
Chapter 1

Computational Graphs, and
Backpropagation
(Course notes for NLP by Michael Collins, Columbia University)

1.1 Introduction

We now describe the backpropagation algorithm for calculation of derivatives in
neural networks. We have seen in the previous note how these derivatives can be
used in conjunction with stochastic gradient descent to train the parameters of a
neural network.

We will also introduce computational graphs, a formalism that will allow us to
specify a wide range of neural network models. We will describe how automatic
differentiation can be implemented on computational graphs, allowing backpropa-
gation to be derived “for free” once a network has been expressed as a computa-
tional graph.

1.2 Computational Graphs

Computational graphs are a powerful formalism that have been extremely fruitful
in deriving algorithms and software packages for neural networks and other models
in machine learning. The basic idea in a computational graph is to express some
model—for example a feedforward neural network—as a directed graph expressing
a sequence of computational steps. Each step in the sequence corresponds to a
vertex in the computational graph; each step corresponds to a simple operation that
takes some inputs and produces some output as a function of its inputs. Directed

1



2CHAPTER 1. COMPUTATIONAL GRAPHS, AND BACKPROPAGATION(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

edges in the graph are used to specify the inputs to each vertex.
Two key strengths of computational graphs are as follows. The first is that

they allow simple functions to be combined to form quite complex models: a wide
range of neural network models can be created by defining computational graphs
consisting of simple, primitive operations. The second strength is that they en-
able automatic differentiation. We saw in the previous note on neural networks
that gradient-based learning algorithms such as stochastic gradient descent can be
used to train neural networks, providing that the gradient of the loss function with
respect to the parameters can be calculated efficiently. Automatic differentiation
is a technique for calculating derivatives in computational graphs: once the graph
has been defined using underlying primitive operations, derivatives are calculated
automatically based on “local” derivatives of these operations.

For convenience, figure 1.1 contains a glossary of important terms connected
with computational graphs. Over the remainder of this note we will explain all
terms in the glossary.

1.2.1 Notation

Throughout this note we use lower-case letters such as f , d or u to refer to scalars or
vectors. For a vector u we use ui to refer to the i’th component of u. We use upper-
case letters such as P to refer to matrices. We will frequently use superscripts on
scalar, vector, or matrix variables: for example u2 is a scalar or vector (it is not
the case that u2 = u × u). In cases where we do need to refer to exponentiation,
we will use parantheses around the term being exponentiated: for example (u2)3 is
equal to the value u2 raised to the third power.

1.2.2 Computational Graphs: A Formal Definition

We define computational graphs as follows:

Definition 1 (Computational Graphs) A computational graph is a 6-tuple

〈n, l, E, u1 . . . un, d1 . . . dn, f l+1 . . . fn〉

where:

• n is an integer specifying the number of vertices in the graph.

• l is an integer such that 1 ≤ l < n that specifies the number of leaves in the
graph.



1.2. COMPUTATIONAL GRAPHS 3

• n: The number of vertices in the computational graph.

• l: The number of leaves in the computational graph. We have 1 ≤ l < n.

• E: The set of edges in the computational graph. For each (j, i) ∈ E we have j < i
(the graph is topologically ordered), j ∈ {1 . . . (n− 1)}, and i ∈ {(l + 1) . . . n}.

• ui for i ∈ {1 . . . n} is the variable associated with vertex i in the graph.

• di for i ∈ {1 . . . n} is the dimensionality for each variable, that is, ui ∈ Rd
i
.

• f i for i ∈ {(l + 1) . . . n} is the local function for vertex i in the graph

• αi for i ∈ {(l+ 1) . . . n} is defined as αi = 〈uj |(j, i) ∈ E〉, i.e., αi contains all input
values for vertex i.

• The forward algorithm: Given leaf values u1 . . . ul, calculates ul+1 . . . un through:
for i = (l + 1) . . . n, ui = f i(αi) where αi = 〈uj |(j, i) ∈ E〉.

• hi for i ∈ {(l+ 1) . . . n} is the global function for vertex i in the graph. The forward
algorithm calculates ui = hi(u1 . . . ul) for each i ∈ {(l + 1) . . . n}.

• J j→i for (j, i) ∈ E is the local Jacobian function for edge (j, i) in the graph. We
define

J j→i(αi) =
∂f i(αi)

∂uj

• I(d): the identiy matrix of dimension d× d.

• The backpropagation algorithm: Given leaf values ul . . . ul, and values for
ul+1 . . . un calculated using the forward algorithm, sets Pn = I(dn), and for
j = (n− 1) . . . 1:

P j =
∑
i

P iJ j→i(αi)

The output from the algorithm is P j for j ∈ {1 . . . l}, with

P j =
∂hn(u1 . . . ul)

∂uj

i.e., P j is a Jacobian summarizing the partial derivatives of the output hn with respect
to the input uj .

Figure 1.1: A glossary of important terms in computational graphs.



4CHAPTER 1. COMPUTATIONAL GRAPHS, AND BACKPROPAGATION(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

di = 1 for i = 1 . . . 4

f3(u1, u2) = u1 + u2

f4(u2, u3) = u2 × u3

Figure 1.2: A computational graph with n = 4, l = 2, E =
{(1, 3), (2, 3), (2, 4), (3, 4)}. We show the graph and the values for d1 . . . dn and
f1 . . . fn.

• E is a set of directed edges in the graph. Each edge is an ordered pair (j, i)
where j ∈ {1 . . . (n− 1)}, i ∈ {(l + 1) . . . n}, and j < i.

• Each ui for i = 1 . . . n is a variable associated with vertex i in the graph.
ui is a variable in Rd

i
, hence di for i = 1 . . . n is an integer specifying the

dimensionality of the variable associated with variable i.

• We take un to be the output variable in the graph. Often we have dn = 1,
so that the output variable is a scalar; however we will consider the general
case where dn is any integer greater than 0.

• Each f i for i = (l + 1) . . . n is a local function associated with vertex i in
the graph. If we define

αi = 〈uj |(j, i) ∈ E〉

hence αi is a vector formed by concatenating the vectors uj such that (j, i) ∈
E, and in addition we define

d̄i =
∑

j:(j,i)∈E
dj

then we have dimensions αi ∈ Rd̄
i
, f i : Rd̄

i → Rd
i
, and f i(αi) ∈ Rd

i
.

Note that the condition that each edge (j, i) has j < i implies that the graph is
topologically ordered. The condition that each edge (j, i) has j ∈ {1 . . . (n − 1)}
implies that the output variable un has no outgoing arcs. The condition that each



1.2. COMPUTATIONAL GRAPHS 5

edge (j, i) has i ∈ {(l+ 1) . . . n} implies that each leaf node j ∈ {1 . . . l} has zero
incoming arcs.

Example 1 (An Example Computational Graph) Consider the following exam-
ple. We have n = 4 and l = 2. We define the set of directed edges to be
E = {(1, 3), (2, 3), (2, 4), (3, 4). We define di = 1 for i = 1 . . . 4: it follows
that each variable ui is a one-dimensional vector (i.e., a scalar). We define the
local functions as follows:

f3(u1, u2) = u1 + u2

f4(u2, u3) = u2 × u3

See figure 1.3 for an illustration of this computational graph.

1.2.3 The Forward Algorithm in Computational Graphs

Figure 1.3 shows the forward algorithm in computational graphs. The algorithm
takes as input a computational graph together with values for the leaf variables
u1 . . . ul. It returns a value for un as its output. For each variable ui for i =
(l + 1) . . . n, the value is calculated as

ui = f i(αi)

where
αi = 〈uj |(j, i) ∈ E〉

Note that because the graph is topologically ordered (i.e., for any (j, i) ∈ E, we
have j < i), the values for each uj such that (j, i) ∈ E are calculated before ui is
calculated.

Example 2 (An Example of the Forward Algorithm.) As an example of the for-
ward algorithm, consider applying it to the computational graph in figure 1.2, with
input leaf values u1 = 2 and u2 = 3. Then the algorithm proceeds with the follow-
ing steps:

u3 = f3(u1, u2) = u1 + u2 = 5

u4 = f4(u2, u3) = u2 × u3 = 15

Output = u4 = 15



6CHAPTER 1. COMPUTATIONAL GRAPHS, AND BACKPROPAGATION(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

Input: A computational graph G = 〈n, l, E, d1 . . . dn, u1 . . . un, f1 . . . fn〉. Val-
ues for the leaf variables u1 . . . ul.
Algorithm:
For i = (l + 1) . . . n, compute

ui = f i(αi)

where
αi = 〈uj |(j, i) ∈ E〉

Output: un

Figure 1.3: The forward algorithm. The algorithm takes as inputs values for the
leaf variables u1 . . . ul, and returns un as the output value.

1.2.4 The Global Functions Defined by a Computational Graph

It will be useful to explicitly define the functions that map a set of leaf values
u1 . . . ul to non-leaf values ui for i ∈ {(l + 1) . . . n}, as follows:

Definition 2 (Global Functions) Given a computational graph, the global func-
tions hi(u1 . . . ul) for i = 1 . . . n are defined as follows:

If i ∈ {1 . . . l},
hi(u1 . . . ul) = ui

else if i ∈ (l + 1) . . . n,
hi(u1 . . . ul) = f i(αi)

where
αi = 〈hj(u1 . . . ul)|(j, i) ∈ E〉

Note that this is a recursive definition, with the base cases hi(u1 . . . ul) = ui

for i ∈ {1 . . . l}, and recursive definitions for i ∈ {(l + 1) . . . n}.
It can be verified that for i ∈ {(l + 1) . . . n}, the forward algorithm calculates

values
ui = hi(u1 . . . ul)

for i = (l + 1) . . . n. In particular, the output from the algorithm is

un = hn(u1 . . . u)l



1.2. COMPUTATIONAL GRAPHS 7

1.2.5 A Single-Layer Feedforward Network as a Computational Graph

We now describe how a feedforward network with a single hidden layer can be
specified as a computational graph. The network defines a model of the following
form:

p(yi|xi;V, γ,W, b) =
exp{Vyi · g(Wxi + b) + γyi}∑
y′ exp{Vy′ · g(Wxi + b) + γy′}

Here xi ∈ Rd is the input to the network, and yi ∈ {1 . . .K} is the output label,
where K is an integer specifying the number of output labels. If the integer m
specifies the number of neurons in the network, then W ∈ Rm×d and b ∈ Rm are
the parameters of the hidden layer, and g : Rm → Rm is the transfer function. For
each label y, Vy ∈ Rm is a parameter vector for the label y, and γy is a bias value
for the label y.

We will also find it convenient to use V ∈ RK×m to refer to a matrix with rows
V1, V2, . . . VK , and γ ∈ RK to be a vector of bias values.

Given this model, we can define the following function of the inputs (xi, yi)
together with the parameters W, b, V, γ:

L(xi, yi,W, b, V, γ) = − log p(yi|xi;V, γ,W, b)

We will now describe a computational graph that has xi, yi,W, b, V, γ as its leaf
variables, and has L(xi, yi,W, b, V, γ) as the value of its output.

Figure 1.4 shows the computational graph. We make a couple of remarks:

• For ease of comprehension we have used variable namesW,xi, b, yi, V, γ, z, h, l, q
and o rather than names u1, u2, u3, . . . un. However this is a minor detail:
we could replace W with u1, xi with u2, and so on.

• Two of the variables in the graph, W and V , are matrices rather than vectors,
with dimensionalities (m × d) and (K ×m) respectively. In a slight abuse
of notation we will allow variables in computational graphs that are matrices
in addition to vectors; we can effectively treat a matrix in Rm×d as a vector
with (m×d) elements, with the vector being indexed by pairs (m′, d′) where
1 ≤ m′ ≤ m and 1 ≤ d′ ≤ d.

It can be seen that the values of the non-leaf variables are calculated as follows:

• z = Wxi + b. This is the usual way of computing z ∈ Rm as the input to
the m neurons in the single-layer model.

• h = g(z). This computes the output vector h from the neurons.



8CHAPTER 1. COMPUTATIONAL GRAPHS, AND BACKPROPAGATION(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

• l = V h + γ. If we define Vy for y ∈ {1 . . .K} to be the y’th row of the
matrix V , then we have

ly = Vy · h+ γy

hence ly is the “logit” (unnormalized score) for label y under the model.

• q = LOG-SOFTMAX(l). Here we define LOG-SOFTMAX(l) such that

qy = log
exp{ly}∑
y′ exp{ly′}

= ly − log
∑
y′

exp{ly′}

Hence qy is the log-probability for label y under the model.

• o = −qyi . The output from the network is the value of variable o, which is
defined here to be the negative log probability of the label yi.

The next question is how to compute the derivatives of

o = L(xi, yi,W, b, V, γ)

Specifically, we would like to compute partial derivatives

∂o

∂Wi,j
for all i, j

∂o

∂bi
for all i

∂o

∂Vi,j
for all i, j

∂o

∂γi
for all i

Next we will describe how the backpropagation algorithm can be used to calcu-
late partial derivatives of the output with respect to each of the leaf variables in a
computational graph.

1.3 Partial Derivatives, and the Chain Rule

In the next section we will derive the backpropagation algorithm for computation
of partial derivatives in computational graphs.

In this section we give important background: first describing notation and
definitions for partial derivatives; then describing a first version of the chain rule,
for scalar variables; then describing Jacobians for functions that have vector inputs
and outputs; and finally giving a second version of the chain rule that makes use of
Jacobians.



1.3. PARTIAL DERIVATIVES, AND THE CHAIN RULE 9

Number of variables: n = 11
Number of leaf variables: l = 6
Leaf variables:

u1 = W ∈ Rm×d

u2 = b ∈ Rm

u3 = xi ∈ Rd

u4 = yi ∈ {1 . . .K}
u5 = V ∈ RK×m

u6 = γ ∈ RK

Non-leaf variables, and local functions f7 . . . f11:

u7 = z ∈ Rm = Wxi + b

u8 = h ∈ Rm = g(z)

u9 = l ∈ RK = V h+ γ

u10 = q ∈ RK = LOG-SOFTMAX(l)

u11 = o ∈ R = −qyi

Edges: E = {(1, 7), (2, 7), (3, 7), (7, 8), (5, 9), (6, 9), (8, 9), (9, 10), (4, 11), (10, 11)}
A figure showing the graph:

Figure 1.4: A computational graph for a single layer feedforward network that
maps leaf values xi, yi,W, b, V, γ to an output value o = − log p(yi|xi;W, b, V, γ).



10CHAPTER 1. COMPUTATIONAL GRAPHS, AND BACKPROPAGATION(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

1.3.1 Partial Derivatives

Given a function f : Rn → R, and an equation

y = f(z1, z2, . . . , zn)

where y and zi for i = 1 . . . n are scalars, we will write the partial derivative of the
function f with respect to the variable zi as

∂f(z1 . . . zn)

∂zi

We use the conventional definition of a partial derivative: this is the derivative of f
with respect to parameter zi, holding the other arguments to f (i.e., zj for j 6= i)
fixed. Or more precisely,

∂f(z1 . . . zn)

∂zi
= lim

h→0

f(z1 . . . , zi + h, . . . zn)− f(z1 . . . zn)

h

We will also use the following notation to refer to the partial derivative:

∂y

∂zi

∣∣∣∣f
z1...zn

which can be read as “the partial derivative of y with respect to zi, under function
f , at values z1 . . . zn.”

We are careful here that the notation explicitly identifies the function f that
underlies the partial derivative. This is unconventional, but will help to avoid con-
fusion. In deriving the backpropagation algorithm we will see that there are many
different functions in the context, and it will help us to keep track of exactly which
function we are talking about at each step.

We will sometimes drop f or z1 . . . zn when these values are clear from the
context.

1.3.2 A First Version of the Chain Rule

Again consider a function

y = f(z1, z2, . . . zn)

where y and z1 . . . zn are scalars. Assume in addition that for i = 1 . . . n

zi = gi(x1 . . . xn
′
)



1.3. PARTIAL DERIVATIVES, AND THE CHAIN RULE 11

where x1 . . . xn
′

are also scalars, and each gi is a function gi : R→ R. Define h to
be the composition of f and g, so

h(x1 . . . xn
′
) = f(g1(x1 . . . xn

′
), g2(x1 . . . xn

′
), . . . gn(z1 . . . xn

′
))

Now assume that we would like to calculate the partial derivatives of h, namely

∂h(x1 . . . xn
′
)

∂xi
=

∂y

∂xi

∣∣∣∣h
x1...xn′

for i = 1 . . . n′.
Then the chain rule is as follows:

∂y

∂xi
=

n∑
j=1

∂y

∂zj
× ∂zj

∂xi
(1.1)

or more precisely:

∂y

∂xi

∣∣∣∣h
x1...xn′

=
n∑
j=1

∂y

∂zj

∣∣∣∣f
z1...zn

× ∂zj

∂xi

∣∣∣∣∣
gj

x1...xn′
(1.2)

where zj = gi(x1 . . . xn
′
) for j = 1 . . . n.

Intuitively, the variable xi affects each zj through the function gi; y is then
effected by zj through the function f . This is reflected through each term

∂y

∂zj
× ∂zj

∂xi

These contributions are summed to give the final value for ∂y
∂xi

.

1.3.3 Jacobians

Now consider a function f that maps a sequence of vectors z1, z2, . . . zn to a vector
in Rm:

y = f(z1, z2, . . . zn)

Assume in addition that each vector zi is in Rd
i
: that is di specifies the dimen-

sionality of zi.
In this case for any i ∈ {1 . . . n} we use the notation

∂f(z1 . . . zn)

∂zi



12CHAPTER 1. COMPUTATIONAL GRAPHS, AND BACKPROPAGATION(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

or equivalently
∂y

∂zi

∣∣∣∣f
z1...zn

to refer to the Jacobian matrix of dimension (m×di), where for any k ∈ {1 . . .m},
k′ ∈ {1 . . . di},[

∂f(z1 . . . zn)

∂zi

]
k,k′

=

[
∂y

∂zi

∣∣∣∣f
z1...zn

]
k,k′

=
∂yk
∂zik′

∣∣∣∣∣
fk

z1...zn

Thus the Jacobian
∂y

∂zi

∣∣∣∣f
z1...zn

contains a matrix of partial derivatives for each value yk in the output paired with
each value zik′ in the input vector zi. This Jacobian is a matrix of dimension
(m× di), as there are m output values y1 . . . ym, and di input values in zi, namely
zi1 . . . z

i
di .

1.3.4 A Second Version of the Chain Rule

Again consider a function

y = f(z1, z2, . . . zn)

where y and z1 . . . zn are vectors. Assume in addition that for i = 1 . . . n

zi = gi(x1 . . . xn
′
)

where x1 . . . xn
′

are also vectors, and each gi is a function.
This is very similar to the set-up in section 1.3.2, but where we have replaced

scalars by vectors everywhere. We will see that this leads to a very similar form
for the chain rule.

Define h to be the composition of f and g, so

h(x1 . . . xn
′
) = f(g1(x1 . . . xn

′
), g2(x1 . . . xn

′
), . . . gn(z1 . . . xn

′
))

Then the chain rule is as follows:

∂y

∂xj︸︷︷︸
d(y)×d(xj)

=
n∑
i=1

∂y

∂zi︸︷︷︸
d(y)×d(zi)

× ∂zi

∂xj︸︷︷︸
d(zi)×d(xj)

(1.3)



1.4. THE BACKPROPAGATION ALGORITHM 13

or more precisely:

∂y

∂xj

∣∣∣∣h
x1...xn′︸ ︷︷ ︸

d(y)×d(xj)

=
n∑
i=1

∂y

∂zi

∣∣∣∣f
z1...zn︸ ︷︷ ︸

d(y)×d(zi)

× ∂zi

∂xj

∣∣∣∣∣
gi

x1...xn′︸ ︷︷ ︸
d(zi)×d(xj)

(1.4)

Here we show matrix dimensions under each matrix; we use d(v) for a vector v to
denote the dimensionality of v.

This looks very similar to the chain rule in Eq. 1.2, where we have replaced
scalars by vectors, and where the partial derivatives are now matrices correspond-
ing to Jacobians.

Eq. 1.4 can in fact be derived using the rule in Eq. 1.2. In particular, by Eq. 1.2,
for any output value yk, and input variable xjk′ , Eq. 1.2 implies that

∂yk

∂xjk′
=

n∑
i=1

d(zi)∑
l=1

∂yk
∂zil
× ∂zil
∂xjk′

It can be verified that Eq. 1.4 implements exactly this calculation for each k, k′,
through matrix multiplication of the Jacobians. It is an extremely convenient and
compact form of the chain rule.

1.4 The Backpropagation Algorithm

Given a set of leaf values u1 . . . ul, the forward algorithm calculates the output
value un from the computational graph, implementing

un = hn(u1 . . . ul)

where hn is the global function defined in section 1.2.4 of this note.
For any value i ∈ {1 . . . l}, we would like to calculate the Jacobian

∂un

∂ui︸ ︷︷ ︸
d(un)×d(ui)

or more precisely
∂un

∂ui

∣∣∣∣hn
u1...ul︸ ︷︷ ︸

d(un)×d(ui)



14CHAPTER 1. COMPUTATIONAL GRAPHS, AND BACKPROPAGATION(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

where the latter notation makes explicit that the partial derivative is being calcu-
lated with respect to the global function hn. We will refer to this Jacobian as a
global Jacobian, as it is based on the global function hn.

This Jacobian summarizes the full set of partial derivatives

∂unk
uik′

for k ∈ {1 . . . d(un)} and k′ ∈ {1 . . . d(ui)}, where each unk is a scalar corre-
sponding to an output value, and each uik′ is scalar corresponding to an input leaf
value.

As a concrete example, in the computational graph in figure 1.4 corresponding
to a feedforward neural network, the leaf variables are xi, yi,W, b, V, γ, and the
output variable o is

o = − log p(yi|xi;W, b, V, γ)

The global Jacobians

∂o

∂W︸︷︷︸
1×(m×d)

,
∂o

∂b︸︷︷︸
1×m

,
∂o

∂V︸︷︷︸
1×(K×m)

,
∂o

∂γ︸︷︷︸
1×K

contain the partial derivatives of o with respect to all parameters in the model.
Note that we have used the convention here that in terms such as

∂o

∂W

where one or both of the variables (in this case W ) is a matrix, that matrices of
dimension (d × d′) are represented as vectors with (d × d′) elements indexed by
(i, j) where 1 ≤ i ≤ d and 1 ≤ j ≤ d′. The Jacobian ∂o

∂W therefore has dimension
d(o)× d(W ), where W is represented as a vector with m× d elements.

1.4.1 The Local Jacobians

Recall that in the forward algorithm we compute values ui for i ∈ {(l + 1) . . . n}
using

ui = f i(αi)

where f i is the local function associated with vertex i in the graph, and

αi = 〈uj |(j, i) ∈ E〉

Given these definitions, for any edge (j, i) in the graph, we can calculate a
local Jacobian. We will see that the local Jacobians play a central role in the
backpropagation algorithm. They are defined as follows:



1.4. THE BACKPROPAGATION ALGORITHM 15

Definition 3 (Local Jacobian Functions) For any edge (j, i) ∈ E, we define the
local Jacobian function J j→i as

J j→i(αi) =
∂f i(αi)

∂uj
=

∂ui

∂uj

∣∣∣∣∣
f i

αi

Note that J j→i(αi) is a matrix of dimension di × dj . The input to the function αi

will generally be
αi = 〈uj |(j, i) ∈ E〉

with αi ∈ Rd̄
i

where d̄i =
∑
j:(j,i)∈E d

j . It follows that J j→i is a function in

Rd̄
i → Rd

i×dj .
Next, assume that we have used the forward algorithm to calculate values

ul+1 . . . un given input leaf values u1 . . . ul. As before define

αi = 〈uj |(j, i) ∈ E〉

Then for each edge (j, i) ∈ E, we will refer to the matrix

J j→i(αi) ∈ Rd
i×dj

as the local Jacobian for edge (j, i).

Note that J j→i(αi) is well defined if and only if the partial derivative ∂f i(αi)
∂uj

=

∂ui

∂uj

∣∣∣f i
αi

exists at point αi. For now we will in general assume that all local Jacobians

J j→i(αi) are well defined; in section 1.4.4 we discuss the issue are Jacobians that
are not defined due to non-differentiability of f i with respect to some variable uj .

Example 3 (An Example of Local Jacobians) Consider again the example given
earlier in the note, shown in figure 1.2. We have n = 4 and l = 2. We define the
set of directed edges to be E = {(1, 3), (2, 3), (2, 4), (3, 4)}. We define di = 1
for i = 1 . . . 4: it follows that each variable ui is a one-dimensional vector (i.e., a
scalar). We define the local functions as follows:

f3(u1, u2) = u1 + u2

f4(u2, u3) = u2 × u3

The local Jacobian functions are then as follows:

J1→3(u1, u2) =
∂u3

∂u1

∣∣∣∣∣
f3

u1,u2

= 1



16CHAPTER 1. COMPUTATIONAL GRAPHS, AND BACKPROPAGATION(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

J2→3(u1, u2) =
∂u3

∂u2

∣∣∣∣∣
f3

u1,u2

= 1

J2→4(u2, u3) =
∂u4

∂u2

∣∣∣∣∣
f4

u2,u3

= u3

J3→4(u2, u3) =
∂u4

∂u3

∣∣∣∣∣
f4

u2,u3

= u2

Finally assume the leaf values are u1 = 2 and u2 = 3. Then the forward
algorithm proceeds with the following steps:

u3 = f3(u1, u2) = u1 + u2 = 5

u4 = f4(u2, u3) = u2 × u3 = 15

Now for each edge in the graph we can calculate the local Jacobian:

J1→3(u1, u2) = 1

J2→3(u1, u2) = 1

J2→4(u2, u3) = u3 = 5

J3→4(u2, u3) = u2 = 3

Note that in this example each variable ui in the graph has dimension di = 1;
hence each Jacobian is a matrix of dimension (di × dj) = (1 × 1), i.e., each
Jacobian is a scalar.

1.4.2 The Backpropagation Algorithm

Figure 1.5 shows the backpropagation algorithm. The algorithm takes as input a
computational graph, together with values for the leaf variables u1 . . . ul. It returns
as output the global Jacobians

∂un

∂ui

or more precisely
∂un

∂ui

∣∣∣∣hn
u1...ul

for i ∈ {1 . . . l}.



1.4. THE BACKPROPAGATION ALGORITHM 17

The backward pass of the algorithm first initializesPn = I(dn), where I(dn) is
the identity matrix of dimension dn. The algorithm then works backwards through
the graph, for j = (n− 1) . . . 1 calculating

P j =
∑

i:(j,i)∈E
P iJ j→i(αi)

The algorithm returns the values P j for j = 1 . . . l. We will prove in the next
section that for j = 1 . . . l,

P j =
∂un

∂uj

or more precisely

P j =
∂un

∂uj

∣∣∣∣hn
u1...ul

Example 4 (An Example of the Backpropagation Algorithm) Again computational
graph in figure 1.2. We have n = 4 and l = 2. We define the set of directed edges
to be E = {(1, 3), (2, 3), (2, 4), (3, 4)}. We define di = 1 for i = 1 . . . 4: it follows
that each variable ui is a one-dimensional vector (i.e., a scalar). We define the
local functions as follows:

f3(u1, u2) = u1 + u2

f4(u2, u3) = u2 × u3

It follows that the local Jacobian functions are as follows:

J1→3(u1, u2) = 1

J2→3(u1, u2) = 1

J2→4(u2, u3) = u3

J3→4(u2, u3) = u2

Now assume that we have leaf values u1 = 2 and u2 = 3. The forward algorithm
calculates

u3 = u1 + u2 = 5

u4 = u2 × u3 = 15

The backward pass then proceeds as follows:

P 4 = 1 (Initialization)

P 3 = P 4 × J3→4(u2, u3) = 1× u2 = 3

P 2 = P 3J2→3(u1, u2) + P 4J2→4(u2, u3) = 3× 1 + 1× 5 = 8

P 1 = P 3J1→3(u1, u2) = 3× 1 = 3



18CHAPTER 1. COMPUTATIONAL GRAPHS, AND BACKPROPAGATION(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

Input: A computational graph G = 〈n, l, E, d1 . . . dn, u1 . . . un, f1 . . . fn〉. Val-
ues for the leaf variables u1 . . . ul.
Algorithm (forward pass):

• For i = (l + 1) . . . n, compute

ui = f i(αi)

where
αi = 〈uj |(j, i) ∈ E〉

Algorithm (backward pass):

• Initialization: set Pn = I(dn) where I(dn) is the identity matrix of dimen-
sion dn × dn.

• For j = (n− 1) . . . 1, compute

P j︸︷︷︸
dn×dj

=
∑

i:(j,i)∈E
P i︸︷︷︸

dn×di
× J j→i(αi)︸ ︷︷ ︸

di×dj

where αi is as calculated by the forward algorithm above.

Output: For j = 1 . . . l, output the Jacobian

P j =
∂un

∂uj

∣∣∣∣hn
u1...ul

Figure 1.5: The backpropagation algorithm. The algorithm takes as inputs val-
ues for the leaf variables u1 . . . ul, and returns the partial derivatives ∂un

∂uj
for

j ∈ {1 . . . l}. The algorithm makes use of a forward pass followed by a back-
ward pass.



1.4. THE BACKPROPAGATION ALGORITHM 19

The outputs from the algorithm are

∂u4

∂u1

∣∣∣∣∣
hn

u1...u2

= P 1 = 3

∂u4

∂u2

∣∣∣∣∣
hn

u1...u2

= P 2 = 8

We can verify that these values are correct as follows. The global functions h3 and
h4 can be calculated as

h3(u1, u2) = u1 + u2

h4(u1, u2) = u2 × h3(u1, u2) = u1 × u2 + (u2)2

It follows that
∂h4(u1, u2)

∂u1
= u2 = 3

∂h4(u1, u2)

∂u2
= u1 + 2× u2 = 8

which matches the values calculated by the algorithm.

1.4.3 Justification for the Backpropagation Algorithm

We now give justification for the backpropagation algorithm. We first introduce
the following definitions:

Definition 4 Directed Paths. Given a computational graph, we define P(j, i) to
be the set of directed paths between j and i in the graph. each directed path is
a sequence of edges (v1, v2), . . . , (vn−1, vn) where v1 = j, vn = i, n ≥ 2, and
(vi, vi+1) ∈ E for all i.

Definition 5 Products of Jacobians over Directed Paths. For a path p = (v1, v2), . . . , (vn−1, vn)
we define∏

(a,b)∈p
Ja→b(αb) = Jvn−1→vn(αvn)× Jvn−2→vn−1(αvn−1) . . .× Jv1→v2(αv2)

Hence this corresponds to the product of Jacobians over the path, where the first
term in the product is Jvn−1→vn(αvn), and the last term in the product is Jv1→v2(αv2).

Note that for matrix multiplications the order of products is important—in general
for two matrices X and Y , X × Y 6= Y ×X because matrix multiplication is not
commutative—hence it is important to specify the order in this definition.

We can now state the following theorem:



20CHAPTER 1. COMPUTATIONAL GRAPHS, AND BACKPROPAGATION(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

Theorem 1 Consider a computational graph 〈n, l, E, u1 . . . un, d1 . . . dn, f1 . . . fn〉.
Assume we have values for the leaf variables u1 . . . ul and we use the forward al-
gorithm to calculate values for ul+1 . . . un. As usual define

αi = 〈uj |(j, i) ∈ E〉

Assume that for every edge (j, i) ∈ E, the local Jacobian

J j→i(αi) =
∂f i(αi)

∂uj
=

∂ui

∂uj

∣∣∣∣∣
f i

αi

is well defined.
Then for any j ∈ {1 . . . l}, i ∈ {(l + 1) . . . n}, we have

∂ui

∂uj

∣∣∣∣∣
hi

u1...ul

=
∑

p∈P(j,i)

∏
(a,b)∈p

Ja→b(αb)

where P(j, i) is the set of directed paths between vertex j and vertex i in the graph;
each directed path is a sequence of edges (v1, v2), . . . , (vn−1, vn) where v1 = j,
vn = i, n ≥ 2, and (vi, vi+1) ∈ E for all i.

Thus to calculate the partial derivative

∂ui

∂uj

∣∣∣∣∣
hi

u1...ul

for i ∈ {(l + 1) . . . n} and j ∈ {1 . . . l}, we sum over all directed paths between j
and i in the graph, and take the product of Jacobians along each path.

The proof is given in section 1.4.5: it is a direct application of the chain rule,
together with proof by induction, to the computational graph.

Example 5 As an example, consider again a computational graph with leaf vari-
ables u1, u2, and edges E = {(1, 3), (2, 3), (2, 4), (3, 4)}. Consider the calcula-
tion of

∂u4

∂u2

∣∣∣∣∣
h4

u1...u2

In this case there are two directed paths between vertex 2 and 4 in the graph:

p1 = (2, 3)(3, 4)



1.4. THE BACKPROPAGATION ALGORITHM 21

p2 = (2, 4)

It follows that

∂u4

∂u2

∣∣∣∣∣
h4

u1...u2

= J3→4(u2, u3)× J2→3(u1, u2) + J2→4(u1, u2)

For example with u1 = 2 and u2 = 3 we have u3 = 5 and u4 = 15, and

∂u4

∂u2

∣∣∣∣∣
h4

u1...u2

= 3× 1 + 5 = 8

The second theorem completes the justification for the backpropagation algo-
rithm:

Theorem 2 Consider the backpropagation algorithm in figure 1.5. For j = (n −
1) . . . 1 the following holds:

P j =
∑

p∈P(j,n)

∏
(a,b)∈p

Ja→b(αb)

It follows from theorem 1 that for j = 1 . . . l,

P j =
∂un

∂uj

∣∣∣∣hn
u1...ul

The proof is by induction, and is given in section 1.4.6. The algorithm in
figure 1.5 is a dynamic programming algorithm, which calculates

P j =
∑

p∈P(j,n)

∏
(a,b)∈p

Ja→b(αb)

for every vertex j in the graph.

1.4.4 An Extension to the Case where Some Local Jacobians are not
Defined

Theorem 1 assumes that each local Jacobian

J j→i(αi) =
∂f i(αi)

∂uj
=

∂ui

∂uj

∣∣∣∣∣
f i

αi



22CHAPTER 1. COMPUTATIONAL GRAPHS, AND BACKPROPAGATION(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

in the graph is well defined. We now consider cases where some local Jacobians
are not well defined, due to the partial derivative

∂f i(αi)

∂uj

not being well defined at the point αi.
As one example, consider the computational graph for a feedfoward neural

network in figure 1.4, where we have

o = −qyi

or equivalently
u11 = −u10

u4

where u4 = yi is an integer in {1, 2, . . .K} specifying the output label of the
model.

Because u4 is a discrete (as opposed to continous) variable, the partial deriva-
tive

∂u11

∂u4

∣∣∣∣∣
f11

α11

is not well defined.
Intuitively, if we are trying to calculate the partial derivative

∂un

∂uj

∣∣∣∣fn
u1...ul

for some leaf variable j ∈ {1 . . . l}, and there is some directed path from j to n
such that a local Jacobian on that path is not well defined, then the partial derivative
∂un

∂uj

∣∣∣fn
u1...ul

will not be well defined.
This leads us to the following definition:

Definition 6 For any computational graph 〈n, l, E, u1 . . . un, d1 . . . dn, f1 . . . fn〉,
for any leaf values u1 . . . ul, we define the set

Di(u1 . . . ul) ⊆ {1 . . . l}

to be the set of values j ∈ {1 . . . l}, such that for every path p ∈ P(j, i), for every
edge (a, b) ∈ p, the Jacobian

Ja→b(αb)

is well defined, where αb is calculated using the forward algorithm with input val-
ues u1 . . . ul.



1.4. THE BACKPROPAGATION ALGORITHM 23

We can then state a modified version of theorem 1:

Theorem 3 Consider a computational graph 〈n, l, E, u1 . . . un, d1 . . . dn, f1 . . . fn〉.
Assume we have values for the leaf variables u1 . . . ul and we use the forward al-
gorithm to calculate values for ul+1 . . . un. As usual define

αi = 〈uj |(j, i) ∈ E〉

Then for any j ∈ {1 . . . l}, i ∈ {(l+ 1) . . . n} such that j ∈ Di(u1 . . . ul) we have

∂ui

∂uj

∣∣∣∣∣
hi

u1...ul

=
∑

p∈P(j,i)

∏
(a,b)∈p

Ja→b(αb)

where P(j, i) is the set of directed paths between vertex j and vertex i in the graph;
each directed path is a sequence of edges (v1, v2), . . . , (vn−1, vn) where v1 = j,
vn = i, n ≥ 2, and (vi, vi+1) ∈ E for all i.

Thus we have simply modified the theorem to apply only to pairs of vertices
(j, i) where all directed paths from j to i have well-defined local Jacobians. The
proof of the theorem is very similar to the original proof.

1.4.5 Proof of Theorem 1

The proof is by induction. Assume we have leaf values u1 . . . ul and we have used
the forward algorithm to calculate values for ul+1 . . . un. As usual define

αi = 〈uj |(j, i) ∈ E〉

For convenience, for any edge (j, i) ∈ E, define

Dj→i = J j→i(αi)

As before, define P(j, i) to be the set of directed paths from j to i in the graph.
Each directed path is a sequence of edges (v1, v2) . . . (vn−1, vn) where n ≥ 2, each
(vi, vi+1) ∈ E, and v1 = j, vn = i.

In addition, define P(j, k, i) to be the set of directed paths from j to i in the
graph, with the final edge equal to (k, i): i.e., each path in P(j, k, i) is a sequence
of edges (v1, v2) . . . (vn−1, vn) where n ≥ 2, each (vi, vi+1) ∈ E, v1 = j, vn = i,
and vn−1 = k. Note that P(j, j, i) is equal to (j, i) if (j, i) ∈ E, and is empty
otherwise.

It follows that
P(j, i) = ∪k:(k,i)∈EP(j, k, i)



24CHAPTER 1. COMPUTATIONAL GRAPHS, AND BACKPROPAGATION(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

and for k, k′ such that k 6= k′,

P(j, k, i) ∩ P(j, k′, i) = ∅

where ∅ is the empty set.
Recall the definition of the global functions hi for i = 1 . . . n:

• If i ∈ {1 . . . l}
hi(u1 . . . ul) = ui

• else if i ∈ (l + 1) . . . n,

hi(u1 . . . ul) = f i(αi)

where
αi = 〈hj(u1 . . . ul)|(j, i) ∈ E〉

It follows by the chain rule, for any i ∈ {(l + 1) . . . n}, j ∈ {1 . . . l},

∂ui

∂uj

∣∣∣∣∣
hi

u1...ul

=
∑

k:(k,i)∈E

∂ui

∂uk

∣∣∣∣∣
f i

αi

× ∂uk

∂uj

∣∣∣∣∣
hk

u1...ul

(1.5)

=
∑

k:(k,i)∈E
Dk→i × ∂uk

∂uj

∣∣∣∣∣
hk

u1...ul

(1.6)

where in the last equality we have used

Dk→i = Jk→i(αi) =
∂ui

∂uk

∣∣∣∣∣
f i

αi

Now consider the expression

Dk→i × ∂uk

∂uj

∣∣∣∣∣
hk

u1...ul

There are three cases:

• k ∈ {1 . . . l}, k 6= j: in this case

∂uk

∂uj

∣∣∣∣∣
hk

u1...ul

= 0



1.4. THE BACKPROPAGATION ALGORITHM 25

hence

Dk→i × ∂uk

∂uj

∣∣∣∣∣
hk

u1...ul

= 0

=
∑

p∈P(j,k,i)

∏
(a,b)∈p

Da→b

where the last equality follows because P(j, k, i) is the empty set if k ∈
{1 . . . l}, k 6= j.

• k ∈ {1 . . . l}, k = j: in this case

∂uk

∂uj

∣∣∣∣∣
hk

u1...ul

= I(dj)

where I(dj) is the identity matrix of dimension dj × dj , hence

Dk→i × ∂uk

∂uj

∣∣∣∣∣
hk

u1...ul

= Dk→i

=
∑

p∈P(j,k,i)

∏
(a,b)∈p

Da→b

because with k ∈ {1 . . . l}, k = j, the set P(j, k, i) contains a single path,
which contains the single edge (k, i) = (j, i).

• k ∈ {(l + 1) . . . n}: in this case by the inductive hypothesis,

∂uk

∂uj

∣∣∣∣∣
hk

u1...ul

=
∑

p∈P(j,k)

∏
(a,b)∈p

Da→b

It follows that

Dk→i × ∂uk

∂uj

∣∣∣∣∣
hk

u1...ul

= Dk→i ×
∑

p∈P(j,k)

∏
(a,b)∈p

Da→b

=
∑

p∈P(j,k)

Dk→i ×
∏

(a,b)∈p
Da→b

=
∑

p∈P(j,k,i)

∏
(a,b)∈p

Da→b



26CHAPTER 1. COMPUTATIONAL GRAPHS, AND BACKPROPAGATION(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

We have shown that for all k such that (k, i) ∈ E,

Dk→i × ∂uk

∂uj

∣∣∣∣∣
hk

u1...ul

=
∑

p∈P(j,k,i)

∏
(a,b)∈p

Da→b

It follows from Eq. 1.6 that

∂ui

∂uj

∣∣∣∣∣
hi

u1...ul

=
∑

k:(k,i)∈E
Dk→i × ∂uk

∂uj

∣∣∣∣∣
hk

u1...ul

=
∑

k:(k,i)∈E

∑
p∈P(j,k,i)

∏
(a,b)∈p

Da→b

=
∑

p∈P(j,i)

∏
(a,b)∈p

Da→b (1.7)

where the final equality follows from

P(j, i) = ∪k:(k,i)∈EP(j, k, i)

and for k, k′ such that k 6= k′,

P(j, k, i) ∩ P(j, k′, i) = ∅

1.4.6 Proof of Theorem 2

The proof is by induction. Assume we have leaf values u1 . . . ul and we have
used the forward algorithm to calculate values for ul+1 . . . un. We make use of the
following definitions:

• As usual define
αi = 〈uj |(j, i) ∈ E〉

For convenience, for any edge (j, i) ∈ E, define

Dj→i = J j→i(αi)

• As before, define P(j, i) to be the set of directed paths from j to i in the
graph. Each directed path is a sequence of edges (v1, v2) . . . (vn−1, vn)
where n ≥ 2, each (vi, vi+1) ∈ E, and v1 = j, vn = i.



1.4. THE BACKPROPAGATION ALGORITHM 27

• In addition, define P ′(j, k, i) to be the set of directed paths from j to i in
the graph, with the first edge equal to (j, k): i.e., each path in P ′(j, k, i) is a
sequence of edges (v1, v2) . . . (vn−1, vn) where n ≥ 2, each (vi, vi+1) ∈ E,
v1 = j, v2 = k, and vn = i. Note thatP(j, i, i) is equal to (j, i) if (j, i) ∈ E,
and is empty otherwise.

It follows that
P(j, n) = ∪i:(j,i)∈EP(j, i, n)

and for i, i′ such that i 6= i′,

P(j, i, n) ∩ P(j, i′, n) = ∅

where ∅ is the empty set.

The backpropagation algorithm calculates values for P j for j = (n − 1) . . . 1
as follows:

P j =
∑

i:(j,i)∈E
P i ×Dj→i (1.8)

where we have used Dj→i = J j→i(αi).
Now consider the term

P i ×Dj→i

There are two cases:

• i = n. In this case P i = I(dn) where I(dn) is the identity matrix of dimen-
sion dn × dn. It follows that

P i ×Dj→i = Dj→i

=
∑

p∈P ′(j,i,n)

∏
(a,b)∈p

Da→b

where the last equality follows because the set P ′(j, i, n) for i = n contains
a single path, which consists of a single edge (j, n) = (j, i).

• i < n. In this case by the inductive hypothesis,

P i =
∑

p∈P(i,n)

∏
(a,b)∈p

Da→b

It follows that

P i ×Dj→i =

 ∑
p∈P(i,n)

∏
(a,b)∈p

Da→b

×Dj→i

=
∑

p∈P ′(j,i,n)

∏
(a,b)∈p

Da→b



28CHAPTER 1. COMPUTATIONAL GRAPHS, AND BACKPROPAGATION(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

We have shown above that for all i such that (j, i) ∈ E,

P i ×Dj→i =
∑

p∈P ′(j,i,n)

∏
(a,b)∈p

Da→b

Combining this with Eq.1.8 gives

P j =
∑

i:(j,i)∈E
P i ×Dj→i

=
∑

i:(j,i)∈E

∑
p∈P ′(j,i,n)

∏
(a,b)∈p

Da→b (1.9)

=
∑

p∈P(j,n)

∏
(a,b)∈p

Da→b (1.10)

which completes the proof.


