
Feedforward Neural Networks

Michael Collins

1 Introduction

In the previous notes, we introduced an important class of models, log-linear mod-
els. In this note, we describe feedforward neural networks, which extend log-linear
models in important and powerful ways.

Recall that a log-linear model takes the following form:

p(y|x; v) =
exp (v · f(x, y))∑

y′∈Y exp (v · f(x, y′))
(1)

Here x is an input, y is a “label”, v ∈ Rd is a parameter vector, and f(x, y) ∈ Rd

is a feature vector that corresponds to a representation of the pair (x, y).
Log-linear models have the advantage that the feature vector f(x, y) can in-

clude essentially any features of the pair (x, y). However, these features are gen-
erally designed by hand, and in practice this is a limitation. It can be laborious to
define features by hand for complex problems such as language modeling, tagging,
parsing, or machine translation.

Neural networks essentially allow the representation itself to be learned. In
practice, this can significantly decrease the amount of human engineering required
in various applications. More importantly, empirical results across a broad set of
domains have shown that learned representations in neural networks can give very
significant improvements in accuracy over hand-engineered features.

In the remainder of this note we first introduce multi-class feedforward net-
works. In a later note we will describe how these models can be trained, using
stochastic gradient descent in conjunction with the backpropagation algorithm for
calculation of gradients.

2 Multi-Class Feedforward Networks

Our first step in deriving multi-class feedforward networks is to introduce a variant
of the log-linear models defined in Eq. 1. Consider a model where f(x) ∈ Rd is a

1

feature vector for an input x, v(y) ∈ Rd for each label y is a parameter vector for
label y, and γy ∈ R is a “bias” parameter for label y. We will use v to refer to the
set of all parameter vectors and bias values: that is, v = {(v(y), γy) : y ∈ Y}. The
distribution p(y|x; v) is then defined as follows:

p(y|x; v) =
exp (v(y) · f(x) + γy)∑

y′∈Y exp
(
v(y′) · f(x) + γy′

) (2)

Some remarks on this model:

• The feature vector f(x) can capture any features of the input x.

• The score v ·f(x, y) in Eq. 1 has essentially been replaced by v(y)·f(x)+γy
in Eq. 2.

The two model forms are closely related. It can be shown that Eq. 2 is a special
case of Eq. 1: more specifically, and model of the form in Eq. 2 can be easily
converted into an equivalent model in the form of Eq. 1. However the model form
in Eq. 2 is commonly used within feedforward neural networks, so we will work
with this formulation.

The next step is to replace the feature vector f(x) with a function φ(x; θ) where
θ are some additional parameters of the model. This gives a model of the following
form:

p(y|x; θ, v) =
exp (v(y) · φ(x; θ) + γy)∑

y′∈Y exp
(
v(y′) · φ(x; θ) + γy′

)
We now have two sets of parameters, θ and v. Both sets of parameters will be
learned. The parameters θ define a representation φ(x; θ). For now we leave the
exact form of φ(x; θ) unspecified; we will describe these extensively later in this
note.1

This leads us to the following definition:

Definition 1 (Multi-Class Feedforward Models) A multi-class feedforward model
consists of the following components:

• A set X of possible inputs.

• A set Y of possible labels. The set Y is assumed to be finite.
1We can now see one important advantage of using models of the form of Eq. 2 instead of Eq. 1

is that the representation φ(x; θ) does not depend on the label y, so it can be computed once when
calculating p(y|x; θ, v). Working with a representation of the form φ(x, y; θ) would require recalcu-
lation of φ(. . .) for each possible label y. In practice computing φ(. . .) is computationally intensive
for neural networks, so computing it once is a significant computational advantage.

2

• A positive integer d specifying the number of features and in the feedforward
representation.

• A parameter vector θ defining the feedforward parameters of the network.
We use Ω to refer to the set of possible values for θ.

• A function φ : X × Ω → Rd that maps any (x, θ) pair to a “feedforward
representation” φ(x; θ).

• For each label y ∈ Y , a parameter vector v(y) ∈ Rd, and a bias value
γy ∈ R.

For any x ∈ X , y ∈ Y , the model defines a conditional probability

p(y|x; θ, v) =
exp (v(y) · φ(x; θ) + γy)∑

y′∈Y exp
(
v(y′) · φ(x; θ) + γy′

)
Here exp(x) = ex, and v(y) · φ(x; θ) =

∑d
k=1 vk(y)φk(x; θ) is the inner product

between v(y) and φ(x; θ). The term p(y|x; θ, v) is intended to be read as “the
probability of y conditioned on x, under parameter values θ and v”.

This definition leads to the following questions:

• How can we define the feedforward representation φ(x; θ)?

• Given training examples (xi, yi) for i = 1 . . . n, how can we train the pa-
rameters θ and v?

Section 3 describes a generic solution to the second problem, gradient-based
learning. Section 4 then gives a full description of how φ(x; θ) is defined in single-
layer feedforward networks.

3 Gradient-Based Learning

Figure 1 shows a simple generic algorithm for training the parameters of a multi-
class feedforward network. The algorithm takes T training steps. At each training
step it selects a training example index i uniformly at random from {1 . . . n}where
n is the number of training examples. It then defines the following function of the
parameters θ, v in the model

L(θ, v) = − log p(yi|xi; θ, v)

3

It can be seen thatL(θ, v) is the negative log-likelihood of training example (xi, yi)
under the current parameters.

Finally, it updates the parameters θ and v using the updates

θj = θj − ηt ×
dL(θ, v)

dθj

and

vk(y) = vk(y)− ηt × dL(θ, v)

dvk(y)

γy = γy − ηt ×
dL(θ, v)

dγy

Thus the parameter vectors move in the direction of the derivatives of L(θ, v). The
parameter ηt > 0 is referred to as a learning rate; it governs how far the parameters
move.

The algorithm is a simple variant of stochastic gradient descent. It is stochastic
because it selects a random training example for each update. It is gradient descent
because it can be interpreted as minimizing the log-likelihood function

−
n∑

i=1

log p(yi|xi; θ, v)

by following the gradients of this function.
The main computational step in the algorithm is to calculate the derivatives

dL(θ, v)

dθj

dL(θ, v)

dγy

and
dL(θ, v)

dvk(y)

We will see that a method called back-propagation can be used to calculate deriva-
tives of this form in feedforward networks.

4 Single-Layer Feedforward Representations

We now describe how to define the function φ(x; θ) using single-layer feedforward
networks.

4

Inputs: Training examples (xi, yi) for i = 1 . . . n. A feedforward representation
φ(x; θ). An integer T specifying the number of updates. A sequence of learning
rate values η1 . . . ηT where each ηt > 0.
Initialization: Set v and θ to random parameter values.
Algorithm:

• For t = 1 . . . T

– Select an integer i uniformly at random from {1 . . . n}
– Define

L(θ, v) = − log p(yi|xi; θ, v)

– For each parameter θj ,

θj = θj − ηt ×
dL(θ, v)

dθj

– For each label y, for each parameter vk(y),

vk(y) = vk(y)− ηt × dL(θ, v)

dvk(y)

– For each label y,

γy = γy − ηt ×
dL(θ, v)

dγy

Figure 1: A simple variant of stochastic gradient descent (SGD), used to train a
multi-class feedforward network.

5

4.1 Defining the input to a feedforward network

Our first assumption will be that we have a function that maps an input x to a
vector f(x) ∈ RD. This vector will be the input to the feedforward network. In
general it is assumed that the representation f(x) is “simple”, not requiring careful
hand-engineering. The neural network will take f(x) as input, and will produce a
representation φ(x; θ) that depends on the input x and the parameters θ.

Note that we could build a log-linear model using f(x) as the representation:

p(y|x; v) =
exp{v(y) · f(x)}∑
y′ exp{v(y′) · f(x)}

(3)

This is a “linear” model, because the score v(y) ·f(x) is linear in the input features
f(x). The general assumption is that a model of this form will perform poorly or
at least non-optimally. Neural networks enable “non-linear” models that perform
at much higher levels of accuracy.

We now give a few examples of how f(x) can be constructed:

Example 1: Acoustic modeling for speech recognition. In this domain the goal
is to map an acoustic waveform a to a sentence s. A critical sub-problem in build-
ing a speech recognizer is estimating the probability distribution

p(y|x)

where y is a phoneme label, which can take any value in some set Y of possible
phonemes, and x is a pair (a, i) consisting of the acoustic waveform a together
with a “position” i in the acoustic waveform. The position corresponds to a small
segment of the acoustic waveform, typically around 10 milliseconds in length.

To be concrete, we will assume that a is equal to a sequence of vectors a =
a1a2 . . . am where m is the length of the sequence, each ai ∈ RD for i = 1 . . .m
represents a 10 millisecond portion of the acoustic sequence. A common choice
would be for ai to be a D-dimensional vector that represents the energy in the 10
millisecond section of speech at different frequencies. Thus each component aij
for j ∈ 1 . . . D would represent the energy in the j’th frequency band. A typical
choice for D would be approximately D = 40.

Once a model p(y|x) = p(y|a, i) has been estimated, it can be integrated within
a full speech recognition model that takes the entire sequence a and produces a
sentence s. Given that the set of possible positions in a is {1 . . .m}, the probability
distributions

p(y|a, i)

6

for i = 1 . . .m are taken into account when searching for the most likely sentence
s.

In recent years, multi-class feedforward networks have been shown to be very
successful methods for building a model of p(y|a, i) in this domain, giving very
significant improvements in accuracy over previous methods. In the simplest ap-
proach, the representation f(x) = f(a, i) is simply defined to be f(a, i) = ai ∈
R40.

In a slightly more complex approach, the representation might take into account
the 40-dimensional representation of frames within some window of position i.
For example we could construct f(x) ∈ R360 by simply concatenating the 40-
dimensional vector representations of all 9 positions within the range {(i−4), (i−
3), . . . i, . . . , (i + 3), (i + 4)}. Thus f(a, i) = [ai−4; ai−3; . . . ai; . . . ai+3; ai+4].
This allows the model to take into account more context when modeling p(y|a, i).

Example 2: Handwritten Digit Recognition In this example our task is to map
an image x to a label y. Each image contains a hand-written digit in the set
{0, 1, 2, . . . 9}. The input representation f(x) ∈ RD simply represents the pixel
values in the image. For example if the image is 16 × 16 grey-scale pixels, where
each pixel takes some value indicating how bright it is, we would have D = 256,
with f(x) just being the list of values for the 256 different pixels in the image.

For this task using the representation f(x) in a linear model, as shown in Eq. 3,
leads to poor performance. Neural networks, which effectively construct non-linear
models from the input f(x), give much improved performance.

4.2 Neural Networks with a Single Hidden Layer

We now describe how feedforward representations φ(x; θ) are defined. We will
begin with networks with a single hidden layer, then describe the generalization to
multiple hidden layers.

Throughout this section we assume x = f(x): that is, the input x is itself a
vector used as input to the network. This will make notation less cumbersome.
However it is important to remember that in general we will need to define some
function f(x) defining the input to the network, as described in the previous sec-
tion.

4.2.1 Neurons

A key concept will be that of a neuron. A neuron is defined by a weight vector
w ∈ RD, a bias b ∈ R, and a transfer function g : R → R. The neuron maps an

7

input vector x to an output h as follows:

h = g(w · x+ b)

The vectorw ∈ Rd and scalar b ∈ R are parameters of the model, which are learned
from training examples.

It is critical that the transfer function is non-linear. A linear function would be
of the form

g(z) = αz + β

for constants α ∈ R and β ∈ R. Some commonly used transfer functions—the
“ReLU” and “tanh” functions—are shown in figure 2.

In addition to giving definitions of g(z), figure 2 gives the derivatives

dg(z)

dz

for each transfer function. These derivatives will be important when deriving a
gradient-based learning method for models that make use of these transfer func-
tions. In particular, given that

h = g(w · x+ b)

it will be useful to calculate partial derivatives

∂h

∂wj

for the parameters w1, w2, . . . wd, and also

∂h

∂b

for the bias parameter b. To do this we can use the chain rule of differentiation.
First introduce an intermediate variable z ∈ R:

z = w · x+ b

h = g(z)

Then by the chain rule we have

∂h

∂wj
=
∂h

∂z
× ∂z

∂wj
=
∂g(z)

∂z
× xj

and
∂h

∂b
=
∂h

∂z
× ∂z

∂b
=
∂g(z)

∂z
× 1

Here we have used ∂h
∂z = ∂g(z)

∂z , ∂z
∂wj

= xj , and ∂z
∂b = 1.

8

Definition 2 (The ReLU (rectified linear unit) transfer function) The ReLU
transfer function is defined as

g(z) = {z if z ≥ 0, or 0 if z < 0}

Or equivalently,
g(z) = max{0, z}

It follows that the derivative is

dg(z)

dz
= {1 if z > 0, or 0 if z < 0, or undefined if z = 0}

Definition 3 (The tanh transfer function) The tanh transfer function is defined
as

g(z) =
e2z − 1

e2z + 1

It can be shown that the derivative is

dg(z)

dz
= 1− (g(z))2

Figure 2: Two commonly used transfer functions, the ReLU function, and the tanh
function.

9

4.2.2 Single-Layer Neural Networks

We now describe how to construct a neural network with a single hidden layer. The
key step will be to introduce m neurons, where m is some integer. The definition
is then as follows:

Definition 4 (Single-Layer Feedforward Representation) A single-layer feedfor-
ward representation consists of the following:

• An integer d specifying the input dimension. Each input to the network is a
vector x ∈ Rd.

• An integer m specifying the number of hidden units.

• A parameter matrix W ∈ Rm×d. We use the vector Wk ∈ Rd for each
k ∈ {1, 2, . . .m} to refer to the k’th row of W .

• A vector b ∈ Rm of bias parameters.

• A transfer function g : R → R. Common choices are g(x) = ReLU(x) or
g(x) = tanh(x).

We then define the following:

• For k = 1 . . .m, the input to the k’th neuron is zk = Wk · x+ bk.

• For k = 1 . . .m, the output from the k’th neuron is hk = g(zk).

• Finally, define the vector φ(x; θ) ∈ Rm as φk(x; θ) = hk for k = 1 . . .m.
Here θ denotes the parameters W ∈ Rm×d and b ∈ Rm. Hence θ contains
m× (d+ 1) parameters in total.

We can then use the definition of multiclass feedforward models to define

p(y|x; θ, v) =
exp{v(y) · φ(x; θ)}∑
y′ exp{v(y′) · φ(x; θ)}

from which it follows that

log p(y|x; θ, v) = v(y) · φ(x; θ)− log
∑
y′

exp{v(y′) · φ(x; θ)}

It can be seen that the neural network employs m units, each with their own
parameters Wk and bk, and these neurons are used to construct a “hidden” repre-
sentation h ∈ Rm. The representation is referred to as being hidden because during

10

training we will only observe inputs xi together with labels yi: the values for the
hidden representation are unobserved, and will be learned through gradient descent
on the parameters W , b, and v.

It will be convenient to write the above operations in matrix form, which can
be considerably more compact. We can for example replace the operation

zk = Wk · x+ bk for k = 1 . . .m

with
z = Wx+ b

where the dimensions are as follows (note that an m-dimensional column vector is
equivalent to a matrix of dimension m× 1):

z︸︷︷︸
m×1

= W︸︷︷︸
m×d

x︸︷︷︸
d×1︸ ︷︷ ︸

m×1

+ b︸︷︷︸
m×1

This leads to the following definition:

Definition 5 (Single-Layer Feedforward Representation (Matrix Form)) A single-
layer feedforward representation consists of the following:

• An integer d specifying the input dimension. Each input to the network is a
vector x ∈ Rd.

• An integer m specifying the number of hidden units.

• A matrix of parameters W ∈ Rm×d.

• A vector of bias parameters b ∈ Rm

• A transfer function g : Rm → Rm. Common choices would be to define
g(z) to be a vector with components ReLU(z1),ReLU(z2), . . . ,ReLU(zm)
or tanh(z1), tanh(z2), . . . , tanh(zm).

We then define the following:

• The vector of inputs to the hidden layer z ∈ Rm is defined as z = Wx+ b.

• The vector of outputs from the hidden layer h ∈ Rm is defined as h = g(z)

• Finally, define φ(x; θ) = h. Here the parameters θ contain the matrix W
and the vector b.

• It follows that
φ(x; θ) = g(Wx+ b)

11

4.2.3 A Motivating Example: the XOR Problem

We now motivate the use of feedforward networks, using a classic problem, the
XOR problem. We will show that a simple linear model fails on this problem,
whereas a simple neural network can succeed in modeling that data.

We will assume a training set where each label is in the set Y = {−1,+1}, and
there are 4 training examples, as follows:

x1 = [0, 0], y1 = −1

x2 = [0, 1], y2 = 1

x3 = [1, 0], y3 = 1

x4 = [1, 1], y4 = −1

Note that for any x = (x1, x2), the label y is equal to XOR(x1, x2) for a suitable
definition of the XOR function.

We now analyze the behaviour of linear models, and neural networks, on this
data. The following lemma will be useful:

Lemma 1 Assume we have a model of the form

p(y|x; v) =
exp{v(y) · x+ γy}∑
y exp{v(y) · x+ γy}

and the set of possible labels is Y = {−1,+1}. Then for any x,

p(+1|x; v) > 0.5

if and only if
u · x+ γ > 0

where u = v(+1)− v(−1) and γ = γ+1 − γ−1. Similarly for any x,

p(−1|x; v) > 0.5

if and only if
u · x+ γ < 0

Proof: We have

p(+1|x; v) =
exp{v(+1) · x+ γ+1}

exp{v(+1) · x+ γ+1}+ exp{v(−1) · x+ γ−1}

=
1

1 + exp{−(u · x+ γ)}

12

It follows that p(+1|x; v) > 0.5 if and only if exp{−(u · x+ γ)} < 1 from which
it follows that u · x+ γ > 0.

A similar proof applies to the condition p(−1|x; v) > 0.5.
We can now state and prove a theorem concerning the failure of a simple linear

model on the XOR problem:

Theorem 1 Assume we have examples (xi, yi) for i = 1 . . . 4 as defined above.
Assume we have a model of the form

p(y|x; v) =
exp{v(y) · x+ γy}∑
y exp{v(y) · x+ γy}

Then there are no parameter settings for v(+1), v(−1), γ+1, γ−1 such that

p(yi|xi; v) > 0.5 for i = 1 . . . 4

Proof: From lemma ??, p(yi = 1|xi; v) > 0.5 if and only if

u · xi + γ > 0

where u = v(+1)− v(−1) and γ = γ+1 − γ−1.
Similarly p(yi = 0|xi; v) > 0.5 if and only if

v · xi + γ < 0

where v = v(+1)− v(−1) and γ = γ+1 − γ−1.
Hence to satisfy p(yi|xi; v) > 0.5 for i = 1 . . . 4, there must exist parameters

u and γ such that

u · [0, 0] + γ < 0 (4)

u · [0, 1] + γ > 0 (5)

u · [1, 0] + γ > 0 (6)

u · [1, 1] + γ < 0 (7)

Eqs. 5 and 6 imply
u · [1, 1] + 2γ > 0

whereas Eq. 4 implies
γ < 0

or equivalently
−γ > 0

13

hence Eqs. 4, 5, 6 together imply

u · [1, 1] + γ > 0

This is in direct contradication to Eq. 7, so it follows that there is no parameter
setting u, γ that satisfies Eqs. 4, 5, 6, 7.

The constraints in Eqs. 4-7 above have a geometric interpretation. The points
x = [x1, x2] are in a two-dimensional space. The parameters u and γ define a
hyperplane whose normal is in the direction of u, and which is at a distance of
γ/||u|| from the origin. For Eqs. 4-7 to be satisfied, there must be a hyperplane
defined by u and γ that “seperates” the points labeled −1 and +1: that is, all
points labeled +1 are on one side of the hyperplane, all points labeled −1 are on
the other side. The proof shows that this is not possible; the impossibility of such a
hyperplane is also easily verified by plotting the points on a two-dimensional grid.

While a simple linear model fails, we now show that a simple neural network
with a single hidden layer with m = 2 neurons can successfully model the data:

Theorem 2 Assume we have examples (xi, yi) for i = 1 . . . 4 as defined above.
Assume we have a model of the form

p(y|x; θ, v) =
exp{v(y) · φ(x; θ) + γy}∑
y exp{v(y) · φ(x; θ) + γy}

where φ(x; θ) is defined by a single layer neural network with m = 2 hidden
units, and the ReLU(z) activation function. Then there are parameter settings for
v(+1), v(−1), γ+1, γ−1, θ such that

p(yi|xi; v) > 0.5 for i = 1 . . . 4

Proof. Define W1 = [1, 1], W2 = [1, 1], b1 = 0, b2 = −1. Then for each input
x we can calculate the value for the vectors z and h corresponding to the inputs
and the outputs from the hidden layer:

x = [0, 0] ⇒ z = [0,−1] ⇒ h = [0, 0]

x = [1, 0] ⇒ z = [1, 0] ⇒ h = [1, 0]

x = [0, 1] ⇒ z = [1, 0] ⇒ h = [1, 0]

x = [1, 1] ⇒ z = [2, 1] ⇒ h = [2, 1]

Next, note that φ(x; θ) = h, so

p(y|x; θ, v) =
exp{v(y) · h+ γy}∑
y exp{v(y) · h+ γy}

14

Hence to satisfy p(yi|xi; v) > 0.5 for i = 1 . . . 4, there must exist parameters
u = v(+1)− v(−1) and γ = γ+1 − γ−1 such that

u · [0, 0] + γ < 0 (8)

u · [1, 0] + γ > 0 (9)

u · [1, 0] + γ > 0 (10)

u · [2, 1] + γ < 0 (11)

It can be verified that u = [1,−2], γ = −0.5 satisifies these contraints, because

[1,−2] · [0, 0]− 0.5 = −0.5

[1,−2] · [1, 0]− 0.5 = 0.5

[1,−2] · [1, 0]− 0.5 = 0.5

[1,−2] · [2, 1]− 0.5 = −0.5

It follows that choosing parameters such that v(+1) − v(−1) = [1,−2] and
γ+1 − γ−1 = −0.5 leads to

p(yi|xi; θ, v) > 0.5

for i = 1 . . . 4.
It can be seen that the neural network effectively maps each input x to a new

representation h. The new representation leads to the constraints in Eqs. 8-11. We
now have a set of constraints that can be satisfied by suitably chosen values for u
and γ.

15

