riezler et. al, 2004], [Shen, Sarkar and Joshi, 2003], [Charniak and Johnson, 2005]
- Conditional random fields for tagging problems [Lafferty, McCallum, and Pereira, 2001; Sha and Pereira, 2003]
- Speech recognition: estimating a discriminative n-gram model [Roark, Saraclar and Collins, 2004]
- Dependency parsing [McDonald, Pereira, Ribarov and Hajic, 2005]
- Reranking for machine translation [Shen and Joshi, 2005; Shen, Sarkar and Och, 2004]
- Alignments in MT [Taskar, Lacoste-Julien, and Klein, 2005]


## Overview

- Margins, and the large margin solution
- An SVM algorithm
- Local feature vectors (what to do when GEN is large...)
- Justification for the algorithm
- Conclusions


## Margins

- Given parameter values $\mathbf{W}$, the margin on parse $y$ for $i$ 'th training example is

$$
M_{i, y}=\Phi\left(x_{i}, y_{i}\right) \cdot \mathbf{W}-\Phi\left(x_{i}, y\right) \cdot \mathbf{W}
$$

This is the difference in score between the correct parse, and parse $y$

She announced a program to promote safety in trucks and vans

## $\Downarrow$ GEN

| $\Downarrow \Phi \cdot \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 13.6 | 12.6 | 12.1 | 3.3 | 9.4 | 11.1 |

Margins (assuming first parse is correct):

| - | 1.0 | 1.5 | 10.3 | 4.2 | 2.5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

She announced a program to promote safety in trucks and vans

## $\Downarrow$ GEN

| $\Downarrow \Phi \cdot \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 13.6 | $\mathbf{1 4 . 8}$ | 12.1 | 3.3 | 9.4 | 11.1 |

Margins (assuming first parse is correct):

| - | -1.2 | 1.5 | 10.3 | 4.2 | 2.5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

## Support Vector Machines: The Large Margin Solution

Minimize

$$
\|\mathbf{W}\|^{2}
$$

under the constraints

$$
\forall i, \forall y \neq y_{i}, \quad M_{i, y} \geq 1
$$

(Note: a solution doesn't always exist)

$$
\|\mathbf{W}\|^{2}=\sum_{j} \mathbf{W}_{j}^{2}
$$

## Support Vector Machines: The Large Margin Solution

## Minimize

$$
\|\mathbf{W}\|^{2}
$$

under the constraints

$$
\forall i, \forall y \neq y_{i}, \quad M_{i, y} \geq 1
$$

Statistical justifi cation:

- Assume there is a distribution $P(x, y)$ underlying training and test examples
- If $\frac{\|\mathbf{W}\|^{2}}{n}$ is small, with high probability $\mathbf{W}$ will have low error rate w.r.t. $P(x, y)$


## Overview

- Margins, and the large margin solution
- An SVM algorithm
- Local feature vectors (what to do when GEN is large...)
- Justification for the algorithm
- Conclusions


## Training an SVM: Dual Variables

- For the perceptron, SVMs, and conditional random fields, the final parameter values can be expressed as:

$$
\mathbf{W}=\sum_{i, y} \alpha_{i, y}\left[\boldsymbol{\Phi}\left(x_{i}, y_{i}\right)-\mathbf{\Phi}\left(x_{i}, y\right)\right]
$$

where $\alpha_{i, y}$ are dual variables

She announced a program to promote safety in trucks and vans

## $\Downarrow$ GEN



Dual variables $\alpha_{i, y}$ :
0.1
0.3
0.5
0.05
0.04
0.01

Assuming first parse is correct, contribution to W is

$$
0.1\left[\mathbf{\Phi}_{1}-\boldsymbol{\Phi}_{1}\right]+0.3\left[\mathbf{\Phi}_{1}-\boldsymbol{\Phi}_{2}\right]+0.6\left[\boldsymbol{\Phi}_{1}-\boldsymbol{\Phi}_{3}\right]+\ldots
$$

## Training an SVM

## Inputs:

Initialization:

Training set $\left(x_{i}, y_{i}\right)$ for $i=1 \ldots n$
Set $\alpha_{i, y}$ to initial values,
Calculate $\mathrm{W}=\sum_{i, y} \alpha_{i, y}\left[\Phi\left(x_{i}, y_{i}\right)-\boldsymbol{\Phi}\left(x_{i}, y\right)\right]$

Note: must have $\alpha_{i, y}>0, \sum_{y} \alpha_{i, y}=1$

## Training an SVM: The Algorithm

(1) Calculate Margins:

$$
\forall i, y, \quad M_{i, y}=\boldsymbol{\Phi}\left(x_{i}, y_{i}\right) \cdot \mathbf{W}-\boldsymbol{\Phi}\left(x_{i}, y\right) \cdot \mathbf{W}
$$

(2) Update Dual Variables:
$\forall i, y, \quad \alpha_{i, y}^{\prime} \leftarrow \ldots$
(More on this in a moment...)
(3) Update Parameters: $\mathrm{W}=\sum_{i, y} \alpha_{i, y}^{\prime}\left[\boldsymbol{\Phi}\left(x_{i}, y_{i}\right)-\boldsymbol{\Phi}\left(x_{i}, y\right)\right]$
(4) If not converged, return to Step (1)

## Updating the Dual Variables

$$
\forall i, y, \quad \alpha_{i, y}^{\prime} \longleftarrow \frac{\alpha_{i, y} e^{\eta \nabla i, y}}{\sum_{y} \alpha_{i, y} e^{\eta \nabla i, y}}
$$

where

$$
\begin{array}{ll}
\nabla_{i, y}=0 & \text { for } y=y_{i} \\
\nabla_{i, y}=1-M_{i, y} & \text { for } y \neq y_{i}
\end{array}
$$

## Intuition:

- if $M_{i, y}>1, \alpha_{i, y}$ decreases
- if $M_{i, y}<1, \alpha_{i, y}$ increases
- if $M_{i, y}=1, \alpha_{i, y}$ stays the same
- The learning rate $\eta>0$ controls the magnitude of the updates
$\forall i, y, \quad \alpha_{i, y}^{\prime} \leftarrow \frac{\alpha_{i, y} e^{\eta \nabla i, y}}{\sum_{y} \alpha_{i, y} e^{\eta \nabla i, y}}$
where $\quad \nabla_{i, y}=0$ $\nabla_{i, y}=1-M_{i, y} \quad$ for $y \neq y_{i}$

| $\Downarrow \Phi \cdot W$ |
| :--- | :---: | :---: | :--- |
| 13.6 | 13.0 | 14.8 | 3.3 |

$0.6 \quad-1.2$
10.3
$\forall i, y, \quad \alpha_{i, y}^{\prime} \leftarrow \frac{\alpha_{i, y} e^{\eta \nabla i, y}}{\sum_{y} \alpha_{i, y} e^{\eta \nabla i, y}}$
where $\quad \nabla_{i, y}=0 \quad$ for $y=y_{i}$ $\nabla_{i, y}=1-M_{i, y} \quad$ for $y \neq y_{i}$

|  | $\Downarrow \Phi \cdot \mathrm{W}$ |
| :--- | :--- | :---: | :---: | :--- |
|  | 13.6 | 13.0 | 14.8 | 3.3 |
| Margins: | - | 0.6 | -1.2 | 10.3 |
| Values for $\nabla_{i, y}:$ | 0.0 | 0.4 | 2.2 | -9.3 |
| Values for $e^{\eta \nabla i, y}:$ <br> (with $\eta=1$ ) | 1.0 | 1.49 | 9.03 | 0.00001 |
|  |  |  |  |  |

$\forall i, y, \quad \alpha_{i, y}^{\prime} \leftarrow \frac{\alpha_{i, y} e^{\eta \nabla i, y}}{\sum_{y} \alpha_{i, y} e^{\eta \nabla i, y}}$
where $\quad \nabla_{i, y}=0$
for $y=y_{i}$ $\nabla_{i, y}=1-M_{i, y} \quad$ for $y \neq y_{i}$

Margins:
Values for $\nabla_{i, y}$ :
Values for $e^{\eta \nabla i, y}$ :
1.0
1.49
9.03
0.00001
(with $\eta=1$ )
Old dual values $\alpha_{i, y}$ : 0.1
New dual values $\alpha_{i, y}^{\prime}$ : 0.02
0.3
0.5
0.1
0.088
0.89
0.0

## Training an SVM: The Algorithm

(1) Calculate Margins:

$$
\forall i, y, \quad M_{i, y}=\boldsymbol{\Phi}\left(x_{i}, y_{i}\right) \cdot \mathbf{W}-\boldsymbol{\Phi}\left(x_{i}, y\right) \cdot \mathbf{W}
$$

(2) Update Dual Variables:
$\forall i, y, \quad \alpha_{i, y}^{\prime} \leftarrow \frac{\alpha_{i, y} e^{\eta \nabla i, y}}{\sum_{y} \alpha_{i, y} e^{\eta \nabla_{i, y}}}$
where

$$
\begin{array}{ll}
\nabla_{i, y}=0 & \text { for } y=y_{i} \\
\nabla_{i, y}=1-M_{i, y} & \text { for } y \neq y_{i}
\end{array}
$$

(3) Update Parameters: $\mathrm{W}=\sum_{i, y} \alpha_{i, y}^{\prime}\left[\boldsymbol{\Phi}\left(x_{i}, y_{i}\right)-\boldsymbol{\Phi}\left(x_{i}, y\right)\right]$
(4) If not converged, return to Step (1)

## Theory

- Algorithm converges to the minimum of

$$
\sum_{i} \max _{y}\left(1-M_{i, y}\right)_{+}+\frac{1}{2}\|\mathbf{W}\|^{2}
$$

where

$$
\left(1-M_{i, y}\right)_{+}= \begin{cases}\left(1-M_{i, y}\right) & \text { if }\left(1-M_{i, y}\right)>0 \\ 0 & \text { otherwise }\end{cases}
$$

This is the hinge loss: penalizes values for $M_{i, y}$ that are $<1$

Note, as before:

$$
M_{i, y}=\boldsymbol{\Phi}\left(x_{i}, y_{i}\right) \cdot \mathbf{W}-\Phi\left(x_{i}, y\right) \cdot \mathbf{W}
$$

She announced a program to promote safety in trucks and vans

## $\Downarrow$ GEN

| $\Downarrow \Phi \cdot \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 13.6 | 12.6 | 12.1 | 3.3 | 9.4 | 11.1 |

Margins (assuming first parse is correct):

| - | 1.0 | 1.5 | 10.3 | 4.2 | 2.5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

In this case $\max _{y}\left(1-M_{i, y}\right)_{+}=0$

She announced a program to promote safety in trucks and vans

## $\Downarrow$ GEN

| $\Downarrow \Phi \cdot \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 13.6 | 12.2 | 12.1 | 3.3 | 9.4 | 11.1 |

Margins (assuming first parse is correct):

| - | 1.4 | 1.5 | 10.3 | 4.2 | 2.5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

In this case $\max _{y}\left(1-M_{i, y}\right)_{+}=0$

She announced a program to promote safety in trucks and vans

## $\Downarrow$ GEN

| $\Downarrow \Phi \cdot \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 13.6 | 13.0 | 12.1 | 3.3 | 9.4 | 11.1 |

Margins (assuming first parse is correct):

| - | 0.6 | 1.5 | 10.3 | 4.2 | 2.5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

In this case $\max _{y}\left(1-M_{i, y}\right)_{+}=0.4$

She announced a program to promote safety in trucks and vans

## $\Downarrow$ GEN

| $\Downarrow \Phi \cdot \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 13.6 | 13.0 | 14.8 | 3.3 | 9.4 | 11.1 |

Margins (assuming first parse is correct):

| - | 0.6 | $\mathbf{- 1 . 2}$ | 10.3 | 4.2 | 2.5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

In this case $\max _{y}\left(1-M_{i, y}\right)_{+}=2.2$

## Theory

- Algorithm converges to the minimum of



## Theory

- Algorithm converges to the minimum of

$$
\underbrace{\sum_{i} \max _{y}\left(1-M_{i, y}\right)_{+}}_{\text {Penalizes margins less than } 1}+\underbrace{\frac{1}{2}\|\mathbf{W}\|^{2}}_{\text {Penalizes large parameter values }}
$$

- Note: it's trivial to modify the algorithm to minimize

$$
C \sum_{i} \max _{y}\left(1-M_{i, y}\right)_{+}+\frac{1}{2}\|\mathbf{W}\|^{2}
$$

for some $C>0$

- As $C \rightarrow \infty$ we get closer to the large margin solution


## Optimizing Other Loss Functions

- Suppose for each incorrect parse tree, we have a "loss"

$$
L_{i, y}
$$

E.g., $L_{i, y}$ is number of parsing errors in $y$ for sentence $x_{i}$

- New updates:

$$
\forall i, y, \quad \alpha_{i, y}^{\prime}=\frac{\alpha_{i, y} e^{\eta\left(L_{i, y}-M_{i, y}\right)}}{\sum_{y} \alpha_{i, y} e^{\eta\left(L_{i, y}-M_{i, y}\right)}}
$$

- Algorithm converges to the minimum of

$$
\sum_{i} \max _{y}\left(L_{i, y}-M_{i, y}\right)_{+}+\frac{1}{2}\|\mathbf{W}\|^{2}
$$

(Loss function from [Taskar, Guestrin, Koller, 2003])

She announced a program to promote safety in trucks and vans

## $\Downarrow$ GEN

| $\Downarrow \Phi \cdot \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 13.6 | 13.0 | 14.8 | 3.3 | 9.4 | 11.1 |

Margins (assuming first parse is correct):

- 0.6
-1.2
10.3
4.2
2.5

Values for $L_{i, y}$ :
0
5.0
1.0
2.3
1.7
2.5

In this case $\max _{y}\left(L_{i, y}-M_{i, y}\right)_{+}=4.4$

## Accuracy on a Parse Reranking Task



- $\approx 36,000$ training examples, 1 million trees total


## Overview

- Margins, and the large margin solution
- An SVM algorithm
- Local feature vectors (what to do when GEN is large...)
- Justification for the algorithm
- Conclusions


## Local Representations: What to do when GEN is large

- Suppose $\operatorname{GEN}(x)$ is all parses for $x$ under a context-free grammar
- We now have an exponential number of parses
- We have an exponential number of dual variables $\alpha_{i, y}$, margins $M_{i, y}$, feature vectors $\boldsymbol{\Phi}\left(x_{i}, y\right)$, error terms $L_{i, y}$ etc.


## Local Representations

A tree:


Its context-free productions:

$$
\begin{array}{lllll}
\langle\mathrm{S} \rightarrow \mathrm{NP} & \mathrm{VP}, & 1, & 2, & 5\rangle \\
\langle\mathrm{NP} \rightarrow \mathrm{D} & \mathrm{N}, & 1, & 1, & 2\rangle \\
\langle\mathrm{VP} \rightarrow \mathrm{~V} & \mathrm{NP}, & 3, & 3, & 5\rangle \\
\langle\mathrm{NP} \rightarrow \mathrm{D} & \mathrm{N}, & 4, & 4, & 5\rangle
\end{array}
$$

A part is a $\langle r u l e$, start-point, mid-point, end-point $\rangle$ tuple

## Assumption 1: Local Feature-Vector Representations

- If $x$ is a sentence, $r$ is a part, then

$$
\phi(x, r)
$$

is a local feature-vector

- For any parse tree $y$, we define

$$
\Phi(x, y)=\sum_{r \in y} \phi(x, r)
$$

## Local Feature Vectors

$(x, y)=$

$\Phi(x, y)=$
$\phi$ (the man saw the dog, $\langle\mathrm{S} \rightarrow \mathrm{NP}$ VP, 1, 2, 5 $\rangle$ )
$+\phi($ the man saw the dog, $\langle\mathrm{NP} \rightarrow \mathrm{D} \mathrm{N}, 1,1,2\rangle)$
$+\phi$ (the man saw the dog, $\langle\mathrm{VP} \rightarrow \mathrm{V}$ NP, 3, 3, 5 $\rangle$ )
$+\phi($ the man saw the dog, $\langle\mathrm{NP} \rightarrow \mathrm{D} \mathrm{N}, 4,4,5\rangle)$

Can find $\arg \max _{y} \mathbf{W} \cdot \boldsymbol{\Phi}(x, y)$ using CKY

## Assumption 2: Local Error Functions

- For any example $i$, assume $l_{i, r}$ is "cost" of proposing rule $r$ in parse tree for $x_{i}$
- For example: $l_{i, r}=1$ if rule $r$ is not in the correct parse $y_{i}, 0$ otherwise
- Define

$$
L_{i, y}=\sum_{r \in y} l_{i, r}
$$

## Local Error Functions

$$
\begin{aligned}
& \left(x_{i}, y\right)= \\
& L_{i, y}= \\
& l(i,\langle\mathrm{~S} \rightarrow \mathrm{NP} \mathrm{VP}, 1,2,5\rangle) \\
& +l(i,\langle\mathrm{NP} \rightarrow \mathrm{D} \mathrm{~N}, 1,1,2\rangle) \\
& +l(i,\langle\mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP}, 3,3,5\rangle) \\
& +l(i,\langle\mathrm{NP} \rightarrow \mathrm{D} \mathrm{~N}, 4,4,5\rangle)
\end{aligned}
$$

## The EG Algorithm under Local Assumptions

- The updates:

$$
\forall i, y, \quad \alpha_{i, y}^{\prime}=\frac{\alpha_{i, y} e^{\eta\left(L_{i, y}-M_{i, y}\right)}}{\sum_{y} \alpha_{i, y} e^{\eta\left(L_{i, y}-M_{i, y}\right)}}
$$

- But now, we have

$$
L_{i, y}-M_{i, y}=\sum_{r \in y}\left(l_{i, r}+\mathbf{W} \cdot \phi_{i, r}\right)-\mathbf{W} \cdot \boldsymbol{\Phi}\left(x_{i}, y_{i}\right)
$$

- We can represent $\alpha_{i, y}$ variables compactly:

$$
\alpha_{i, y}=\frac{e^{\sum_{r \in y} \theta_{i, r}}}{\sum_{y} e^{\sum_{r \in y} \theta_{i, r}}}
$$

- The updates are implemented as $\theta_{i, r}^{\prime} \leftarrow \theta_{i, r}+\eta\left(l_{i, r}+\mathbf{W} \cdot \phi_{i, r}\right)$


## Local Dual Variables

$$
\left(x_{i}, y\right)=
$$



$$
\alpha_{i, y}=\frac{e^{S_{i, y}}}{Z}
$$

$$
\begin{aligned}
S_{i, y} & = \\
& \theta(i,\langle\mathrm{~S} \rightarrow \mathrm{NP} \mathrm{VP}, 1,2,5\rangle) \\
& +\theta(i,\langle\mathrm{NP} \rightarrow \mathrm{D} \mathrm{~N}, 1,1,2\rangle) \\
& +\theta(i,\langle\mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP}, 3,3,5\rangle) \\
& +\theta(i,\langle\mathrm{NP} \rightarrow \mathrm{D} \mathrm{~N}, 4,4,5\rangle)
\end{aligned}
$$

There are an exponential number of $\alpha_{i, y}$ variables, but there are a polynomial number of $\theta(i$, rule $)$ variables

## Overview

- Margins, and the large margin solution
- An SVM algorithm
- Local feature vectors (what to do when GEN is large...)
- Justification for the algorithm
- Conclusions


## How did we Derive the Algorithm?

- We want to find the W that minimizes:



## The Dual Optimization Problem for the SVM

Choose $\alpha_{i, y}$ values to maximize

$$
Q(\bar{\alpha})=\sum_{i, y \neq y_{i}} \alpha_{i, y}-\frac{1}{2}\|\mathbf{W}\|^{2}
$$

where

$$
\mathbf{W}=\sum_{i, y} \alpha_{i, y}\left[\boldsymbol{\Phi}\left(x_{i}, y_{i}\right)-\mathbf{\Phi}\left(x_{i}, y\right)\right]
$$

Constraints:

$$
\begin{aligned}
& \forall i, \forall y, \quad \alpha_{i, y} \geq 0 \\
& \forall i, \quad \sum_{y} \alpha_{i, y}=1
\end{aligned}
$$

## The Dual Optimization Problem for the SVM

- We want to maximize $Q(\bar{\alpha})$
- It can be shown that

$$
\begin{array}{lll}
\frac{d Q(\bar{\alpha})}{d \alpha_{i, y}}=\nabla_{i, y} & \nabla_{i, y}=0 & \text { for } y=y_{i} \\
\nabla_{i, y}=1-M_{i, y} & \text { for } y \neq y_{i}
\end{array}
$$

- Gradient ascent:

$$
\alpha_{i, y} \leftarrow \alpha_{i, y}+\eta \nabla i, y
$$

- Exponentiated Gradient:

$$
\alpha_{i, y} \leftarrow \frac{\alpha_{i, y} e^{\eta \nabla i, y}}{\sum_{y} \alpha_{i, y} e^{\eta \nabla i, y}}
$$

(Motivation: $\alpha_{i, y}$ 's remain positive, $\sum_{y} \alpha_{i, y}=1$ )

- The exponentiated gradient method is an example of multiplicative updates: central to AdaBoost (Freund and Schapire), online learning algorithms such as Winnow (Warmuth), several applications to combinatorial optimization, linear programming, problems in game theory, etc. etc. (survey article by Arora, Hazan and Kale)
- Analysis of the algorithm builds on work by Warmuth and collaborators in online learning


## Convergence on a Parse Reranking Task



- $\approx 36,000$ training examples, 1 million trees total
- $\approx 500,000$ sparse features


## Overview

- Margins, and the large margin solution
- An SVM algorithm
- Local feature vectors (what to do when GEN is large...)
- Justification for the algorithm
- Conclusions


## Contributions

- A simple algorithm for finding the SVM solution
- Relies on close connections between margins, dual variables, dual problem for the SVM
- Experiments show good performance on reranking tasks
- The algorithm has a convenient compact form for context-free grammars with local feature-vectors

