
Spectral Learning of Latent-Variable PCFGs

Shay B. Cohen1, Karl Stratos1, Michael Collins1, Dean P. Foster2, Lyle Ungar3

1Dept. of Computer Science, Columbia University

2Dept. of Statistics/3Dept. of Computer and Information Science, Univer-
sity of Pennsylvania

{scohen,stratos,mcollins}@cs.columbia.edu, foster@wharton.upenn.edu, ungar@cis.upenn.edu

Abstract

We introduce a spectral learning algorithm for latent-variable PCFGs (Petrov, Barrett,
Thibaux, & Klein, 2006; Matsuzaki, Miyao, & Tsujii, 2005). Under a separability (singular
value) condition, we prove that the method provides consistent parameter estimates. Our
result rests on three theorems: the first gives a tensor form of the inside-outside algorithm
for PCFGs; the second shows that the required tensors can be estimated directly from
training examples where hidden-variable values are missing; the third gives a PAC-style
convergence bound for the estimation method.

1. Introduction

Statistical models with hidden or latent variables are of great importance in natural language
processing, speech, and many other fields. The EM algorithm is a remarkably successful
method for parameter estimation within these models: it is simple, it is often relatively
efficient, and it has well understood formal properties. It does, however, have a major
limitation: it has no guarantee of finding the global optimum of the likelihood function.
From a theoretical perspective, this means that the EM algorithm is not guaranteed to give
consistent parameter estimates. From a practical perspective, problems with local optima
can be difficult to deal with.

Recent work has introduced a polynomial-time learning algorithm (and a consistent es-
timation method) for an important case of hidden-variable models: hidden Markov models
(Hsu, Kakade, & Zhang, 2009). This algorithm uses a spectral method: that is, an algorithm
based on eigenvector decompositions of linear systems, in particular singular value decom-
position (SVD). In the general case, learning of HMMs is intractable (e.g., see Terwijn,
2002). The spectral method finesses the problem of intractibility by assuming separability
conditions. More precisely, the algorithm of Hsu et al. (2009) has a sample complexity that
is polynomial in 1/σ, where σ is the minimum singular value of an underlying decomposi-
tion. The HMM learning algorithm is not susceptible to problems with local maxima, and
gives consistent parameter estimates.

In this paper we derive a spectral algorithm for learning of latent-variable PCFGs (L-
PCFGs) (Petrov et al., 2006; Matsuzaki et al., 2005). Our method involves a significant
extension of the techniques from Hsu et al. (2009). L-PCFGs have been shown to be a very

1

effective model for natural language parsing. Under a separation (singular value) condition,
our algorithm provides consistent parameter estimates; this is in contrast with previous
work, which has used the EM algorithm for parameter estimation, with the usual problems
of local optima.

The parameter estimation algorithm (see figure 7) is simple and efficient. The first step
is to take an SVD of the training examples, followed by a projection of the training examples
down to a low-dimensional space. In a second step, empirical averages are calculated on
the training example, followed by standard matrix operations. On test examples, simple
(tensor-based) variants of the inside-outside algorithm (figures 4 and 5) can be used to
calculate probabilities and marginals of interest.

Our method depends on the following results:

• Tensor form of the inside-outside algorithm. Section 6.1 shows that the inside-outside
algorithm for L-PCFGs can be written using tensors. Theorem 1 gives conditions
under which the tensor form calculates inside and outside terms correctly.

• Observable representations. Section 7 shows that under a singular-value condition,
there is an observable form for the tensors required by the inside-outside algorithm.
By an observable form, we follow the terminology of Hsu et al. (2009) in referring to
quantities that can be estimated directly from data where values for latent variables
are unobserved. Theorem 2 shows that tensors derived from the observable form
satisfy the conditions of theorem 1.

• Estimating the model. Section 8 gives an algorithm for estimating parameters of the
observable representation from training data. Theorem 3 gives a sample complexity
result, showing that the estimates converge to the true distribution at a rate of 1/

√
M

where M is the number of training examples.

The algorithm is strikingly different from the EM algorithm for L-PCFGs, both in its
basic form, and in its consistency guarantees. The techniques developed in this paper are
quite general, and should be relevant to the development of spectral methods for estimation
in other models in NLP, for example alignment models for translation, synchronous PCFGs,
and so on. The tensor form of the inside-outside algorithm gives a new view of basic
calculations in PCFGs, and may itself lead to new models.

2. Related Work

For work on L-PCFGs using the EM algorithm, see Petrov et al. (2006), Matsuzaki et al.
(2005), Pereira and Schabes (1992). Our work builds on methods for learning of HMMs (Hsu
et al., 2009; Foster, Rodu, & Ungar, 2012; Jaeger, 2000), but involves several extensions: in
particular in the tensor form of the inside-outside algorithm, and observable representations
for the tensor form. Balle, Quattoni, and Carreras (2011) consider spectral learning of finite-
state transducers; Lugue, Quattoni, Balle, and Carreras (2012) considers spectral learning
of head automata for dependency parsing. Parikh, Song, and Xing (2011) consider spectral
learning algorithms of tree-structured directed bayes nets.

2

3. Notation

Given a matrix A or a vector v, we write A⊤ or v⊤ for the associated transpose. For any
integer n ≥ 1, we use [n] to denote the set {1, 2, . . . n}.

We use R
m×1 to denote the space of m-dimensional column vectors, and R

1×m to denote
the space of m-dimensional row vectors. We use R

m to denote the space of m-dimensional
vectors, where the vector in question can be either a row or column vector. For any row or
column vector y ∈ R

m, we use diag(y) to refer to the (m×m) matrix with diagonal elements
equal to yh for h = 1 . . . m, and off-diagonal elements equal to 0. For any statement Γ, we
use [[Γ]] to refer to the indicator function that is 1 if Γ is true, and 0 if Γ is false. For a
random variable X, we use E[X] to denote its expected value.

We will make (quite limited) use of tensors:

Definition 1 A tensor C ∈ R
(m×m×m) is a set of m3 parameters Ci,j,k for i, j, k ∈ [m].

Given a tensor C, and vectors y1 ∈ R
m and y2 ∈ R

m, we define C(y1, y2) to be the m-
dimensional row vector with components

[C(y1, y2)]i =
∑

j∈[m],k∈[m]

Ci,j,ky
1
j y

2
k

Hence C can be interpreted as a function C : Rm × R
m → R

1×m that maps vectors y1 and
y2 to a row vector C(y1, y2) ∈ R

1×m.
In addition, we define the tensor C(1,2) ∈ R

(m×m×m) for any tensor C ∈ R
(m×m×m) to

be the function C(1,2) : R
m × R

m → R
m×1 defined as

[C(1,2)(y
1, y2)]k =

∑

i∈[m],j∈[m]

Ci,j,ky
1
i y

2
j

Similarly, for any tensor C we define C(1,3) : R
m × R

m → R
m×1 as

[C(1,3)(y
1, y2)]j =

∑

i∈[m],k∈[m]

Ci,j,ky
1
i y

2
k

Note that C(1,2)(y
1, y2) and C(1,3)(y

1, y2) are both column vectors.

Finally, for vectors x, y, z ∈ R
m, xy⊤z⊤ is the tensor D ∈ R

m×m×m whereDi,j,k = xiyjzk
(this is analogous to the outer product: [xy⊤]i,j = xiyj).

4. L-PCFGs

In this section we describe latent-variable PCFGs (L-PCFGs), as used for example by
(Matsuzaki et al., 2005; Petrov et al., 2006). We first give the basic definitions for L-
PCFGs, and then describe the underlying motivation for them.

4.1 Basic Definitions

This section gives a definition of the L-PCFG formalism used in this paper. An L-PCFG is
an 8-tuple (N ,I,P,m, n, t, q, π) where:

3

• N is the set of non-terminal symbols in the grammar. I ⊂ N is a finite set of in-
terminals. P ⊂ N is a finite set of pre-terminals. We assume that N = I ∪ P, and
I ∩ P = ∅. Hence we have partitioned the set of non-terminals into two subsets.

• [m] is the set of possible hidden states.

• [n] is the set of possible words.

• For all a ∈ I, b ∈ N , c ∈ N , h1, h2, h3 ∈ [m], we have a context-free rule a(h1) →
b(h2) c(h3).

• For all a ∈ P, h ∈ [m], x ∈ [n], we have a context-free rule a(h) → x.

• For all a ∈ I, b ∈ N , c ∈ N , and h1, h2, h3 ∈ [m], we have a parameter t(a →
b c, h2, h3|h1, a).

• For all a ∈ P, x ∈ [n], and h ∈ [m], we have a parameter q(a→ x|h, a).

• For all a ∈ I and h ∈ [m], we have a parameter π(a, h) which is the probability of
non-terminal a paired with hidden variable h being at the root of the tree.

Note that each in-terminal a ∈ I is always the left-hand-side of a binary rule a → b c;
and each pre-terminal a ∈ P is always the left-hand-side of a rule a→ x. Assuming that the
non-terminals in the grammar can be partitioned this way is relatively benign, and makes
the estimation problem cleaner.

For convenience we define the set of possible “skeletal rules” as R = {a → b c : a ∈
I, b ∈ N , c ∈ N}.

These definitions give a PCFG, with rule probabilities

p(a(h1) → b(h2) c(h3)|a(h1)) = t(a→ b c, h2, h3|h1, a)

and
p(a(h) → x|a(h)) = q(a→ x|h, a)

Remark 1 In the previous paper on this work (Cohen, Stratos, Collins, Foster, & Ungar,
2012), we considered an L-PCFG model where

p(a(h1) → b(h2) c(h3)|a(h1)) = p(a→ b c|h1, a)× p(h2|h1, a→ b c)× p(h3|h1, a→ b c)

In this model the random variables h2 and h3 are assumed to be conditionally independent
given h1 and a→ b c.

In this paper we consider a model where

p(a(h1) → b(h2) c(h3)|a(h1)) = t(a→ b c, h2, h3, |h1, a) (1)

That is, we do not assume that the random variables h2 and h3 are independent when
conditioning on h1 and a→ b c. This is also the model considered by (Petrov et al., 2006;
Matsuzaki et al., 2005).

Note however that the algorithms in this paper are the same as those in (Cohen et al.,
2012): we have simply proved that the algorithms give consistent estimators for the model
form in Eq. 1.

4

S1

NP2

D3

the

N4

dog

VP5

V6

saw

P7

him

r1 = S → NP VP
r2 = NP → D N
r3 = D → the
r4 = N → dog
r5 = VP → V P
r6 = V → saw
r7 = P → him

Figure 1: An s-tree, and its sequence of rules. (For convenience we have numbered the nodes in
the tree.)

As in usual PCFGs, the probability of an entire tree is calculated as the product of its
rule probabilities. We now give more detail for these calculations.

An L-PCFG defines a distribution over parse trees as follows. A skeletal tree (s-tree) is
a sequence of rules r1 . . . rN where each ri is either of the form a → b c or a → x. The
rule sequence forms a top-down, left-most derivation under a CFG with skeletal rules. See
figure 1 for an example.

A full tree consists of an s-tree r1 . . . rN , together with values h1 . . . hN . Each hi is the
value for the hidden variable for the left-hand-side of rule ri. Each hi can take any value in
[m].

Define ai to be the non-terminal on the left-hand-side of rule ri. For any i ∈ [N] such

that ai ∈ I (i.e., ai is an in-terminal, and rule ri is of the form a→ b c) define h
(2)
i to be the

hidden variable value associated with the left child of the rule ri, and h
(3)
i to be the hidden

variable value associated with the right child. The probability mass function (PMF) over
full trees is then

p(r1 . . . rN , h1 . . . hN) = π(a1, h1)×
∏

i:ai∈I

t(ri, h
(2)
i , h

(3)
i |hi, ai)×

∏

i:ai∈P

q(ri|hi, ai) (2)

The PMF over s-trees is p(r1 . . . rN) =
∑

h1...hN
p(r1 . . . rN , h1 . . . hN).

In the remainder of this paper, we make use of matrix form of parameters of an L-PCFG,
as follows:

• For each a→ b c ∈ R, we define T a→b c ∈ R
m×m×m to be the tensor with values

T a→b c
h1,h2,h3

= t(a→ b c, h2, h3|a, h1)

• For each a ∈ P, x ∈ [n], we define qa→x ∈ R
1×m to be the row vector with values

[qa→x]h = q(a→ x|h, a)

for h = 1, 2, . . . m.

• For each a ∈ I, we define the column vector πa ∈ R
m×1 where [πa]h = π(a, h).

5

4.2 Application of L-PCFGs to Natural Language Parsing

L-PCFGs have been shown to be a very useful model for natural language parsing (Mat-
suzaki et al., 2005; Petrov et al., 2006). In this section we describe the basic approach.

We assume a training set consisting of sentences paired with parse trees, which are
similar to the skeletal tree shown in figure 1. A naive approach to parsing would simply
read off a PCFG from the training set: the resulting grammar would have rules such as

S → NP VP

NP → D N

VP → V NP

D → the

N → dog

and so on. Given a test sentence, the most likely parse under the PCFG can be found using
dynamic programming algorithms.

Unfortunately, simple “vanilla” PCFGs induced from treebanks such as the Penn tree-
bank (Marcus, Santorini, & Marcinkiewicz, 1993) typically give very poor parsing perfor-
mance. A critical issue is that the set of non-terminals in the resulting grammar (S, NP,

VP, PP, D, N, etc.) is often quite small. The resulting PCFG therefore makes very strong
independence assumptions, failing to capture important statistical properties of parse trees.

In response to this issue, a number of PCFG-based models have been developed which
make use of grammars with refined non-terminals. For example, in lexicalized models
(Collins, 1997; Charniak, 1997), non-terminals such as S are replaced with non-terminals
such as S-sleeps: the non-terminals track some lexical item (in this case sleeps), in addition
to the syntactic category. For example, the parse tree in figure 1 would include rules

S-saw → NP-dog VP-saw

NP-dog → D-the N-dog

VP-saw → V-saw P-him

D-the → the

N-dog → dog

V-saw → saw

P-him → him

In this case the number of non-terminals in the grammar increases dramatically, but
with appropriate smoothing of parameter estimates lexicalized models perform at much
higher accuracy than vanilla PCFGs.

As another example, Johnson (1998) describes an approach where non-terminals are
refined to also include the non-terminal one level up in the tree; for example rules such as

S → NP VP

are replaced by rules such as
S-ROOT → NP-S VP-S

6

Here NP-S corresponds to an NP non-terminal whose parent is S; VP-S corresponds to a VP

whose parent is S; S-ROOT corresponds to an S which is at the root of the tree. This simple
modification leads to significant improvements over a vanilla PCFG.

Klein and Manning (2003) develop this approach further, introducing annotations cor-
responding to parents and siblings in the tree, together with other information, resulting in
a parser whose performance is just below the lexicalized models of Collins (1997), Charniak
(1997).

The approaches of Collins (1997), Charniak (1997), Johnson (1998), Klein and Manning
(2003) all use hand-constructed rules to enrich the set of non-terminals in the PCFG. A
natural question is whether refinements to non-terminals can be learned automatically.
Matsuzaki et al. (2005), Petrov et al. (2006) addressed this question through the use of L-
PCFGs in conjunction with the EM algorithm. The basic idea is to allow each non-terminal
in the grammar to have m possible latent values. For example, with m = 8 we would replace
the non-terminal S with non-terminals S-1, S-2, . . ., S-8, and we would replace rules such
as

S → NP VP

with rules such as
S-4 → NP-3 VP-2

The latent values are of course unobserved in the training data (the treebank), but they can
be treated as latent variables in a PCFG-based model, and the parameters of the model can
be estimated using the EM algorithm. More specifically, given training examples consisting

of skeletal trees of the form t(i) = (r
(i)
1 , r

(i)
2 , . . . , r

(i)
Ni
), for i = 1 . . .M , where Ni is the number

of rules in the i’th tree, the log-likelihood of the training data is

M
∑

i=1

log p(r
(i)
1 . . . r

(i)
Ni
) =

M
∑

i=1

log
∑

h1...hNi

p(r
(i)
1 . . . r

(i)
Ni
, h1 . . . hNi

)

where p(r
(i)
1 . . . r

(i)
Ni
, h1 . . . hNi

) is as defined in Eq. 2. The EM algorithm is guaranteed to
converge to a local maximum of the log-likelihood function. Once the parameters of the
L-PCFG have been estimated, the algorithm of Goodman (1996) can be used to parse test-
data sentences using the L-PCFG: see section 4.3 for more details. Matsuzaki et al. (2005),
Petrov et al. (2006) show very good performance for these methods.

4.3 Basic Algorithms for L-PCFGs: Variants of the Inside-Outside Algorithm

Variants of the inside-outside algorithm (Baker, 1979) can be used for basic calculations in
L-PCFGs, in particular for calculations that involve marginalization over the values for the
hidden variables.

To be more specific, given an L-PCFG, two calculations are central:

1. For a given s-tree r1 . . . rN , calculate p(r1 . . . rN) =
∑

h1...hN
p(r1 . . . rN , h1 . . . hN).

2. For a given input sentence x = x1 . . . xN , calculate the marginal probabilities

µ(a, i, j) =
∑

τ∈T (x):(a,i,j)∈τ

p(τ)

7

Inputs: s-tree r1 . . . rN , L-PCFG (N , I,P ,m, n, t, q, π), with parameters

• t(a→ b c, h2, h3|h1, a) for all a→ b c ∈ R, h1, h2, h3 ∈ [m].

• q(a→ x|h, a) for all a ∈ P , x ∈ [n], h ∈ [m]

• π(a, h) for all a ∈ I, h ∈ [m].

Algorithm: (calculate the bi terms bottom-up in the tree)

• For all i ∈ [N] such that ai ∈ P , for all h ∈ [m], bih = q(ri|h, ai)

• For all i ∈ [N] such that ai ∈ I, for all h ∈ [m], bih =
∑

h2,h3
t(ri, h2, h3|h, ai)b

β
h2
bγh3

where β is the
index of the left child of node i in the tree, and γ is the index of the right child.

Return:
∑

h
b1hπ(a, h) = p(r1 . . . rN)

Figure 2: The conventional inside-outside algorithm for calculation of p(r1 . . . rN).

for each non-terminal a ∈ N , for each (i, j) such that 1 ≤ i ≤ j ≤ N .

Here T (x) denotes the set of all possible s-trees for the sentence x, and we write (a, i, j) ∈ τ
if non-terminal a spans words xi . . . xj in the parse tree τ .

The marginal probabilities have a number of uses. Perhaps most importantly, for a
given sentence x = x1 . . . xN , the parsing algorithm of Goodman (1996) can be used to find

arg max
τ∈T (x)

∑

(a,i,j)∈τ

µ(a, i, j)

This is the parsing algorithm used by Petrov et al. (2006), for example.1 In addition,
we can calculate the probability for an input sentence, p(x) =

∑

τ∈T (x) p(τ), as p(x) =
∑

a∈I µ(a, 1, N).
Figures 2 and 3 give the conventional (as opposed to tensor) form of inside-outside

algorithms for these two problems. In the next section we describe the tensor form. The
algorithm in figure 2 uses dynamic programming to compute

p(r1 . . . rN) =
∑

h1...hN

p(r1 . . . rN , h1 . . . hN)

for a given parse tree r1 . . . rN . The algorithm in figure 3 uses dynamic programming to
compute marginal terms.

5. Roadmap

The next three sections of the paper derive the spectral algorithm for learning of L-PCFGs.
The structure of these sections is as follows:

• Section 6 introduces a tensor form of the inside-outside algorithms for L-PCFGs. This
is analogous to the matrix form for hidden Markov models (see (Jaeger, 2000), and in
particular Lemma 1 of (Hsu et al., 2009)), and is also related to the use of tensors in
spectral algorithms for directed graphical models (Parikh et al., 2011).

1. Note that finding argmaxτ∈T (x) p(τ), where p(τ) =
∑

h1...hN
p(τ, h1 . . . hN), is NP hard, hence the use

of Goodman’s algorithm.

8

Inputs: Sentence x1 . . . xN , L-PCFG (N , I,P ,m, n, t, q, π), with parameters

• t(a→ b c, h2, h3|h1, a) for all a→ b c ∈ R, h1, h2, h3 ∈ [m].

• q(a→ x|h, a) for all a ∈ P , x ∈ [n], h ∈ [m]

• π(a, h) for all a ∈ I, h ∈ [m].

Data structures:

• Each ᾱa,i,j ∈ R
1×m for a ∈ N , 1 ≤ i ≤ j ≤ N is a row vector of inside terms.

• Each β̄a,i,j ∈ R
m×1 for a ∈ N , 1 ≤ i ≤ j ≤ N is a column vector of outside terms.

• Each µ̄(a, i, j) ∈ R for a ∈ N , 1 ≤ i ≤ j ≤ N is a marginal probability.

Algorithm:

(Inside base case) ∀a ∈ P , i ∈ [N], h ∈ [m] ᾱa,i,i
h = q(a→ xi|h, a)

(Inside recursion) ∀a ∈ I, 1 ≤ i < j ≤ N,h ∈ [m]

ᾱa,i,j
h =

j−1∑

k=i

∑

a→b c

∑

h2∈[m]

∑

h3∈[m]

t(a→ b c, h2, h3|h, a)× ᾱb,i,k
h2

× ᾱc,k+1,j
h3

(Outside base case) ∀a ∈ I, h ∈ [m] β̄a,1,n
h = π(a, h)

(Outside recursion) ∀a ∈ N , 1 ≤ i ≤ j ≤ N, h ∈ [m]

β̄a,i,j
h =

i−1∑

k=1

∑

b→c a

∑

h2∈[m]

∑

h3∈[m]

t(b→ c a, h3, h|h2, b)× β̄b,k,j
h2

× ᾱc,k,i−1
h3

+
N∑

k=j+1

∑

b→a c

∑

h2∈[m]

∑

h3∈[m]

t(b→ a c, h, h3|h2, b)× β̄b,i,k
h2

× ᾱc,j+1,k
h3

(Marginals) ∀a ∈ N , 1 ≤ i ≤ j ≤ N,

µ̄(a, i, j) = ᾱa,i,j β̄a,i,j =
∑

h∈[m]

ᾱa,i,j
h β̄a,i,j

h

Figure 3: The conventional form of the inside-outside algorithm, for calculation of marginal terms
µ̄(a, i, j).

• Section 7 derives an observable form for the tensors required by algorithms of section 6.
The implication of this result is that the required tensors can be estimated directly
from training data consisting of skeletal trees.

• Section 8 gives the algorithm for estimation of the tensors from a training sample,
and gives a PAC-style generalization bound for the approach.

6. Tensor Form of the Inside-Outside Algorithm

This section first gives a tensor form of the inside-outside algorithms for L-PCFGs, then
give an illustrative example.

9

Inputs: s-tree r1 . . . rN , L-PCFG (N , I,P ,m, n), parameters

• Ca→b c ∈ R
(m×m×m) for all a→ b c ∈ R

• c∞a→x ∈ R
(1×m) for all a ∈ P , x ∈ [n]

• c1a ∈ R
(m×1) for all a ∈ I.

Algorithm: (calculate the f i terms bottom-up in the tree)

• For all i ∈ [N] such that ai ∈ P , f i = c∞ri

• For all i ∈ [N] such that ai ∈ I, f i = Cri(fβ , fγ) where β is the index of the left child of node i in
the tree, and γ is the index of the right child.

Return: f1c1a1
= p(r1 . . . rN)

Figure 4: The tensor form for calculation of p(r1 . . . rN).

6.1 The Tensor-Form Algorithms

Recall the two calculations for L-PCFGs introduced in section 4.3:

1. For a given s-tree r1 . . . rN , calculate p(r1 . . . rN).

2. For a given input sentence x = x1 . . . xN , calculate the marginal probabilities

µ(a, i, j) =
∑

τ∈T (x):(a,i,j)∈τ

p(τ)

for each non-terminal a ∈ N , for each (i, j) such that 1 ≤ i ≤ j ≤ N , where T (x)
denotes the set of all possible s-trees for the sentence x, and we write (a, i, j) ∈ τ if
non-terminal a spans words xi . . . xj in the parse tree τ .

The tensor form of the inside-outside algorithms for these two problems are shown in
figures 4 and 5. Each algorithm takes the following inputs:

1. A tensor Ca→b c ∈ R
(m×m×m) for each rule a→ b c.

2. A vector c∞a→x ∈ R
(1×m) for each rule a→ x.

3. A vector c1a ∈ R
(m×1) for each a ∈ I.

The following theorem gives conditions under which the algorithms are correct:

Theorem 1 Assume that we have an L-PCFG with parameters qa→x, T
a→b c, πa, and that

there exist matrices Ga ∈ R
(m×m) for all a ∈ N such that each Ga is invertible, and such

that:

1. For all rules a→ b c, Ca→b c(y1, y2) =
(

T a→b c(y1Gb, y2Gc)
)

(Ga)−1

2. For all rules a→ x, c∞a→x = qa→x(G
a)−1

3. For all a ∈ I, c1a = Gaπa

10

Then: 1) The algorithm in figure 4 correctly computes p(r1 . . . rN) under the L-PCFG. 2)
The algorithm in figure 5 correctly computes the marginals µ(a, i, j) under the L-PCFG.

Proof: see section A.1. The next section (section 6.2) gives an example that illustrates
the basic intuition behind the proof.

Remark 2 It is easily verified (see also the example in section 6.2), that if the inputs to
the tensor-form algorithms are of the following form (equivalently, the matrices Ga for all
a are equal to the identity matrix):

1. For all rules a→ b c, Ca→b c(y1, y2) = T a→b c(y1, y2)

2. For all rules a→ x, c∞a→x = qa→x

3. For all a ∈ I, c1a = πa

then the algorithms in figures 4 and 5 are identical to the algorithms in figures 2 and 3
respectively. More precisely, we have the identities

bih = f ih

for the quantities in figures 2 and 4, and

ᾱa,i,j
h = αa,i,j

h

β̄a,i,jh = βa,i,jh

for the quantities in figures 3 and 5.
The theorem shows, however, that it is sufficient2 to have parameters that are equal to

T a→b c, qa→x and πa up to linear transforms defined by the matrices Ga for all non-terminals
a. The linear transformations add an extra degree of freedom that is crucial in what follows
in this paper: in the next section, on observable representations, we show that it is possible
to directly estimate values for Ca→b c, c∞a→x and c1a that satisfy the conditions of the theorem,
but where the matrices Ga are not the identity matrix.

The key step in the proof of the theorem (see section A.1) is to show that under the
assumptions of the theorem we have the identities

f i = bi(Ga)−1

for figures 2 and 4, and
αa,i,j = ᾱa,i,j(Ga)−1

βa,i,j = Gaβ̄a,i,j

for figures 3 and 5. Thus the quantities calculated by the tensor-form algorithms are equiv-
alent to the quantities calculated by the conventional algorithms, up to linear transforms.
The linear transforms and their inverses cancel in useful ways: for example in the output
from figure 4 we have

µ(a, i, j) = αa,i,jβa,i,j = ᾱa,i,j(Ga)−1Gaβ̄a,i,j =
∑

h

ᾱa,i,j
h β̄a,i,jh

showing that the marginals calculated by the conventional and tensor-form algorithms are
identical.

2. Assuming that the goal is to calculate p(r1 . . . rN) for any skeletal tree, or marginal terms µ(a, i, j).

11

Inputs: Sentence x1 . . . xN , L-PCFG (N , I,P ,m,n), parameters Ca→b c ∈ R
(m×m×m) for all a→ b c ∈ R,

c∞a→x ∈ R
(1×m) for all a ∈ P , x ∈ [n], c1a ∈ R

(m×1) for all a ∈ I.
Data structures:

• Each αa,i,j ∈ R
1×m for a ∈ N , 1 ≤ i ≤ j ≤ N is a row vector of inside terms.

• Each βa,i,j ∈ R
m×1 for a ∈ N , 1 ≤ i ≤ j ≤ N is a column vector of outside terms.

• Each µ(a, i, j) ∈ R for a ∈ N , 1 ≤ i ≤ j ≤ N is a marginal probability.

Algorithm:

(Inside base case) ∀a ∈ P , i ∈ [N], αa,i,i = c∞a→xi

(Inside recursion) ∀a ∈ I, 1 ≤ i < j ≤ N,

αa,i,j =

j−1∑

k=i

∑

a→b c

Ca→b c(αb,i,k, αc,k+1,j)

(Outside base case) ∀a ∈ I, βa,1,n = c1a
(Outside recursion) ∀a ∈ N , 1 ≤ i ≤ j ≤ N,

βa,i,j =
i−1∑

k=1

∑

b→c a

Cb→c a
(1,2) (βb,k,j , αc,k,i−1)

+
N∑

k=j+1

∑

b→a c

Cb→a c
(1,3) (βb,i,k, αc,j+1,k)

(Marginals) ∀a ∈ N , 1 ≤ i ≤ j ≤ N,

µ(a, i, j) = αa,i,jβa,i,j =
∑

h∈[m]

αa,i,j
h βa,i,j

h

Figure 5: The tensor form of the inside-outside algorithm, for calculation of marginal terms
µ(a, i, j).

S1

NP2

D3

the

N4

dog

V5

sleeps

r1 = S → NP V
r2 = NP → D N
r3 = D → the
r4 = N → dog
r5 = V → sleeps

Figure 6: An s-tree, and its sequence of rules. (For convenience we have numbered the nodes in
the tree.)

6.2 An Example

In the remainder of this section we give an example that illustrates how the algorithm in
figure 4 is correct, and gives the basic intuition behind the proof in section A.1. While we
concentrate on the algorithm in figure 4, the intuition behind the algorithm in figure 5 is
very similar.

12

Consider the skeletal tree in figure 6. We will demonstrate how the algorithm in figure 4,
under the assumptions in the theorem, correctly calculates the probability of this tree. In
brief, the argument involves the following steps:

1. We first show that the algorithm in figure 4, when run on the tree in figure 6, calculates
the probability of the tree as

CS→NP V (CNP→D N (c∞D→the, c
∞
N→dog), c

∞
V →sleeps)c

1
S

Note that this expression mirrors the structure of the tree, with c∞a→x terms for the
leaves, Ca→b c terms for each rule production a→ b c in the tree, and a c1S term for
the root.

2. We then show that under the assumptions in the theorem, the following identity holds:

CS→NP V (CNP→D N (c∞D→the, c
∞
N→dog), c

∞
V →sleeps)c

1
S

= T S→NP V (TNP→D N (qD→the, qN→dog), qV→sleeps)π
S (3)

This follows because the Ga and (Ga)−1 terms for the various non-terminals in the
tree cancel. Note that the expression in Eq. 3 again follows the structure of the tree,
but with qa→x terms for the leaves, T a→b c terms for each rule production a→ b c in
the tree, and a πS term for the root.

3. Finally, we show that the expression in Eq. 3 implements the conventional dynamic-
programming method for calculation of the tree probability, as described in Eqs. 11–13
below.

We now go over these three points in detail. The algorithm in figure 4 calculates the
following terms (each f i is an m-dimensional row vector):

f3 = c∞D→the

f4 = c∞N→dog

f5 = c∞V→sleeps

f2 = CNP→D N (f3, f4)

f1 = CS→NP V (f2, f5)

The final quantity returned by the algorithm is

f1c1S =
∑

h

f1h [c
1
S]h

Combining the definitions above, it can be seen that

f1c1S = CS→NP V (CNP→D N (c∞D→the, c
∞
N→dog), c

∞
V →sleeps)c

1
S

demonstrating that point 1 above holds.

13

Next, given the assumptions in the theorem, we show point 2, that is, that

CS→NP V (CNP→D N (c∞D→the, c
∞
N→dog), c

∞
V→sleeps)c

1
S

= T S→NP V (TNP→D N (qD→the, qN→dog), qV→sleeps)π
S (4)

This follows because the Ga and (Ga)−1 terms in the theorem cancel. More specifically, we
have

f3 = c∞D→the = qD→the(G
D)−1 (5)

f4 = c∞N→dog = qN→dog(G
N)−1 (6)

f5 = c∞V→sleeps = qV→sleeps(G
V)−1 (7)

f2 = CNP→D N (f3, f4) = TNP→D N (qD→the, qD→dog)(G
NP)−1 (8)

f1 = CS→NP V (f2, f5) = T S→NP V (TNP→D N (qD→the, qN→dog), qV→sleeps)(G
S)−1 (9)

Eqs. 5, 6, 7 follow by the assumptions in the theorem. Eq. 8 follows because by the assump-
tions in the theorem

CNP→D N (f3, f4) = TNP→D N (f3GD, f4GN)(GNP)−1

hence

CNP→D N (f3, f4) = TNP→D N (qD→the(G
D)−1GD, qN→dog(G

N)−1GN)(GNP)−1

= TNP→D N (qD→the, qN→dog)(G
NP)−1

Eq. 9 follows in a similar manner.
It follows by the assumption that c1S = GSπS that

CS→NP V (CNP→D N (c∞D→the, c
∞
N→dog), c

∞
V →sleeps)c

1
S

= T S→NP V (TNP→D N (qD→the, qN→dog), qV→sleeps)(G
S)−1GSπS

= T S→NP V (TNP→D N (qD→the, qN→dog), qV→sleeps)π
S (10)

The final step (point 3) is to show that the expression in Eq. 10 correctly calculates the
probability of the example tree. First consider the term TNP→D N (qD→the, qN→dog)—this
is an m-dimensional row vector, call this b2. By the definition of the tensor TNP→D N , we
have

b2h =
[

TNP→D N (qD→the, qN→dog)
]

h

=
∑

h2,h3

t(NP → D N,h2, h3|h,NP)× q(D → the|h2,D)× q(N → dog|h3, N)(11)

By a similar calculation, T S→NP V (TNP→D N (qD→the, qN→dog), qV→sleeps)—call this vector
b1—is

b1h =
∑

h2,h3

t(S → NP V, h2, h3|h, S)× b2h2
× q(V → sleeps|h3, V) (12)

14

Finally, the probability of the full tree is calculated as

∑

h

b1hπ
S
h (13)

It can be seen that the expression in Eq. 4 implements the calculations in Eqs. 11, 12
and 13, which are precisely the calculations used in the conventional dynamic programming
algorithm for calculation of the probability of the tree.

7. Estimating the Tensor Model

A crucial result is that it is possible to directly estimate parameters Ca→b c, c∞a→x and c1a
that satisfy the conditions in theorem 1, from a training sample consisting of s-trees (i.e.,
trees where hidden variables are unobserved). We first describe random variables underlying
the approach, then describe observable representations based on these random variables.

7.1 Random Variables Underlying the Approach

Each s-tree with N rules r1 . . . rN has N nodes. We will use the s-tree in figure 1 as a
running example.

Each node has an associated rule: for example, node 2 in the tree in figure 1 has the
rule NP → D N. If the rule at a node is of the form a→ b c, then there are left and right
inside trees below the left child and right child of the rule. For example, for node 2 we have
a left inside tree rooted at node 3, and a right inside tree rooted at node 4 (in this case the
left and right inside trees both contain only a single rule production, of the form a → x;
however in the general case they might be arbitrary subtrees).

In addition, each node has an outside tree. For node 2, the outside tree is

S

NP VP

V

saw

P

him

The outside tree contains everything in the s-tree r1 . . . rN , excluding the subtree below
node i.

Our random variables are defined as follows. First, we select a random internal node,
from a random tree, as follows:

• Sample a full tree r1 . . . rN , h1 . . . hN from the PMF p(r1 . . . rN , h1 . . . hN). Choose a
node i uniformly at random from [N].

If the rule ri for the node i is of the form a→ b c, we define random variables as follows:

• R1 is equal to the rule ri (e.g., NP → D N).

• T1 is the inside tree rooted at node i. T2 is the inside tree rooted at the left child of
node i, and T3 is the inside tree rooted at the right child of node i.

15

• H1,H2,H3 are the hidden variables associated with node i, the left child of node i,
and the right child of node i respectively.

• A1, A2, A3 are the labels for node i, the left child of node i, and the right child of node
i respectively. (E.g., A1 = NP, A2 = D, A3 = N.)

• O is the outside tree at node i.

• B is equal to 1 if node i is at the root of the tree (i.e., i = 1), 0 otherwise.

If the rule ri for the selected node i is of the form a → x, we have random variables
R1, T1,H1, A1, O,B as defined above, but H2,H3, T2, T3, A2, and A3 are not defined.

We assume a function ψ that maps outside trees o to feature vectors ψ(o) ∈ R
d′ . For

example, the feature vector might track the rule directly above the node in question, the
word following the node in question, and so on. We also assume a function φ that maps
inside trees t to feature vectors φ(t) ∈ R

d. As one example, the function φ might be an
indicator function tracking the rule production at the root of the inside tree. Later we give
formal criteria for what makes good definitions of ψ(o) of φ(t). One requirement is that
d′ ≥ m and d ≥ m.

In tandem with these definitions, we assume projection matices Ua ∈ R
(d×m) and V a ∈

R
(d′×m) for all a ∈ N . We then define additional random variables Y1, Y2, Y3, Z as

Y1 = (Ua1)⊤φ(T1) Z = (V a1)⊤ψ(O)

Y2 = (Ua2)⊤φ(T2) Y3 = (Ua3)⊤φ(T3)

where ai is the value of the random variable Ai. Note that Y1, Y2, Y3, Z are all in R
m.

7.2 Observable Representations

Given the definitions in the previous section, our representation is based on the following
matrix, tensor and vector quantities, defined for all a ∈ N , for all rules of the form a→ b c,
and for all rules of the form a→ x respectively:

Σa = E[Y1Z
⊤|A1 = a]

Da→b c = E
[

[[R1 = a→ b c]]ZY ⊤
2 Y

⊤
3 |A1 = a

]

d∞a→x = E
[

[[R1 = a→ x]]Z⊤|A1 = a
]

Assuming access to functions φ and ψ, and projection matrices Ua and V a, these quantities
can be estimated directly from training data consisting of a set of s-trees (see section 8).

Our observable representation then consists of:

Ca→b c(y1, y2) = Da→b c(y1, y2)(Σa)−1 (14)

c∞a→x = d∞a→x(Σ
a)−1 (15)

c1a = E [[[A1 = a]]Y1|B = 1] (16)

We next introduce conditions under which these quantities satisfy the conditions in theo-
rem 1.

The following definition will be important:

16

Definition 2 For all a ∈ N , we define the matrices Ia ∈ R
(d×m) and Ja ∈ R

(d′×m) as

[Ia]i,h = E[φi(T1) | H1 = h,A1 = a]

[Ja]i,h = E[ψi(O) | H1 = h,A1 = a]

In addition, for any a ∈ N , we use γa ∈ R
m to denote the vector with γah = P (H1 = h|A1 =

a).

The correctness of the representation will rely on the following conditions being satisfied
(these are parallel to conditions 1 and 2 in Hsu et al. (2009)):

Condition 1 ∀a ∈ N , the matrices Ia and Ja are of full rank (i.e., they have rank m).
For all a ∈ N , for all h ∈ [m], γah > 0.

Condition 2 ∀a ∈ N , the matrices Ua ∈ R
(d×m) and V a ∈ R

(d′×m) are such that the
matrices Ga = (Ua)⊤Ia and Ka = (V a)⊤Ja are invertible.

We can now state the following theorem:

Theorem 2 Assume conditions 1 and 2 are satisfied. For all a ∈ N , define Ga = (Ua)⊤Ia.
Then under the definitions in Eqs. 14-16:

1. For all rules a→ b c, Ca→b c(y1, y2) =
(

T a→b c(y1Gb, y2Gc)
)

(Ga)−1

2. For all rules a→ x, c∞a→x = qa→x(G
a)−1.

3. For all a ∈ N , c1a = Gaπa

Proof: The following identities hold (see section A.2):

Da→b c(y1, y2) =
(

T a→b c(y1Gb, y2Gc)
)

diag(γa)(Ka)⊤ (17)

d∞a→x = qa→xdiag(γ
a)(Ka)⊤ (18)

Σa = Gadiag(γa)(Ka)⊤ (19)

c1a = Gaπa (20)

Under conditions 1 and 2, Σa is invertible, and (Σa)−1 = ((Ka)⊤)−1(diag(γa))−1(Ga)−1.
The identities in the theorem follow immediately.

This theorem leads directly to the spectral learning algorithm, which we describe in the
next section. We give a sketch of the approach here. Assume that we have a training set
consisting of skeletal trees (no latent variables are observed) generated from some under-
lying L-PCFG. Assume in addition that we have definitions of φ, ψ, Ua and V a such that
conditions 1 and 2 are satisfied for the L-PCFG. Then it is straightforward to use the train-
ing examples to derive i.i.d. samples from the joint distribution over the random variables
(A1, R1, Y1, Y2, Y3, Z,B) used in the definitions in Eqs. 14–16. These samples can be used
to estimate the quantities in Eqs. 14–16; the estimated quantities Ĉa→b c, ĉ∞a→x and ĉ1a can
then be used as inputs to the algorithms in figures 4 and 5. By standard arguments, the
estimates Ĉa→b c, ĉ∞a→x and ĉ1a will converge to the values in Eqs. 14–16.

The following lemma justifies the use of an SVD calculation as one method for finding
values for Ua and V a that satisfy condition 2, assuming that condition 1 holds:

17

Lemma 1 Assume that condition 1 holds, and for all a ∈ N define

Ωa = E[φ(T1) (ψ(O))⊤ |A1 = a] (21)

Then if Ua is a matrix of the m left singular vectors of Ωa corresponding to non-zero singular
values, and V a is a matrix of the m right singular vectors of Ωa corresponding to non-zero
singular values, then condition 2 is satisfied.

Proof sketch: It can be shown that Ωa = Iadiag(γa)(Ja)⊤. The remainder is similar to
the proof of lemma 2 in Hsu et al. (2009).

The matrices Ωa can be estimated directly from a training set consisting of s-trees,
assuming that we have access to the functions φ and ψ. Similar arguments to those of (Hsu
et al., 2009) can be used to show that with a sufficient number of samples, the resulting
estimates of Ua and V a satisfy condition 2 with high probability.

8. Deriving Empirical Estimates

Figure 7 shows an algorithm that derives estimates of the quantities in Eqs 14, 15, and
16. As input, the algorithm takes a sequence of tuples (r(i,1), t(i,1), t(i,2), t(i,3), o(i), b(i)) for
i ∈ [M].

These tuples can be derived from a training set consisting of s-trees τ1 . . . τM as follows:
• ∀i ∈ [M], choose a single node ji uniformly at random from the nodes in τi. Define

r(i,1) to be the rule at node ji. t
(i,1) is the inside tree rooted at node ji. If r

(i,1) is of the form
a→ b c, then t(i,2) is the inside tree under the left child of node ji, and t

(i,3) is the inside
tree under the right child of node ji. If r

(i,1) is of the form a→ x, then t(i,2) = t(i,3) = NULL.
o(i) is the outside tree at node ji. b

(i) is 1 if node ji is at the root of the tree, 0 otherwise.
Under this process, assuming that the s-trees τ1 . . . τM are i.i.d. draws from the distribu-

tion p(τ) over s-trees under an L-PCFG, the tuples (r(i,1), t(i,1), t(i,2), t(i,3), o(i), b(i)) are i.i.d.
draws from the joint distribution over the random variables R1, T1, T2, T3, O,B defined in
the previous section.

The algorithm first computes estimates of the projection matrices Ua and V a: following
lemma 1, this is done by first deriving estimates of Ωa, and then taking SVDs of each Ωa.
The matrices are then used to project inside and outside trees t(i,1), t(i,2), t(i,3), o(i) down to
m-dimensional vectors y(i,1), y(i,2), y(i,3), z(i); these vectors are used to derive the estimates
of Ca→b c, c∞a→x, and c

1
a. For example, the quantities

Σa = E[Y1Z
⊤|A1 = a]

Da→b c = E
[

[[R1 = a→ b c]]ZY ⊤
2 Y

⊤
3 |A1 = a

]

d∞a→x = E
[

[[R1 = a→ x]]Z⊤|A1 = a
]

can be estimated as

Σ̂a = δa ×
M
∑

i=1

[[ai = a]]y(i,1)(z(i))⊤

D̂a→b c = δa ×
M
∑

i=1

[[r(i,1) = a→ b c]]z(i)(y(i,2))⊤(y(i,3))⊤

18

d̂∞a→x = δa ×
M
∑

i=1

[[r(i,1) = a→ x]](z(i))⊤

where δa = 1/
∑M

i=1[[ai = a]], and we can then set

Ĉa→b c(y1, y2) = D̂a→b c(y1, y2)(Σ̂a)−1

ĉ∞a→x = d̂∞a→x(Σ̂
a)−1

We now state a PAC-style theorem for the learning algorithm. First, for a given L-
PCFG, we need a couple of definitions:

• Λ is the minimum absolute value of any element of the vectors/matrices/tensors c1a,
d∞a→x, D

a→b c, (Σa)−1. (Note that Λ is a function of the projection matrices Ua and V a as
well as the underlying L-PCFG.)

• For each a ∈ N , σa is the value of the m’th largest singular value of Ωa. Define
σ = mina σ

a.
We then have the following theorem:

Theorem 3 Assume that the inputs to the algorithm in figure 7 are i.i.d. draws from the
joint distribution over the random variables R1, T1, T2, T3, O,B, under an L-PCFG with
distribution p(r1 . . . rN) over s-trees. Define m to be the number of latent states in the L-
PCFG. Assume that the algorithm in figure 4 has projection matrices Ûa and V̂ a derived as
left and right singular vectors of Ωa, as defined in Eq. 21. Assume that the L-PCFG, together
with Ûa and V̂ a, has coefficients Λ > 0 and σ > 0. In addition, assume that all elements in
c1a, d

∞
a→x, D

a→b c, and Σa are in [−1,+1]. For any s-tree r1 . . . rN define p̂(r1 . . . rN) to be
the value calculated by the algorithm in figure 5 with inputs ĉ1a, ĉ

∞
a→x, Ĉ

a→b c derived from
the algorithm in figure 7. Define R to be the total number of rules in the grammar of the
form a→ b c or a → x. Define Ma to be the number of training examples in the input to
the algorithm in figure 7 where ri,1 has non-terminal a on its left-hand-side. Under these
assumptions, if for all a

Ma ≥ 128m2

(

2N+1
√
1 + ǫ− 1

)2
Λ2σ4

log

(

2mR

δ

)

Then

1− ǫ ≤
∣

∣

∣

∣

p̂(r1 . . . rN)

p(r1 . . . rN)

∣

∣

∣

∣

≤ 1 + ǫ

A similar theorem (omitted for space) states that 1 − ǫ ≤
∣

∣

∣

µ̂(a,i,j)
µ(a,i,j)

∣

∣

∣
≤ 1 + ǫ for the

marginals.
The condition that Ûa and V̂ a are derived from Ωa, as opposed to the sample estimate

Ω̂a, follows Foster et al. (2012). As these authors note, similar techniques to those of Hsu
et al. (2009) should be applicable in deriving results for the case where Ω̂a is used in place
of Ωa.

Proof sketch: The proof is similar to that of Foster et al. (2012). The basic idea is to
first show that under the assumptions of the theorem, the estimates ĉ1a, d̂

∞
a→x, D̂

a→b c, Σ̂a

19

Inputs: Training examples (r(i,1), t(i,1), t(i,2), t(i,3), o(i), b(i)) for i ∈ {1 . . .M}, where r(i,1) is a context free
rule; t(i,1), t(i,2) and t(i,3) are inside trees; o(i) is an outside tree; and b(i) = 1 if the rule is at the root of
tree, 0 otherwise. A function φ that maps inside trees t to feature-vectors φ(t) ∈ R

d. A function ψ that

maps outside trees o to feature-vectors ψ(o) ∈ R
d′ .

Algorithm:

Define ai to be the non-terminal on the left-hand side of rule r(i,1). If r(i,1) is of the form a→ b c, define bi
to be the non-terminal for the left-child of r(i,1), and ci to be the non-terminal for the right-child.
(Step 0: Singular Value Decompositions)

• Use the algorithm in figure 8 to calculate matrices Ûa ∈ R
(d×m) and V̂ a ∈ R

(d′×m) for each a ∈ N .

(Step 1: Projection)

• For all i ∈ [M], compute y(i,1) = (Ûai)⊤φ(t(i,1)).

• For all i ∈ [M] such that r(i,1) is of the form a→ b c, compute y(i,2) = (Ûbi)⊤φ(t(i,2)) and y(i,3) =
(Ûci)⊤φ(t(i,3)).

• For all i ∈ [M], compute z(i) = (V̂ ai)⊤ψ(o(i)).

(Step 2: Calculate Correlations)

• For each a ∈ N , define δa = 1/
∑M

i=1[[ai = a]]

• For each rule a→ b c, compute D̂a→b c = δa ×
∑M

i=1[[r
(i,1) = a→ b c]]z(i)(y(i,2))⊤(y(i,3))⊤

• For each rule a→ x, compute d̂∞a→x = δa ×
∑M

i=1[[r
(i,1) = a→ x]](z(i))⊤

• For each a ∈ N , compute Σ̂a = δa ×
∑M

i=1[[ai = a]]y(i,1)(z(i))⊤

(Step 3: Compute Final Parameters)

• For all a→ b c, Ĉa→b c(y1, y2) = D̂a→b c(y1, y2)(Σ̂a)−1

• For all a→ x, ĉ∞a→x = d̂∞a→x(Σ̂
a)−1

• For all a ∈ I, ĉ1a =
∑M

i=1[[ai=a and b(i)=1]]y(i,1)

∑
M
i=1[[b

(i)=1]]

Figure 7: The spectral learning algorithm.

are all close to the underlying values being estimated. The second step is to show that this
ensures that p̂(r1...rN)

p(r1...rN) is close to 1.

The method described of selecting a single tuple (r(i,1), t(i,1), t(i,2), t(i,3), o(i), b(i)) for each
s-tree ensures that the samples are i.i.d., and simplifies the analysis underlying theorem 3.
In practice, an implementation should most likely use all nodes in all trees in training data;
by Rao-Blackwellization we know such an algorithm would be better than the one presented,
but the analysis of how much better would be challenging. It would almost certainly lead
to a faster rate of convergence of p̂ to p.

20

Inputs: Identical to algorithm in figure 7.
Algorithm:

• For each a ∈ N , compute Ω̂a ∈ R
(d′×d) as

Ω̂a =

∑M

i=1[[ai = a]]φ(t(i,1))(ψ(o(i)))⊤
∑M

i=1[[ai = a]]

and calculate a singular value decomposition of Ω̂a.
• For each a ∈ N , define Ûa ∈ R

m×d to be a matrix of the left singular vectors of Ω̂a corresponding to the m

largest singular values. Define V̂ a ∈ R
m×d′ to be a matrix of the right singular vectors of Ω̂a corresponding

to the m largest singular values.

Figure 8: Singular value decompositions.

9. Discussion

There are several potential applications of the method. The most obvious is parsing with
L-PCFGs.3 The approach should be applicable in other cases where EM has traditionally
been used, for example in semi-supervised learning. Latent-variable HMMs for sequence
labeling can be derived as special case of our approach, by converting tagged sequences to
right-branching skeletal trees.

In terms of efficiency, the first step of the algorithm in figure 7 requires an SVD cal-
culation: modern methods for calculating SVDs are very efficient (e.g., see Dhillon et al.,
2011 and Tropp et al., 2009). The remaining steps of the algorithm require manipulation
of tensors or vectors, and require O(Mm3) time.

The sample complexity of the method depends on the minimum singular values of Ωa;
these singular values are a measure of how well correlated ψ and φ are with the unobserved
hidden variable H1. Experimental work is required to find a good choice of values for ψ
and φ for parsing.

For simplicity we have considered the case where each non-terminal has the same num-
ber, m, of possible hidden values. It is simple to generalize the algorithms to the case where
the number of hidden values varies depending on the non-terminal; this may be important
in applications.

Appendix A. Proofs

This section gives proofs of theorems 1 and 2.

A.1 Proof of Theorem 1

The key idea behind the proof of theorem 1 is to show that the algorithms in figures 4 and 5
compute the same quantities as the conventional version of the inside outside algorithms,
as shown in figures 2 and 3.

First, the following lemma leads directly to the correctness of the algorithm in figure 4:

3. Parameters can be estimated using the algorithm in figure 7; for a test sentence x1 . . . xN we can first
use the algorithm in figure 5 to calculate marginals µ(a, i, j), then use the algorithm of Goodman (1996)
to find argmaxτ∈T (x)

∑
(a,i,j)∈τ

µ(a, i, j).

21

Lemma 2 Assume that conditions 1-3 of theorem 1 are satisfied, and that the input to the
algorithm in figure 4 is an s-tree r1 . . . rN . Define ai for i ∈ [N] to be the non-terminal
on the left-hand-side of rule ri. For all i ∈ [N], define the row vector bi ∈ R

(1×m) to
be the vector computed by the conventional inside-outside algorithm, as shown in figure 2,
on the s-tree r1 . . . rN . Define f i ∈ R

(1×m) to be the vector computed by the tensor-based
inside-outside algorithm, as shown in figure 4, on the s-tree r1 . . . rN .

Then for all i ∈ [N], f i = bi(G(ai))−1. It follows immediately that

f1c1a1 = b1(G(a1))−1Ga1πa1 = b1πa1 =
∑

h

b1hπ(a, h)

Hence the output from the algorithms in figures 2 and 4 is the same, and it follows that the
tensor-based algorithm in figure 4 is correct.

This lemma shows a direct link between the vectors f i calculated in the algorithm, and
the terms bih, which are terms calculated by the conventional inside algorithm: each f i is a
linear transformation (through Gai) of the corresponding vector bi.
Proof: The proof is by induction.

First consider the base case. For any leaf—i.e., for any i such that ai ∈ P—we have
bih = q(ri|h, ai), and it is easily verified that f i = bi(G(ai))−1.

The inductive case is as follows. For all i ∈ [N] such that ai ∈ I, by the definition in
the algorithm,

f i = Cri(fβ, fγ)

=
(

T ri(fβGaβ , fγGaγ)
)

(Gai)−1

Assuming by induction that fβ = bβ(G(aβ))−1 and fγ = bγ(G(aγ))−1, this simplifies to

f i =
(

T ri(bβ, bγ)
)

(Gai)−1 (22)

By the definition of the tensor T ri ,

[

T ri(bβ , bγ)
]

h
=

∑

h2∈[m],h3∈[m]

t(ri, h2, h3|ai, h)bβh2
bγh3

But by definition (see the algorithm in figure 2),

bih =
∑

h2∈[m],h3∈[m]

t(ri, h2, h3|ai, h)bβh2
bγh3

hence bi = T ri(bβ , bγ) and the inductive case follows immediately from Eq. 22.
Next, we give a similar lemma, which implies the correctness of the algorithm in figure 5:

Lemma 3 Assume that conditions 1-3 of theorem 1 are satisfied, and that the input to the
algorithm in figure 5 is a sentence x1 . . . xN . For any a ∈ N , for any 1 ≤ i ≤ j ≤ N ,
define ᾱa,i,j ∈ R

(1×m), β̄a,i,j ∈ R
(m×1) and µ̄(a, i, j) ∈ R to be the quantities computed

by the conventional inside-outside algorithm in figure 3 on the input x1 . . . xN . Define

22

αa,i,j ∈ R
(1×m), βa,i,j ∈ R

(m×1) and µ(a, i, j) ∈ R to be the quantities computed by the
algorithm in figure 3.

Then for all i ∈ [N], αa,i,j = ᾱa,i,j(Ga)−1 and βa,i,j = Gaβ̄a,i,j. It follows that for all
(a, i, j),

µ(a, i, j) = αa,i,jβa,i,j = ᾱa,i,j(Ga)−1Gaβ̄a,i,j = ᾱa,i,j β̄a,i,j = µ̄(a, i, j)

Hence the outputs from the algorithms in figures 3 and 5 are the same, and it follows that
the tensor-based algorithm in figure 5 is correct.

Thus the vectors αa,i,j and βa,i,j are linearly related to the vectors ᾱa,i,j and β̄a,i,j, which
are the inside and outside terms calculated by the conventional form of the inside-outside
algorithm.

Proof: The proof is by induction, and is similar to the proof of lemma 2.

First, we prove that the inside terms satisfy the relation αa,i,j = ᾱa,i,j(Ga)−1.

The base case of the induction is as follows. By definiton, for any a ∈ P, i ∈ [N], h ∈ [m],
we have ᾱa,i,i

h = q(a → xi|h, a). We also have for any a ∈ P, i ∈ [N], αa,i,i = c∞a→xi
=

qa→xi
(Ga)−1. It follows directly that αa,i,i = ᾱa,i,i(Ga)−1 for any a ∈ P, i ∈ [N].

The inductive case is as follows. By definition, we have ∀a ∈ I, 1 ≤ i < j ≤ N,h ∈ [m]

ᾱa,i,j
h =

j−1
∑

k=i

∑

b,c

∑

h2∈[m]

∑

h3∈[m]

t(a→ b c, h2, h3|h, a) × ᾱb,i,k
h2

× ᾱc,k+1,j
h3

We also have ∀a ∈ I, 1 ≤ i < j ≤ N,

αa,i,j =

j−1
∑

k=i

∑

b,c

Ca→b c(αb,i,k, αc,k+1,j) (23)

=

j−1
∑

k=i

∑

b,c

(

T a→b c(αb,i,kGb, αc,k+1,jGc)
)

(Ga)−1 (24)

=

j−1
∑

k=i

∑

b,c

(

T a→b c(ᾱb,i,k, ᾱc,k+1,j
)

(Ga)−1 (25)

= ᾱa,i,j(Ga)−1 (26)

Eq. 23 follows by the definitions in algorithm 5. Eq. 24 follows by the assumption in the
theorem that

Ca→b c(y1, y2) =
(

T a→b c(y1Gb, y2Gc)
)

(Ga)−1

Eq. 25 follows because by the inductive hypothesis, αb,i,k = ᾱb,i,k(Gb)−1 and αc,k+1,j =
ᾱc,k+1,j(Gc)−1. Eq. 26 follows because

[

T a→b c(ᾱb,i,k, ᾱc,k+1,j)
]

h
=
∑

h2,h3

t(a→ b c, h2, h3|h, a)ᾱb,i,k
h2

ᾱc,k+1,j
h3

23

hence
j−1
∑

k=i

∑

b,c

T a→b c(ᾱb,i,k, ᾱc,k+1,j) = ᾱa,i,j

We now turn the outside terms, proving that βa,i,j = Gaβ̄a,i,j. The proof is again by
induction.

The base case is as follows. By the definitions in the algorithms, for all a ∈ I, βa,1,n =
c1a = Gaπa, and for all a ∈ I, h ∈ [m], β̄a,1,nh = π(a, h). It follows directly that for all a ∈ I,
βa,1,n = Gaβ̄a,1,n.

The inductive case is as follows. By the definitions in the algorithms, we have ∀a ∈
N , 1 ≤ i ≤ j ≤ N,h ∈ [m]

β̄a,i,jh = γ1,a,i,jh + γ2,a,i,jh

where

γ1,a,i,jh =

i−1
∑

k=1

∑

b→c a

∑

h2∈[m]

∑

h3∈[m]

t(b→ c a, h3, h|h2, b)× β̄b,k,jh2
× ᾱc,k,i−1

h3

γ2,a,i,jh =
N
∑

k=j+1

∑

b→a c

∑

h2∈[m]

∑

h3∈[m]

t(b→ a c, h, h3|h2, b)× β̄b,i,kh2
× ᾱc,j+1,k

h3

and ∀a ∈ N , 1 ≤ i ≤ j ≤ N,

βa,i,j =

i−1
∑

k=1

∑

b→c a

Cb→c a
(1,2) (βb,k,j, αc,k,i−1) +

N
∑

k=j+1

∑

b→a c

Cb→a c
(1,3) (βb,i,k, αc,j+1,k)

Critical identities are

i−1
∑

k=1

∑

b→c a

Cb→c a
(1,2) (βb,k,j, αc,k,i−1) = Gaγ1,a,i,j (27)

N
∑

k=j+1

∑

b→a c

Cb→a c
(1,3) (βb,i,k, αc,j+1,k) = Gaγ2,a,i,j (28)

from which βa,i,j = Gaβ̄a,i,j follows immediately.

The identities in Eq. 29 and 30 are proved through straightforward algebraic manipula-
tion, based on the following properties:

• By the inductive hypothesis, βb,k,j = Gbβ̄b,k,j and βb,i,k = Gbβ̄b,i,k.

• By correctness of the inside terms, as shown earlier in this proof, αc,k,i−1 = ᾱc,k,i−1(Gc)−1,
αc,j+1,k = ᾱc,j+1,k(Gc)−1.

• By the assumptions in the theorem,

Ca→b c(y1, y2) =
(

T a→b c(y1Gb, y2Gc)
)

(Ga)−1

24

It follows (see Lemma 4) that

Cb→c a
(1,2) (βb,k,j, αc,k,i−1) = Ga

(

T b→c a
(1,2) ((Gb)−1βb,k,j, αc,k,i−1Gc)

)

= Ga
(

T b→c a
(1,2) (β̄b,k,j, ᾱc,k,i−1)

)

and

Cb→a c
(1,3) (βb,i,k, αc,j+1,k) = Ga

(

T b→a c
(1,3) (β̄b,i,k, ᾱc,j+1,k)

)

Finally, we give the following Lemma, as used above:

Lemma 4 Assume we have tensors C ∈ R
m×m×m and T ∈ R

m×m×m such that for any
y2, y3,

C(y2, y3) =
(

T (y2A, y3B)
)

D

where A,B,D are matrices in R
m×m. Then for any y1, y2,

C(1,2)(y
1, y2) = B

(

T(1,2)(Dy
1, y2A)

)

(29)

and for any y1, y3,
C(1,3)(y

1, y3) = A
(

T(1,3)(Dy
1, y3B)

)

(30)

Proof: Consider first Eq. 29. We will prove the following statement:

∀y1, y2, y3, y3C(1,2)(y
1, y2) = y3B

(

T(1,2)(Dy
1, y2A)

)

This statement is equivalent to Eq. 29.
First, for all y1, y2, y3, by the assumption that C(y2, y3) =

(

T (y2A, y3B)
)

D,

C(y2, y3)y1 = T (y2A, y3B)Dy1

hence
∑

i,j,k

Ci,j,ky
1
i y

2
j y

3
k =

∑

i,j,k

Ti,j,kz
1
i z

2
j z

3
k (31)

where z1 = Dy1, z2 = y2A, z3 = y3B.
In addition, it is easily verified that

y3C(1,2)(y
1, y2) =

∑

i,j,k

Ci,j,ky
1
i y

2
j y

3
k (32)

y3B
(

T(1,2)(Dy
1, y2A)

)

=
∑

i,j,k

Ti,j,kz
1
i z

2
j z

3
k (33)

where again z1 = Dy1, z2 = y2A, z3 = y3B. Combining Eqs. 31, 32, and 33 gives

y3C(1,2)(y
1, y2) = y3B

(

T(1,2)(Dy
1, y2A)

)

thus proving the identity in Eq. 29.
The proof of the identity in Eq. 30 is similar, and is omitted for brevity.

25

A.2 Proof of the Identity in Eq. 17

We now prove the identity in Eq. 17, repeated here:

Da→b c(y1, y2) =
(

T a→b c(y1Gb, y2Gc)
)

diag(γa)(Ka)⊤

Recall that
Da→b c = E

[

[[R1 = a→ b c]]ZY ⊤
2 Y

⊤
3 |A1 = a

]

or equivalently

Da→b c
i,j,k = E [[[R1 = a→ b c]]ZiY2,jY3,k|A1 = a]

Using the chain rule, and marginalizing over hidden variables, we have

Da→b c
i,j,k = E [[[R1 = a→ b c]]ZiY2,jY3,k|A1 = a]

=
∑

h1,h2,h3∈[m]

p(a→ b c, h1, h2, h3|a)E [ZiY2,jY3,k|R1 = a→ b c, h1, h2, h3]

By definition, we have

p(a→ b c, h1, h2, h3|a) = γah1
× t(a→ b c, h2, h3|h1, a)

In addition, under the independence assumptions in the L-PCFG, and using the definitions
of Ka and Ga, we have

E [ZiY2,jY3,k|R1 = a→ b c, h1, h2, h3]

= E [Zi|A1 = a,H1 = h1]×E [Y2,j|A2 = b,H2 = h2]×E [Y3,k|A3 = c,H3 = h3]

= Ka
i,h1

×Gb
j,h2

×Gc
k,h3

Putting this all together gives

Da→b c
i,j,k =

∑

h1,h2,h3∈[m]

γah1
× t(a→ b c, h2, h3|h1, a)×Ka

i,h1
×Gb

j,h2
×Gc

k,h3

=
∑

h1∈[m]

γah1
×Ka

i,h1
×

∑

h2,h3∈[m]

t(a→ b c, h2, h3|h1, a)×Gb
j,h2

×Gc
k,h3

By the definition of tensors,

[Da→b c(y1, y2)]i

=
∑

j,k

Da→b c
i,j,k y1j y

2
k

=
∑

h1∈[m]

γah1
×Ka

i,h1
×

∑

h2,h3∈[m]

t(a→ b c, h2, h3|h1, a)×

∑

j

y1jG
b
j,h2

×
(

∑

k

y2kG
c
k,h3

)

=
∑

h1∈[m]

γah1
×Ka

i,h1
×
[

T a→b c(y1Gb, y2Gc)
]

h1

(34)

26

The last line follows because by the definition of tensors,
[

T a→b c(y1Gb, y2Gc)
]

h1

=
∑

h2,h3

T a→b c
h1,h2,h3

[

y1Gb
]

h2

[

y2Gc
]

h3

and we have

T a→b c
h1,h2,h3

= t(a→ b c, h2, h3|h1, a)
[

y1Gb
]

h2

=
∑

j

y1jG
b
j,h2

[

y2Gc
]

h3
=

∑

k

y2kG
c
k,h3

Finally, the required identity

Da→b c(y1, y2) =
(

T a→b c(y1Gb, y2Gc)
)

diag(γa)(Ka)⊤

follows immediately from Eq. 34.

A.3 Proof of the Identity in Eq. 18

We now prove the identity in Eq. 18, repeated below:

d∞a→x = qa→xdiag(γ
a)(Ka)⊤

Recall that by definition

d∞a→x = E
[

[[R1 = a→ x]]Z⊤|A1 = a
]

or equivalently
[d∞a→x]i = E [[[R1 = a→ x]]Zi|A1 = a]

Marginalizing over hidden variables, we have

[d∞a→x]i = E [[[R1 = a→ x]]Zi|A1 = a]

=
∑

h

p(a→ x, h|a)E[Zi|H1 = h,R1 = a→ x]

By definition, we have

p(a→ x, h|a) = γahq(a→ x|h, a) = γah [qa→x]h

In addition, by the independence assumptions in the L-PCFG, and the definition of Ka,

E[Zi|H1 = h,R1 = a→ x] = E[Zi|H1 = h,A1 = a] = Ka
i,h

Putting this all together gives

[d∞a→x]i =
∑

h

γah [qa→x]hK
a
i,h

from which the required identity

d∞a→x = qa→xdiag(γ
a)(Ka)⊤

follows immediately.

27

A.4 Proof of the Identity in Eq. 19

We now prove the identity in Eq. 19, repeated below:

Σa = Gadiag(γa)(Ka)⊤

Recall that by definition

Σa = E[Y1Z
⊤|A1 = a]

or equivalently

[Σa]i,j = E[Y1,iZj |A1 = a]

Marginalizing over hidden variables, we have

[Σa]i,j = E[Y1,iZj |A1 = a]

=
∑

h

p(h|a)E[Y1,iZj |H1 = h,A1 = a]

By definition, we have

γah = p(h|a)
In addition, under the independence assumptions in the L-PCFG, and using the definitions
of Ka and Ga, we have

E[Y1,iZj |H1 = h,A1 = a] = E[Y1,i|H1 = h,A1 = a]×E[Zj|H1 = h,A1 = a]

= Ga
i,hK

a
j,h

Putting all this together gives

[Σa]i,j =
∑

h

γahG
a
i,hK

a
j,h

from which the required identity

Σa = Gadiag(γa)(Ka)⊤

follows immediately.

A.5 Proof of the Identity in Eq. 20

We now prove the identity in Eq. 19, repeated below:

c1a = Gaπa

Recall that by definition

c1a = E [[[A1 = a]]Y1|B = 1]

or equivalently

[c1a]i = E [[[A1 = a]]Y1,i|B = 1]

28

Marginalizing over hidden variables, we have

[c1a]i = E [[[A1 = a]]Y1,i|B = 1]

=
∑

h

P (A1 = a,H1 = h|B = 1)E [Y1,i|A1 = a,H1 = h,B = 1]

By definition we have
P (A1 = a,H1 = h|B = 1) = π(a, h)

By the independence assumptions in the PCFG, and the definition of Ga, we have

E [Y1,i|A1 = a,H1 = h,B = 1] = E [Y1,i|A1 = a,H1 = h]

= Ga
i,h

Putting this together gives

[c1a]i =
∑

h

π(a, h)Ga
i,h

from which the required identity
c1a = Gaπa

follows.

29

Acknowledgements: Columbia University gratefully acknowledges the support of the Defense

Advanced Research Projects Agency (DARPA) Machine Reading Program under Air Force Research

Laboratory (AFRL) prime contract no. FA8750-09-C-0181. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the author(s) and do not necessarily

reflect the view of DARPA, AFRL, or the US government. Shay Cohen was supported by the

National Science Foundation under Grant #1136996 to the Computing Research Association for the

CIFellows Project. Dean Foster was supported by National Science Foundation grant 1106743.

References

Baker, J. (1979). Trainable Grammars for Speech Recognition. In Proc. ASA.

Balle, B., Quattoni, A., & Carreras, X. (2011). A spectral learning algorithm for finite state
transducers. In Proceedings of ECML.

Charniak, E. (1997). Statistical Parsing with a Context-Free Grammar and Word Statistics.
In Proc. AAAI-IAAI, pp. 598–603.

Cohen, S. B., Stratos, K., Collins, M., Foster, D. P., & Ungar, L. (2012). Spectral learning
of latent-variable pcfgs. In Proceedings of ACL.

Collins, M. (1997). Three generative, lexicalised models for statistical parsing. In Proceedings
of the 35th Annual Meeting of the Association for Computational Linguistics, pp. 16–
23, Madrid, Spain. Association for Computational Linguistics.

Dhillon, P., Foster, D., & Ungar, L. (2011). Multi-view learning of word embeddings via
CCA. In Proceedings of NIPS 24 (Advances in Neural Information Processing Sys-
tems).

Foster, D. P., Rodu, J., & Ungar, L. H. (2012). Spectral dimensionality reduction for hmms.
arXiv:1203.6130v1.

Goodman, J. (1996). Parsing algorithms and metrics. In Proceedings of the 34th annual
meeting on Association for Computational Linguistics, pp. 177–183. Association for
Computational Linguistics.

Hsu, D., Kakade, S. M., & Zhang, T. (2009). A spectral algorithm for learning hidden
Markov models. In Proceedings of COLT.

Jaeger, H. (2000). Observable operator models for discrete stochastic time series. Neural
Computation, 12(6).

Johnson, M. (1998). PCFG Models of Linguistic Tree Representations. Computational
Linguistics, 24 (4), 613–632.

Klein, D., & Manning, C. (2003). Accurate Unlexicalized Parsing. In Proc. ACL, pp.
423–430.

Lugue, F. M., Quattoni, A., Balle, B., & Carreras, X. (2012). Spectral learning for non-
deterministic dependency parsing. In Proceedings of EACL.

Marcus, M., Santorini, B., & Marcinkiewicz, M. (1993). Building a Large Annotated Corpus
of English: The Penn Treebank. Computational Linguistics, 19 (2), 313–330.

30

Matsuzaki, T., Miyao, Y., & Tsujii, J. (2005). Probabilistic CFG with latent annotations. In
Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics,
pp. 75–82. Association for Computational Linguistics.

Parikh, A., Song, L., & Xing, E. P. (2011). A spectral algorithm for latent tree graphical
models. In Proceedings of The 28th International Conference on Machine Learningy
(ICML 2011).

Pereira, F., & Schabes, Y. (1992). Inside-outside reestimation from partially bracketed cor-
pora. In Proceedings of the 30th Annual Meeting of the Association for Computational
Linguistics, pp. 128–135, Newark, Delaware, USA. Association for Computational Lin-
guistics.

Petrov, S., Barrett, L., Thibaux, R., & Klein, D. (2006). Learning accurate, compact, and
interpretable tree annotation. In Proceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meeting of the Association for Compu-
tational Linguistics, pp. 433–440, Sydney, Australia. Association for Computational
Linguistics.

Terwijn, S. A. (2002). On the learnability of hidden markov models. In Grammatical
Inference: Algorithms and Applications (Amsterdam, 2002), Vol. 2484 of Lecture Notes
in Artificial Intelligence, pp. 261–268, Berlin. Springer.

Tropp, A., Halko, N., & Martinsson, P. G. (2009). Finding structure with randomness:
Stochastic algorithms for constructing approximate matrix decompositions.. In Tech-
nical Report No. 2009-05.

31

