
Chapter 2

Tagging Problems, and Hidden
Markov Models
(Course notes for NLP by Michael Collins, Columbia University)

2.1 Introduction

In many NLP problems, we would like to model pairs of sequences. Part-of-speech
(POS) tagging is perhaps the earliest, and most famous, example of this type of
problem. In POS tagging our goal is to build a model whose input is a sentence,
for example

the dog saw a cat

and whose output is a tag sequence, for example

D N V D N (2.1)

(here we use D for a determiner, N for noun, and V for verb). The tag sequence is
the same length as the input sentence, and therefore specifies a single tag for each
word in the sentence (in this example D for the, N for dog, V for saw, and so on).

We will use x1 . . . xn to denote the input to the tagging model: we will often
refer to this as a sentence. In the above example we have the length n = 5, and
x1 = the, x2 = dog, x3 = saw, x4 = the, x5 = cat. We will use y1 . . . yn to denote
the output of the tagging model: we will often refer to this as the state sequence or
tag sequence. In the above example we have y1 = D, y2 = N, y3 = V, and so on.

This type of problem, where the task is to map a sentence x1 . . . xn to a tag se-
quence y1 . . . yn, is often referred to as a sequence labeling problem, or a tagging
problem.

1

2CHAPTER 2. TAGGING PROBLEMS, AND HIDDEN MARKOV MODELS(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall Street, as
their CEO Alan Mulally announced first quarter results.

OUTPUT:
Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V fore-
casts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N Mu-
lally/N announced/V first/ADJ quarter/N results/N ./.

KEY:

N = Noun
V = Verb
P = Preposition
Adv = Adverb
Adj = Adjective
. . .

Figure 2.1: A part-of-speech (POS) tagging example. The input to the model is a
sentence. The output is a tagged sentence, where each word is tagged with its part
of speech: for example N is a noun, V is a verb, P is a preposition, and so on.

We will assume that we have a set of training examples, (x(i), y(i)) for i =

1 . . .m, where each x(i) is a sentence x(i)1 . . . x
(i)
ni , and each y(i) is a tag sequence

y
(i)
1 . . . y

(i)
ni (we assume that the i’th example is of length ni). Hence x(i)j is the j’th

word in the i’th training example, and y(i)j is the tag for that word. Our task is to
learn a function that maps sentences to tag sequences from these training examples.

2.2 Two Example Tagging Problems: POS Tagging, and
Named-Entity Recognition

We first discuss two important examples of tagging problems in NLP, part-of-
speech (POS) tagging, and named-entity recognition.

Figure 2.1 gives an example illustrating the part-of-speech problem. The input
to the problem is a sentence. The output is a tagged sentence, where each word
in the sentence is annotated with its part of speech. Our goal will be to construct
a model that recovers POS tags for sentences with high accuracy. POS tagging is
one of the most basic problems in NLP, and is useful in many natural language
applications.

2.2. TWO EXAMPLE TAGGING PROBLEMS: POS TAGGING, AND NAMED-ENTITY RECOGNITION3

We will assume that we have a set of training examples for the problem: that
is, we have a set of sentences paired with their correct POS tag sequences. As one
example, the Penn WSJ treebank corpus contains around 1 million words (around
40,000 sentences) annotated with their POS tags. Similar resources are available
in many other languages and genres.

One of the main challenges in POS tagging is ambiguity. Many words in En-
glish can take several possible parts of speech—a similar observation is true for
many other languages. The example sentence in figure 2.1 has several ambiguous
words. For example, the first word in the sentence, profits, is a noun in this context,
but can also be a verb (e.g., in the company profits from its endeavors). The word
topping is a verb in this particular sentence, but can also be a noun (e.g., the top-
ping on the cake). The words forecasts and results are both nouns in the sentence,
but can also be verbs in other contexts. If we look further, we see that quarter is a
noun in this sentence, but it also has a much less frequent usage, as a verb. We can
see from this sentence that there is a surprising amount of ambiguity at the POS
level.

A second challenge is the presence of words that are rare, in particular words
that are not seen in our training examples. Even with say a million words of training
data, there will be many words in new sentences which have not been seen in
training. As one example, words such as Mulally or topping are potentially quite
rare, and may not have been seen in our training examples. It will be important
to develop methods that deal effectively with words which have not been seen in
training data.

In recovering POS tags, it is useful to think of two different sources of informa-
tion. First, individual words have statistical preferences for their part of speech: for
example, quarter can be a noun or a verb, but is more likely to be a noun. Second,
the context has an important effect on the part of speech for a word. In particular,
some sequences of POS tags are much more likely than others. If we consider POS
trigrams, the sequence D N V will be frequent in English (e.g., in the/D dog/N
saw/V . . .), whereas the sequence D V N is much less likely.

Sometimes these two sources of evidence are in conflict: for example, in the
sentence

The trash can is hard to find

the part of speech for can is a noun—however, can can also be a modal verb, and in
fact it is much more frequently seen as a modal verb in English.1 In this sentence
the context has overridden the tendency for can to be a verb as opposed to a noun.

1There are over 30 uses of the word “can” in this chapter, and if we exclude the example given
above, in every case “can” is used as a modal verb.

4CHAPTER 2. TAGGING PROBLEMS, AND HIDDEN MARKOV MODELS(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

INPUT: Profits soared at Boeing Co., easily topping forecasts on Wall Street, as
their CEO Alan Mulally announced first quarter results.

OUTPUT: Profits soared at [Company Boeing Co.], easily topping forecasts on
[Location Wall Street], as their CEO [Person Alan Mulally] announced first quarter
results.

Figure 2.2: A Named-Entity Recognition Example. The input to the problem is a
sentence. The output is a sentence annotated with named-entities corresponding to
companies, location, and people.

Later in this chapter we will describe models for the tagging problem that take
into account both sources of information—local and contextual—when making
tagging decisions.

A second important example tagging problem is named entity recognition. Fig-
ure 2.2 gives an example. For this problem the input is again a sentence. The output
is the sentence with entity-boundaries marked. In this example we assume there
are three possible entity types: PERSON, LOCATION, and COMPANY. The output
in this example identifies Boeing Co. as a company, Wall Street as a location, and
Alan Mulally as a person. Recognising entities such as people, locations and or-
ganizations has many applications, and named-entity recognition has been widely
studied in NLP research.

At first glance the named-entity problem does not resemble a tagging problem—
in figure 2.2 the output does not consist of a tagging decision for each word in the
sentence. However, it is straightforward to map named-entity recognition to a tag-
ging problem. The basic method is illustrated in figure 2.3. Each word in the
sentence is either tagged as not being part of an entity (the tag NA) is used for this
purpose, as being the start of a particular entity type (e.g., the tag SC) corresponds
to words that are the first word in a company, or as being the continuation of a par-
ticular entity type (e.g., the tag CC corresponds to words that are part of a company
name, but are not the first word).

Once this mapping has been performed on training examples, we can train a
tagging model on these training examples. Given a new test sentence we can then
recover the sequence of tags from the model, and it is straightforward to identify
the entities identified by the model.

2.3 Generative Models, and The Noisy Channel Model

In this chapter we will treat tagging problems as a supervised learning problem.
In this section we describe one important class of model for supervised learning:

2.3. GENERATIVE MODELS, AND THE NOISY CHANNEL MODEL 5

INPUT: Profits soared at Boeing Co., easily topping forecasts on Wall Street, as
their CEO Alan Mulally announced first quarter results.

OUTPUT: Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA top-
ping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA
Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

KEY:

NA = No entity
SC = Start Company
CC = Continue Company
SL = Start Location
CL = Continue Location
. . .

Figure 2.3: Named-Entity Recognition as a Tagging Problem. There are three
entity types: PERSON, LOCATION, and COMPANY. For each entity type we intro-
duce a tag for the start of that entity type, and for the continuation of that entity
type. The tag NA is used for words which are not part of an entity. We can then
represent the named-entity output in figure 2.2 as a sequence of tagging decisions
using this tag set.

6CHAPTER 2. TAGGING PROBLEMS, AND HIDDEN MARKOV MODELS(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

the class of generative models. We will then go on to describe a particular type of
generative model, hidden Markov models, applied to the tagging problem.

The set-up in supervised learning problems is as follows. We assume training
examples (x(1), y(1)) . . . (x(m), y(m)), where each example consists of an input x(i)

paired with a label y(i). We use X to refer to the set of possible inputs, and Y to
refer to the set of possible labels. Our task is to learn a function f : X → Y that
maps any input x to a label f(x).

Many problems in natural language processing are supervised learning prob-
lems. For example, in tagging problems each x(i) would be a sequence of words
x
(i)
1 . . . x

(i)
ni , and each y(i) would be a sequence of tags y(i)1 . . . y

(i)
ni (we use ni to

refer to the length of the i’th training example). X would refer to the set of all
sequences x1 . . . xn, and Y would be the set of all tag sequences y1 . . . yn. Our
task would be to learn a function f : X → Y that maps sentences to tag se-
quences. In machine translation, each input x would be a sentence in the source
language (e.g., Chinese), and each “label” would be a sentence in the target lan-
guage (e.g., English). In speech recognition each input would be the recording of
some utterance—perhaps pre-processed using a Fourier transform, for example—
and each label is an entire sentence. Our task in all of these examples is to learn
a function from inputs x to labels y, using our training examples (x(i), y(i)) for
i = 1 . . . n as evidence.

One way to define the function f(x) is through a conditional model. In this
approach we define a model that defines the conditional probability

p(y|x)

for any x, y pair. The parameters of the model are estimated from the training
examples. Given a new test example x, the output from the model is

f(x) = argmax
y∈Y

p(y|x)

Thus we simply take the most likely label y as the output from the model. If our
model p(y|x) is close to the true conditional distribution of labels given inputs, the
function f(x) will be close to optimal.

An alternative approach, which is often used in machine learning and natural
language processing, is to define a generative model. Rather than directly estimat-
ing the conditional distribution p(y|x), in generative models we instead model the
joint probability

p(x, y)

over (x, y) pairs. The parameters of the model p(x, y) are again estimated from the
training examples (x(i), y(i)) for i = 1 . . . n. In many cases we further decompose

2.3. GENERATIVE MODELS, AND THE NOISY CHANNEL MODEL 7

the probability p(x, y) as follows:

p(x, y) = p(y)p(x|y) (2.2)

and then estimate the models for p(y) and p(x|y) separately. These two model
components have the following interpretations:

• p(y) is a prior probability distribution over labels y.

• p(x|y) is the probability of generating the input x, given that the underlying
label is y.

We will see that in many cases it is very convenient to decompose models in this
way; for example, the classical approach to speech recognition is based on this type
of decomposition.

Given a generative model, we can use Bayes rule to derive the conditional
probability p(y|x) for any (x, y) pair:

p(y|x) = p(y)p(x|y)
p(x)

where
p(x) =

∑
y∈Y

p(x, y) =
∑
y∈Y

p(y)p(x|y)

Thus the joint model is quite versatile, in that we can also derive the probabilities
p(x) and p(y|x).

We use Bayes rule directly in applying the joint model to a new test example.
Given an input x, the output of our model, f(x), can be derived as follows:

f(x) = argmax
y
p(y|x)

= argmax
y

p(y)p(x|y)
p(x)

(2.3)

= argmax
y
p(y)p(x|y) (2.4)

Eq. 2.3 follows by Bayes rule. Eq. 2.4 follows because the denominator, p(x),
does not depend on y, and hence does not affect the argmax. This is convenient,
because it means that we do not need to calculate p(x), which can be an expensive
operation.

Models that decompose a joint probability into into terms p(y) and p(x|y) are
often called noisy-channel models. Intuitively, when we see a test example x, we
assume that has been generated in two steps: first, a label y has been chosen with

8CHAPTER 2. TAGGING PROBLEMS, AND HIDDEN MARKOV MODELS(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

probability p(y); second, the example x has been generated from the distribution
p(x|y). The model p(x|y) can be interpreted as a “channel” which takes a label y
as its input, and corrupts it to produce x as its output. Our task is to find the most
likely label y, given that we observe x.

In summary:

• Our task is to learn a function from inputs x to labels y = f(x). We assume
training examples (x(i), y(i)) for i = 1 . . . n.

• In the noisy channel approach, we use the training examples to estimate
models p(y) and p(x|y). These models define a joint (generative) model

p(x, y) = p(y)p(x|y)

• Given a new test example x, we predict the label

f(x) = argmax
y∈Y

p(y)p(x|y)

Finding the output f(x) for an input x is often referred to as the decoding
problem.

2.4 Generative Tagging Models

We now see how generative models can be applied to the tagging problem. We
assume that we have a finite vocabulary V , for example V might be the set of
words seen in English, e.g., V = {the, dog, saw, cat, laughs, . . .}. We use K to
denote the set of possible tags; again, we assume that this set is finite. We then give
the following definition:

Definition 1 (Generative Tagging Models) Assume a finite set of words V , and
a finite set of tags K. Define S to be the set of all sequence/tag-sequence pairs
〈x1 . . . xn, y1 . . . yn〉 such that n ≥ 0, xi ∈ V for i = 1 . . . n, and yi ∈ K for
i = 1 . . . n. A generative tagging model is then a function p such that:

1. For any 〈x1 . . . xn, y1 . . . yn〉 ∈ S,

p(x1 . . . xn, y1 . . . yn) ≥ 0

2. In addition, ∑
〈x1...xn,y1...yn〉∈S

p(x1 . . . xn, y1 . . . yn) = 1

2.5. TRIGRAM HIDDEN MARKOV MODELS (TRIGRAM HMMS) 9

Hence p(x1 . . . xn, y1 . . . yn) is a probability distribution over pairs of sequences
(i.e., a probability distribution over the set S).

Given a generative tagging model, the function from sentences x1 . . . xn to tag
sequences y1 . . . yn is defined as

f(x1 . . . xn) = arg max
y1...yn

p(x1 . . . xn, y1 . . . yn)

where the argmax is taken over all sequences y1 . . . yn such that yi ∈ K for
i ∈ {1 . . . n}. Thus for any input x1 . . . xn, we take the highest probability tag
sequence as the output from the model.

Having introduced generative tagging models, there are three critical questions:

• How we define a generative tagging model p(x1 . . . xn, y1 . . . yn)?

• How do we estimate the parameters of the model from training examples?

• How do we efficiently find

arg max
y1...yn

p(x1 . . . xn, y1 . . . yn)

for any input x1 . . . xn?

The next section describes how trigram hidden Markov models can be used to
answer these three questions.

2.5 Trigram Hidden Markov Models (Trigram HMMs)

In this section we describe an important type of generative tagging model, a trigram
hidden Markov model, describe how the parameters of the model can be estimated
from training examples, and describe how the most likely sequence of tags can be
found for any sentence.

2.5.1 Definition of Trigram HMMs

We now give a formal definition of trigram hidden Markov models (trigram HMMs).
The next section shows how this model form is derived, and gives some intuition
behind the model.

Definition 2 (Trigram Hidden Markov Model (Trigram HMM)) A trigram HMM
consists of a finite set V of possible words, and a finite set K of possible tags, to-
gether with the following parameters:

10CHAPTER 2. TAGGING PROBLEMS, AND HIDDEN MARKOV MODELS(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

• A parameter
q(s|u, v)

for any trigram (u, v, s) such that s ∈ K ∪ {STOP}, and u, v ∈ K ∪ {*}.
The value for q(s|u, v) can be interpreted as the probability of seeing the tag
s immediately after the bigram of tags (u, v).

• A parameter
e(x|s)

for any x ∈ V , s ∈ K. The value for e(x|s) can be interpreted as the
probability of seeing observation x paired with state s.

Define S to be the set of all sequence/tag-sequence pairs 〈x1 . . . xn, y1 . . . yn+1〉
such that n ≥ 0, xi ∈ V for i = 1 . . . n, yi ∈ K for i = 1 . . . n, and yn+1 = STOP.

We then define the probability for any 〈x1 . . . xn, y1 . . . yn+1〉 ∈ S as

p(x1 . . . xn, y1 . . . yn+1) =
n+1∏
i=1

q(yi|yi−2, yi−1)
n∏

i=1

e(xi|yi)

where we have assumed that y0 = y−1 = *.

As one example, if we have n = 3, x1 . . . x3 equal to the sentence the dog
laughs, and y1 . . . y4 equal to the tag sequence D N V STOP, then

p(x1 . . . xn, y1 . . . yn+1) = q(D|∗, ∗)× q(N|∗, D)× q(V|D, N)× q(STOP|N, V)
×e(the|D)× e(dog|N)× e(laughs|V)

Note that this model form is a noisy-channel model. The quantity

q(D|∗, ∗)× q(N|∗, D)× q(V|D, N)× q(STOP|N, V)

is the prior probability of seeing the tag sequence D N V STOP, where we have
used a second-order Markov model (a trigram model), very similar to the language
models we derived in the previous lecture. The quantity

e(the|D)× e(dog|N)× e(laughs|V)

can be interpreted as the conditional probability p(the dog laughs|D N V STOP):
that is, the conditional probability p(x|y) where x is the sentence the dog laughs,
and y is the tag sequence D N V STOP.

2.5. TRIGRAM HIDDEN MARKOV MODELS (TRIGRAM HMMS) 11

2.5.2 Independence Assumptions in Trigram HMMs

We now describe how the form for trigram HMMs can be derived: in particular, we
describe the independence assumptions that are made in the model. Consider a pair
of sequences of random variables X1 . . . Xn, and Y1 . . . Yn, where n is the length
of the sequences. We assume that each Xi can take any value in a finite set V of
words. For example, V might be a set of possible words in English, for example
V = {the, dog, saw, cat, laughs, . . .}. Each Yi can take any value in a finite set K
of possible tags. For example, K might be the set of possible part-of-speech tags
for English, e.g. K = {D, N, V, . . .}.

The length n is itself a random variable—it can vary across different sentences—
but we will use a similar technique to the method used for modeling variable-length
Markov processes (see chapter ??).

Our task will be to model the joint probability

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn = yn)

for any observation sequence x1 . . . xn paired with a state sequence y1 . . . yn, where
each xi is a member of V , and each yi is a member of K.

We will find it convenient to define one additional random variable Yn+1, which
always takes the value STOP. This will play a similar role to the STOP symbol seen
for variable-length Markov sequences, as described in the previous lecture notes.

The key idea in hidden Markov models is the following definition:

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn+1 = yn+1)

=
n+1∏
i=1

P (Yi = yi|Yi−2 = yi−2, Yi−1 = yi−1)
n∏

i=1

P (Xi = xi|Yi = yi)(2.5)

where we have assumed that y0 = y−1 = *, where * is a special start symbol.
Note the similarity to our definition of trigram HMMs. In trigram HMMs we

have made the assumption that the joint probability factorizes as in Eq. 2.5, and in
addition we have assumed that for any i, for any values of yi−2, yi−1, yi,

P (Yi = yi|Yi−2 = yi−2, Yi−1 = yi−1) = q(yi|yi−2, yi−1)

and that for any value of i, for any values of xi and yi,

P (Xi = xi|Yi = yi) = e(xi|yi)

We now describe how Eq. 2.5 is derived, in particular focusing on indepen-
dence assumptions that have been made in the model. First, we can write

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn+1 = yn+1)

= P (Y1 = y1 . . . Yn+1 = yn+1)× P (X1 = x1 . . . Xn = xn|Y1 = y1 . . . Yn+1 = yn+1)

(2.6)

12CHAPTER 2. TAGGING PROBLEMS, AND HIDDEN MARKOV MODELS(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

This step is exact, by the chain rule of probabilities. Thus we have decomposed
the joint probability into two terms: first, the probability of choosing tag sequence
y1 . . . yn+1; second, the probability of choosing the word sequence x1 . . . xn, con-
ditioned on the choice of tag sequence. Note that this is exactly the same type of
decomposition as seen in noisy channel models.

Now consider the probability of seeing the tag sequence y1 . . . yn+1. We make
independence assumptions as follows: we assume that for any sequence y1 . . . yn+1,

P (Y1 = y1 . . . Yn+1 = yn+1) =
n+1∏
i=1

P (Yi = yi|Yi−2 = yi−2, Yi−1 = yi−1)

That is, we have assumed that the sequence Y1 . . . Yn+1 is a second-order Markov
sequence, where each state depends only on the previous two states in the sequence.

Next, consider the probability of the word sequence x1 . . . xn, conditioned on
the choice of tag sequence, y1 . . . yn+1. We make the following assumption:

P (X1 = x1 . . . Xn = xn|Y1 = y1 . . . Yn+1 = yn+1)

=
n∏

i=1

P (Xi = xi|X1 = x1 . . . Xi−1 = xi−1, Y1 = y1 . . . Yn+1 = yn+1)

=
n∏

i=1

P (Xi = xi|Yi = yi) (2.7)

The first step of this derivation is exact, by the chain rule. The second step involves
an independence assumption, namely that for i = 1 . . . n,

P (Xi = xi|X1 = x1 . . . Xi−1 = xi−1, Y1 = y1 . . . Yn+1 = yn+1) = P (Xi = xi|Yi = yi)

Hence we have assumed that the value for the random variable Xi depends only on
the value of Yi. More formally, the value forXi is conditionally independent of the
previous observationsX1 . . . Xi−1, and the other state values Y1 . . . Yi−1, Yi+1 . . . Yn+1,
given the value of Yi.

One useful way of thinking of this model is to consider the following stochastic
process, which generates sequence pairs y1 . . . yn+1, x1 . . . xn:

1. Initialize i = 1 and y0 = y−1 = *.

2. Generate yi from the distribution

q(yi|yi−2, yi−1)

3. If yi = STOP then return y1 . . . yi, x1 . . . xi−1. Otherwise, generate xi from
the distribution

e(xi|yi),
set i = i+ 1, and return to step 2.

2.5. TRIGRAM HIDDEN MARKOV MODELS (TRIGRAM HMMS) 13

2.5.3 Estimating the Parameters of a Trigram HMM

We will assume that we have access to some training data. The training data con-
sists of a set of examples where each example is a sentence x1 . . . xn paired with a
tag sequence y1 . . . yn. Given this data, how do we estimate the parameters of the
model? We will see that there is a simple and very intuitive answer to this question.

Define c(u, v, s) to be the number of times the sequence of three states (u, v, s)
is seen in training data: for example, c(V, D, N) would be the number of times the
sequence of three tags V, D, N is seen in the training corpus. Similarly, define
c(u, v) to be the number of times the tag bigram (u, v) is seen. Define c(s) to be
the number of times that the state s is seen in the corpus. Finally, define c(s ; x)
to be the number of times state s is seen paired sith observation x in the corpus: for
example, c(N ; dog) would be the number of times the word dog is seen paired
with the tag N.

Given these definitions, the maximum-likelihood estimates are

q(s|u, v) = c(u, v, s)

c(u, v)

and

e(x|s) = c(s; x)

c(s)

For example, we would have the estimates

q(N|V, D) = c(V, D, N)

c(V, D)

and

e(dog|N) = c(N ; dog)
c(N)

Thus estimating the parameters of the model is simple: we just read off counts
from the training corpus, and then compute the maximum-likelihood estimates as
described above.

In some cases it is useful to smooth our estimates of q(s|u, v), using the tech-
niques described in chapter ?? of this book, for example defining

q(s|u, v) = λ1 × qML(s|u, v) + λ2 × qML(s|v) + λ3 × qML(s)

where the qML terms are maximum-likelihood estimates derived from counts in the
corpus, and λ1, λ2, λ3 are smoothing parameters satisfying λ1 ≥ 0, λ2 ≥ 0, λ3 ≥
0, and λ1 + λ2 + λ3 = 1.

One problem with these estimates is that the value for e(x|s) will be unreliable
if the word x is infrequent: worse still, we have e(x|s) = 0 if the word x is not
seen in the training data. A solution to this problem is described in section 2.7.1.

14CHAPTER 2. TAGGING PROBLEMS, AND HIDDEN MARKOV MODELS(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

2.5.4 Decoding with HMMs: the Viterbi Algorithm

We now turn to the problem of finding the most likely tag sequence for an input
sentence x1 . . . xn. This is the problem of finding

arg max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

where the argmax is taken over all sequences y1 . . . yn+1 such that yi ∈ K for
i = 1 . . . n, and yn+1 = STOP. We assume that p again takes the form

p(x1 . . . xn, y1 . . . yn+1) =
n+1∏
i=1

q(yi|yi−2, yi−1)
n∏

i=1

e(xi|yi) (2.8)

Recall that we have assumed in this definition that y0 = y−1 = *, and yn+1 =
STOP.

The naive, brute force method would be to simply enumerate all possible tag
sequences y1 . . . yn+1, score them under the function p, and take the highest scor-
ing sequence. For example, given the input sentence

the dog barks

and assuming that the set of possible tags is K = {D, N, V}, we would consider all
possible tag sequences:

D D D STOP
D D N STOP
D D V STOP
D N D STOP
D N N STOP
D N V STOP
. . .

and so on. There are 33 = 27 possible sequences in this case.
For longer sentences, however, this method will be hopelessly inefficient. For

an input sentence of length n, there are |K|n possible tag sequences. The expo-
nential growth with respect to the length n means that for any reasonable length
sentence, brute-force search will not be tractable.

The Basic Algorithm

Instead, we will see that we can efficiently find the highest probability tag se-
quence, using a dynamic programming algorithm that is often called the Viterbi

2.5. TRIGRAM HIDDEN MARKOV MODELS (TRIGRAM HMMS) 15

algorithm. The input to the algorithm is a sentence x1 . . . xn. Given this sentence,
for any k ∈ {1 . . . n}, for any sequence y−1, y0, y1, . . . , yk such that yi ∈ K for
i = 1 . . . k, and y−1 = y0 = *, we define the function

r(y−1, y0, y1, . . . , yk) =
k∏

i=1

q(yi|yi−2, yi−1)
k∏

i=1

e(xi|yi) (2.9)

This is simply a truncated version of the definition of p in Eq. 2.8, where we just
consider the first k terms. In particular, note that

p(x1 . . . xn, y1 . . . yn+1) = r(*, *, y1, . . . , yn)× q(yn+1|yn−1, yn)
= r(*, *, y1, . . . , yn)× q(STOP|yn−1, yn)

(2.10)

It will be convenient to useKk for k ∈ {−1 . . . n} to denote the set of allowable
tags at position k in the sequence: more precisely, define

K−1 = Ko = {*}

and
Kk = K for k ∈ {1 . . . n}

Next, for any k ∈ {1 . . . n}, for any u ∈ Kk−1, v ∈ Kk, define S(k, u, v) to be
the set of sequences y−1, y0, y1, . . . , yk such that yk−1 = u, yk = v, and yi ∈ Ki

for i ∈ {−1 . . . k}. Thus S(k, u, v) is the set of all tag sequences of length k,
which end in the tag bigram (u, v). Define

π(k, u, v) = max
〈y−1,y0,y1,...,yk〉∈S(k,u,v)

r(y−1, y0, y1, . . . , yk) (2.11)

Thus π(k, u, v) is the maximum probability for any sequence of length k, ending
in the tag bigram (u, v).

We now observe that we can calculate the π(k, u, v) values for all (k, u, v)
efficiently, as follows. First, as a base case define

π(0, *, *) = 1

Next, we give the recursive definition.

Proposition 1 For any k ∈ {1 . . . n}, for any u ∈ Kk−1 and v ∈ Kk, we can use
the following recursive definition:

π(k, u, v) = max
w∈Kk−2

(π(k − 1, w, u)× q(v|w, u)× e(xk|v)) (2.12)

16CHAPTER 2. TAGGING PROBLEMS, AND HIDDEN MARKOV MODELS(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

This definition is recursive because the definition makes use of the π(k − 1, w, u)
values computed for shorter sequences. This definition will be key to our dynamic
programming algorithm.

How can we justify this recurrence? Recall that π(k, u, v) is the highest proba-
bility for any sequence y−1 . . . yk ending in the bigram (u, v). Any such sequence
must have yk−2 = w for some state w. The highest probability for any sequence
of length k − 1 ending in the bigram (w, u) is π(k − 1, w, u), hence the highest
probability for any sequence of length k ending in the trigram (w, u, v) must be

π(k − 1, w, u)× q(v|w, u)× e(xk|v)

In Eq. 2.12 we simply search over all possible values for w, and return the maxi-
mum.

Our second claim is the following:

Proposition 2

max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1) = max
u∈Kn−1,v∈Kn

(π(n, u, v)× q(STOP|u, v))
(2.13)

This follows directly from the identity in Eq. 2.10.
Figure 2.4 shows an algorithm that puts these ideas together. The algorithm

takes a sentence x1 . . . xn as input, and returns

max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

as its output. The algorithm first fills in the π(k, u, v) values in using the recursive
definition. It then uses the identity in Eq. 2.13 to calculate the highest probability
for any sequence.

The running time for the algorithm is O(n|K|3), hence it is linear in the length
of the sequence, and cubic in the number of tags.

The Viterbi Algorithm with Backpointers

The algorithm we have just described takes a sentence x1 . . . xn as input, and re-
turns

max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

as its output. However we’d really like an algorithm that returned the highest prob-
ability sequence, that is, an algorithm that returns

arg max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

2.6. SUMMARY 17

Input: a sentence x1 . . . xn, parameters q(s|u, v) and e(x|s).
Definitions: Define K to be the set of possible tags. Define K−1 = K0 = {*}, and
Kk = K for k = 1 . . . n.
Initialization: Set π(0, *, *) = 1.
Algorithm:

• For k = 1 . . . n,

– For u ∈ Kk−1, v ∈ Kk,

π(k, u, v) = max
w∈Kk−2

(π(k − 1, w, u)× q(v|w, u)× e(xk|v))

• Return maxu∈Kn−1,v∈Kn (π(n, u, v)× q(STOP|u, v))

Figure 2.4: The basic Viterbi Algorithm.

for any input sentence x1 . . . xn.
Figure 2.5 shows a modified algorithm that achieves this goal. The key step

is to store backpointer values bp(k, u, v) at each step, which record the previous
state w which leads to the highest scoring sequence ending in (u, v) at position k
(the use of backpointers such as these is very common in dynamic programming
methods). At the end of the algorithm, we unravel the backpointers to find the
highest probability sequence, and then return this sequence. The algorithm again
runs in O(n|K|3) time.

2.6 Summary

We’ve covered a number of important points in this chapter, but the end result is
fairly straightforward: we have derived a complete method for learning a tagger
from a training corpus, and for applying it to new sentences. The main points were
as follows:

• A trigram HMM has parameters q(s|u, v) and e(x|s), and defines the joint
probability of any sentence x1 . . . xn paired with a tag sequence y1 . . . yn+1

(where yn+1 = STOP) as

p(x1 . . . xn, y1 . . . yn+1) =
n+1∏
i=1

q(yi|yi−2, yi−1)
n∏

i=1

e(xi|yi)

18CHAPTER 2. TAGGING PROBLEMS, AND HIDDEN MARKOV MODELS(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

Input: a sentence x1 . . . xn, parameters q(s|u, v) and e(x|s).
Definitions: Define K to be the set of possible tags. Define K−1 = K0 = {*}, and
Kk = K for k = 1 . . . n.
Initialization: Set π(0, *, *) = 1.
Algorithm:

• For k = 1 . . . n,

– For u ∈ Kk−1, v ∈ Kk,

π(k, u, v) = max
w∈Kk−2

(π(k − 1, w, u)× q(v|w, u)× e(xk|v))

bp(k, u, v) = arg max
w∈Kk−2

(π(k − 1, w, u)× q(v|w, u)× e(xk|v))

• Set (yn−1, yn) = argmaxu∈Kn−1,v∈Kn (π(n, u, v)× q(STOP|u, v))

• For k = (n− 2) . . . 1,

yk = bp(k + 2, yk+1, yk+2)

• Return the tag sequence y1 . . . yn

Figure 2.5: The Viterbi Algorithm with backpointers.

2.7. ADVANCED MATERIAL 19

• Given a training corpus from which we can derive counts, the maximum-
likelihood estimates for the parameters are

q(s|u, v) = c(u, v, s)

c(u, v)

and

e(x|s) = c(s; x)

c(s)

• Given a new sentence x1 . . . xn, and parameters q and e that we have es-
timated from a training corpus, we can find the highest probability tag se-
quence for x1 . . . xn using the algorithm in figure 2.5 (the Viterbi algorithm).

2.7 Advanced Material

2.7.1 Dealing with Unknown Words

Recall that our parameter estimates for the emission probabilities in the HMM are

e(x|s) = c(s; x)

c(s)

where c(s; x) is the number of times state s is paired with word x in the training
data, and c(s) is the number of times state s is seen in training data.

A major issue with these estimates is that for any word x that is not seen in
training data, e(x|s) will be equal to 0 for all states s. Because of this, for any test
sentence x1 . . . xn that contains some word that is never seen in training data, it is
easily verified that

p(x1 . . . xn, y1 . . . yn+1) = 0

for all tag sequences y1 . . . yn+1. Thus the model will completely fail on the test
sentence. In particular, the argmax in

arg max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1) = 0

will not be useful: every tag sequence will have the same, maximum score, of 0.
This is an acute problem, because however large our training data, there will

inevitably be words in test sentences that are never seen in training data. The
vocabulary size for English, for example, is very large; and new words are always
being encountered in test data. Take for example the sentence used in figures 2.2
and 2.3:

20CHAPTER 2. TAGGING PROBLEMS, AND HIDDEN MARKOV MODELS(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

Profits soared at Boeing Co., easily topping forecasts on Wall Street,
as their CEO Alan Mulally announced first quarter results.

In this sentence it is quite likely that the word Mulally has not been seen in training
data. Similarly, topping is a relatively infrequent word in English, and may not
have been seen in training.

In this section we describe a simple but quite effective solution to this problem.
The key idea is to map low frequency words in training data, and in addition words
seen in test data but never seen in training, to a relatively small set of pseudo-words.
For example, we might map the word Mulally to the pseudo-word initCap, the
word 1990 to the pseudo-word fourDigitNum, and so on. Here the pseudo-
word initCap is used for any word whose first letter is a capital, and whose
remaining letters are lower case. The pseudo-word fourDigitNum is used for
any four digit number.

Figure 2.6 shows an example set of pseudo-words, taken from [?], who applied
an HMM tagger to the problem of named entity recognition. This set of pseudo-
words was chosen by hand, and was clearly chosen to preserve some useful infor-
mation about the spelling features of different words: for example capitalization
features of words, and a sub-division into different number types (one of the entity
classes identified in this work was dates, so it is useful to distinguish different types
of numbers, as numbers are often relevant to dates).

Once a mapping from words to pseudo-words is defined we procede as follows.
Define f(x) to be the function that maps a word x to its pseudo-word f(x). We
define some count cut-off γ: a typical value for γ might be γ = 5. For any word
seen in training data less than γ times, we simply replace the word x by its pseudo-
word f(x). This mapping is applied to words in both training and test examples:
so words which are never seen in training data, but which are seen in test data, are
also mapped to their pseudo-word. Once this mapping has been performed, we can
estimate the parameters of the HMM in exactly the same way as before, with some
of our words in training data now being pseudo-words. Similarly, we can apply the
Viterbi algorithm for decoding with the model, with some of the words in our input
sentences being pseudo-words.

Mapping low-frequency words to pseudo-words has the effect of “closing the
vocabulary”: with this mapping, every word in test data will be seen at least once
in training data (assuming that each pseudo-word is seen at least once in training,
which is generally the case). Thus we will never have the problem that e(x|s) = 0
for some word x in test data. In addition, with a careful choice for the set of
pseudo-words, important information about the spelling of different words will be
preserved. See figure 2.7 for an example sentence before and after the mapping is
applied.

2.7. ADVANCED MATERIAL 21

Word class Example Intuition

twoDigitNum 90 Two digit year
fourDigitNum 1990 Four digit year
containsDigitAndAlpha A8956-67 Product code
containsDigitAndDash 09-96 Date
containsDigitAndSlash 11/9/89 Date
containsDigitAndComma 23,000.00 Monetary amount
containsDigitAndPeriod 1.00 Monetary amount,percentage
othernum 456789 Other number
allCaps BBN Organization
capPeriod M. Person name initial
firstWord first word of sentence no useful capitalization informa-

tion
initCap Sally Capitalized word
lowercase can Uncapitalized word
other , Punctuation marks, all other

words

Figure 2.6: The mapping to pseudo words used by [?] Bikel et. al (1999).

A drawback of the approach is that some care is needed in defining the map-
ping to pseudo-words: and this mapping may vary depending on the task being
considered (for example different mappings might be used for named-entity recog-
nition versus POS tagging). In a later chapter we will see what is arguably a cleaner
solution to the problem of low frequency and unknown words, building on ideas
from log-linear models.

22CHAPTER 2. TAGGING PROBLEMS, AND HIDDEN MARKOV MODELS(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA fore-
casts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mu-
lally/CP announced/NA first/NA quarter/NA results/NA ./NA

⇓

firstword/NA soared/NA at/NA initCap/SC Co./CC ,/NA easily/NA
lowercase/NA forecasts/NA on/NA initCap/SL Street/CL ,/NA as/NA
their/NA CEO/NA Alan/SP initCap/CP announced/NA first/NA quarter/NA re-
sults/NA ./NA

NA = No entity
SC = Start Company
CC = Continue Company
SL = Start Location
CL = Continue Location
. . .

Figure 2.7: An example of how the pseudo-word mapping shown in figure 2.6 is
applied to a sentence. Here we are assuming that Profits, Boeing, topping, Wall,
and Mullaly are all seen infrequently enough to be replaced by their pseudo word.
We show the sentence before and after the mapping.

