# Lexical Semantics: Similarity Measures and Clustering

#### **Today: Semantic Similarity**



This parrot is no more! It has ceased to be! It's expired and gone to meet its maker! This is a late parrot! This... is an EX-PARROT!

#### **Beyond Dead Parrots**

Automatically constricted clusters of semantically similar words (Charniak, 1997):

Friday Monday Thursday Wednesday Tuesday Saturday Sunday

People guys folks fellows CEOs commies blocks

water gas cola liquid acid carbon steam shale

that the theat

head body hands eyes voice arm seat eye hair mouth

#### State-of-the-art Methods

Closest words for ?

anthropology 0.275881, sociology 0.247909, comparative literature 0.245912, computer science 0.220663, political science 0.219948, zoology 0.210283, biochemistry 0.197723, mechanical engineering 0.191549, biology 0.189167, criminology 0.178423, social science 0.176762, psychology 0.171797, astronomy 0.16531, neuroscience 0.163764, psychiatry 0.163098, geology 0.158567, archaeology 0.157911, mathematics 0.157138

#### Motivation

Smoothing for statistical language models

- Two alternative guesses of speech recognizer:
   For breakfast, she ate durian.
   For breakfast, she ate Dorian.
- Our corpus contains neither "ate durian" nor "ate Dorian"
- But, our corpus contains "ate orange", "ate banana"

# Motivation

Aid for Question-Answering and Information Retrieval

- Task: "Find documents about women astronauts"
- Problem: some documents use paraphrase of *astronaut*

In the history of Soviet/Russian space exploration, there have only been three Russian women cosmonauts: Valentina Tereshkova, Svetlana Savitskaya, and Elena Kondakova.

# Learning Similarity from Corpora

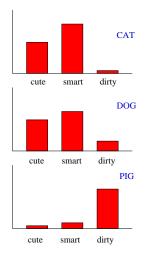
• You shall know a word by the company it keeps (Firth 1957)

What is tizguino? (Nida, 1975)

A bottle of tizguino is on the table.

Tizguino makes you drunk. We make tizguino out of corn.

# Learning Similarity from Corpora



#### Outline

- Vector-space representation and similarity computation
  - Similarity-based Methods for LM
- Hierarchical clustering
  - Name Tagging with Word Clusters
- Computing semantic similarity using WordNet

## **Example 1: Next Word Representation**

Brown et al. (1992)

- *C*(*x*) denotes the vector of properties of *x* ("context" of x)
- Assume alphabet of size K:  $w^1, \ldots, w^K$
- $C(w) = \langle \#(w^1), \#(w^2), \dots, \#(w^K) \rangle$ , where  $\#(w^i)$ is the number of times  $w^i$  followed w in the corpus

## Learning Similarity from Corpora

- Select important distributional properties of a word
- Create a vector of length n for each word to be classified
- Viewing the *n*-dimensional vector as a point in an *n*-dimensional space, cluster points that are near one another

## **Example 2: Syntax-Based Representation**

- The vector C(n) for a noun n is the distribution of verbs for which it served as direct object
- Assume (verb) alphabet of size K:  $v^1, \ldots, v^K$
- $C(n) = \langle P(v^1|n), P(v^2|n), \dots, P(v^K|n) \rangle$ , where  $P(v^i|n)$  is the probability that v is a verb for which nserves as a direct object
- Representation can be expanded to account for additional syntactic relations (subject, object, indirect-object)

#### **Vector Space Model**

Each word is represented as a vector  $\vec{x} = (x_1, x_2, \dots, x_n)$ 

## man. woman grape orange apple

## Similarity Measure: Cosine

Cosine  $cos(\vec{x}, \vec{y}) = \frac{\vec{x} * \vec{y}}{|\vec{x}| |\vec{y}|} = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x^2} \sqrt{\sum_{i=1}^{n} y^2}}$ 

|                                                                 | cosmonaut | astronaut | moon | car | truck |
|-----------------------------------------------------------------|-----------|-----------|------|-----|-------|
| Soviet                                                          | 1         | 0         | 0    | 1   | 1     |
| American                                                        | 0         | 1         | 0    | 1   | 1     |
| spacewalking                                                    | 1         | 1         | 0    | 0   | 0     |
| red                                                             | 0         | 0         | 0    | 1   | 1     |
| full                                                            | 0         | 0         | 1    | 0   | 0     |
| old                                                             | 0         | 0         | 0    | 1   | 1     |
| $cos(cosm, astr) = \frac{1*0+0*1+1*1+0*0+0*0+0*0}{1*0+0*0+0*0}$ |           |           |      |     |       |

$$cosm, astr) = -$$

 $\frac{1}{\sqrt{1^2+0^2+1^2+0^2+0^2+0^2}\sqrt{0^2+1^2+1^2+0^2+0^2+0^2}}$ 

## Similarity Measure: Euclidean

Euclidean  $|\vec{x}, \vec{y}| = |\vec{x} - \vec{y}| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$ 

|              | cosmonaut | astronaut | moon | car | truck |
|--------------|-----------|-----------|------|-----|-------|
| Soviet       | 1         | 0         | 0    | 1   | 1     |
| American     | 0         | 1         | 0    | 1   | 1     |
| spacewalking | 1         | 1         | 0    | 0   | 0     |
| red          | 0         | 0         | 0    | 1   | 1     |
| full         | 0         | 0         | 1    | 0   | 0     |
| old          | 0         | 0         | 0    | 1   | 1     |

euclidian(cosm, astr) =

$$\sqrt{(1-0)^2+(0-1)^2+(1-1)^2+(0-0)^2+(0-0)^2+(0-0)^2}$$

#### Outline

- Vector-space representation and similarity computation
  - Similarity-based Methods for LM
- Hierarchical clustering
  - Name Tagging with Word Clusters
- Computing semantic similarity using WordNet

#### **Smoothing for Language Modeling**

- Task: estimate the probability of unseen word pairs
- Possible approaches:
  - Katz back-off scheme utilize unigram estimates
  - Class-based methods utilize average co-occurrence probabilities of the classes to which the two words belong
  - Similarity-based methods

#### Discounting

$$\hat{P}(w_2|w_1) = \begin{cases} P_d(w_2|w_1) & c(w_1, w_2) > 0\\ \alpha(w_1)P_r(w_2|w_1) & otherwise \end{cases}$$

- *P*<sub>d</sub> Good-Turing discounted estimate
- $\alpha(w_1)$  normalization factor
- $P_r$  the model for probability redistribution among unseen words

## Similarity-based Methods for LM

(Dagan, Lee & Pereira, 1997)

- Idea:
  - 1. combine estimates for the words most similar to a word w
  - 2. weight the evidence provided by word w' by a function of its similarity to w
- Implementation:
  - a scheme for deciding which word pairs require a similarity-based estimate
  - a method for combining information from similar words
  - a function measuring similarity between words

## **Combining Evidence**

Assumption: if word  $w'_1$  is "similar" to word  $w_1$ , then  $w'_1$  can yield information about the probability of unseen word pairs involving  $w_1$ 

$$\begin{split} S(w_1) & \longrightarrow \text{ the set of words most similar to } w_1 \\ W(w_1, w_1') & \longrightarrow \text{ similarity function} \\ P_{sim}(w_2|w_1) & = \sum_{w_1' \in S(w_1)} \frac{W(w_1, w_1')}{N(w_1)} P(w_2|w_1') \\ N(w_1) & = \sum_{w_1' \in S(w_1)} W(w_1, w_1') \end{split}$$

#### **Combining Evidence (cont.)**

How to define  $S(w_1)$ ? Possible options:

- $S(w_1) = V$
- *S*(*w*<sub>1</sub>): the closest *k* or fewer words *w*'<sub>1</sub> such that dissimilarity between *w*<sub>1</sub> and *w*'<sub>1</sub> is less than a threshold value *t*

Redistribution model:

$$P_r(w_2|w_1) = P_{sim}(w_2|w_1)$$

#### **Other Probabilistic Dissimilarity Measures**

• Information Radius:

$$\operatorname{IRad}(p,q) = D(p||\frac{p+q}{2}) + D(q||\frac{p+q}{2})$$

- Symmetric
- Well-defined if either  $q_i > 0$  or  $p_i > 0$
- $L_1$  norm:

$$L_1(p,q) = \sum_i |p_i - q_i|$$

- Symmetric
- Well-defined for arbitrary  $\boldsymbol{p}$  and  $\boldsymbol{q}$

## Kullback Leibler Divergence

• Definition: The KL Divergence D(p||q) measures how much information is lost if we assume distribution q when the true distribution is p

$$D(p||q) = \sum_{i} p_i log \frac{p_i}{q_i}$$

- Properties:
  - Non-negative
  - D(p||q) = 0 iff p = q
  - Not symmetric and doesn't satisfy triangle inequality
  - If  $q_i = 0$  and  $p_i > 0$ , then D(p||q) gets infinite value

## **Evaluation Task: Word Disambiguation**

• Task: Given a noun and two verbs, decide which verb is more likely to have this noun as a direct object

P(plans|make) vs. P(plans|take)P(action|make) vs. P(action|take)

- Construction of candidate verb pairs:
  - generate verb-noun pairs on the test set
  - select pairs of verbs with similar frequency
  - remove all the pairs seen in the training set

#### **Evaluation Setup**

• Performance metric

 $\frac{(\# \text{ of incorrect choices}) + (\# \text{ of ties})/2}{N}$ 

 ${\cal N}$  is the size of the test corpus

- Data:
  - 44m words of 1998 AP newswire
  - select 1000 most frequent nouns and their corresponding verbs
  - Training: 587833 pairs, Testing: 17152 pairs
- Baseline: Maximum Likelihood Estimator
  - Error rate: 0.5

## Automatic Thesaurus Construction

http://www.cs.ualberta.ca/~lindek/demos/depsimdoc.htm

Closest words for president

leader 0.264431, minister 0.251936, vice president 0.238359, Clinton 0.238222, chairman 0.207511, government 0.206842, Governor 0.193404, official 0.191428, Premier 0.177853, Yeltsin 0.173577, member 0.173468, foreign minister 0.171829, Mayor 0.168488, head of state 0.167166, chief 0.164998, Ambassador 0.162118, Speaker 0.161698, General 0.159422, secretary 0.156158, chief executive 0.15158

## Performance of Similarity-Based Methods

| Methods   | Error rate |
|-----------|------------|
| Katz      | 0.51       |
| MLE       | 0.50       |
| RandMLE   | 0.47       |
| $L_1$ MLE | 0.27       |
| IRadMLE   | 0.26       |

- RandMLE Randomized combination of weights
- $L_1$ MLE Similarity function based on  $L_1$
- IRadMLE Similarity function based on IRad

## Problems with Corpus-based Similarity

- Low-frequency words skew the results
  - "breast-undergoing", "childhood-phychosis","outflow-infundibulum"
- Semantic similarity does not imply synonymy
  - "large-small", "heavy-light", "shallow-coastal"
- Distributional information may not be sufficient for true semantic grouping

## Outline

- Vector-space representation and similarity computation
  - Similarity-based Methods for LM
- Hierarchical clustering
  - Name Tagging with Word Clusters
- Computing semantic similarity using WordNet

## **Bottom-Up Hierarchical Clustering**

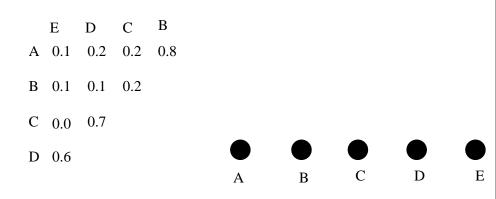
Given: a set  $\mathcal{X} = \{x_1, \dots, x_n\}$  of objects a similarity function simfor i := 1 to n do  $c_i := x_i$  $C := \{c_1, \dots, c_n\}$ j := n + 1while |C| > 1 $(c_{n_1}, c_{n_2}) := argmax_{(c_u, c_v) \in C \times C} sim(c_u, c_v)$  $c_j := c_{n_1} \cup c_{n_2}$  $C := (C - \{c_{n_1}, c_{n_2}\}) \cup \{c_j\}$ j := j + 1

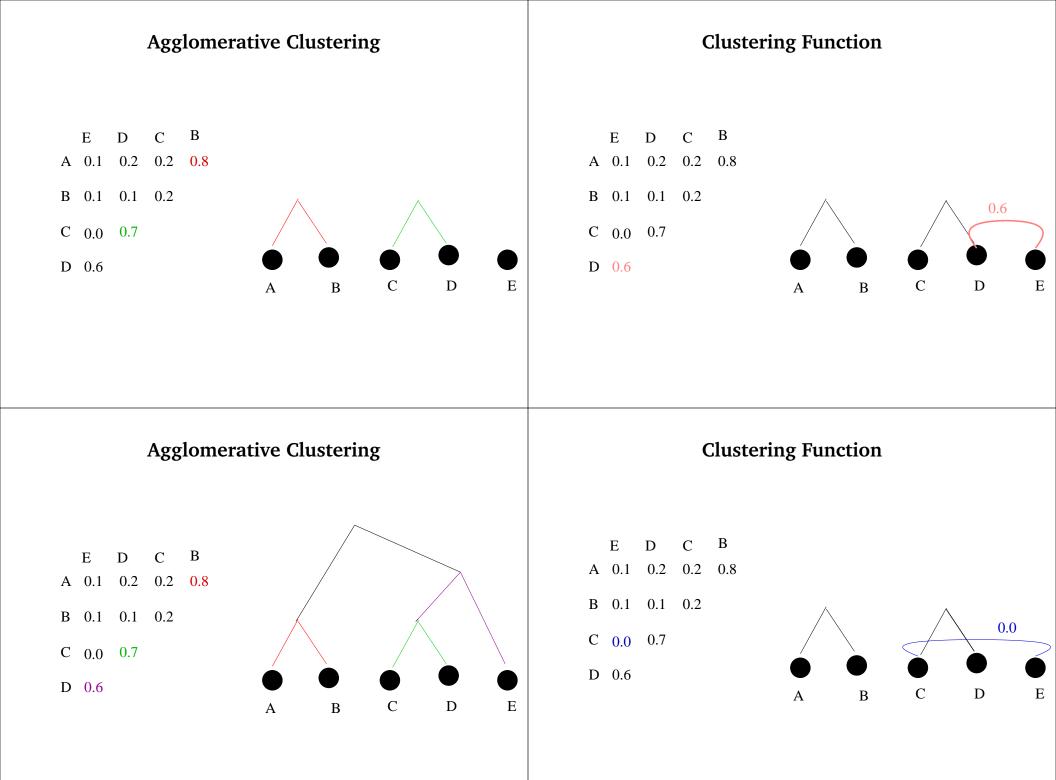
#### Hierarchical Clustering

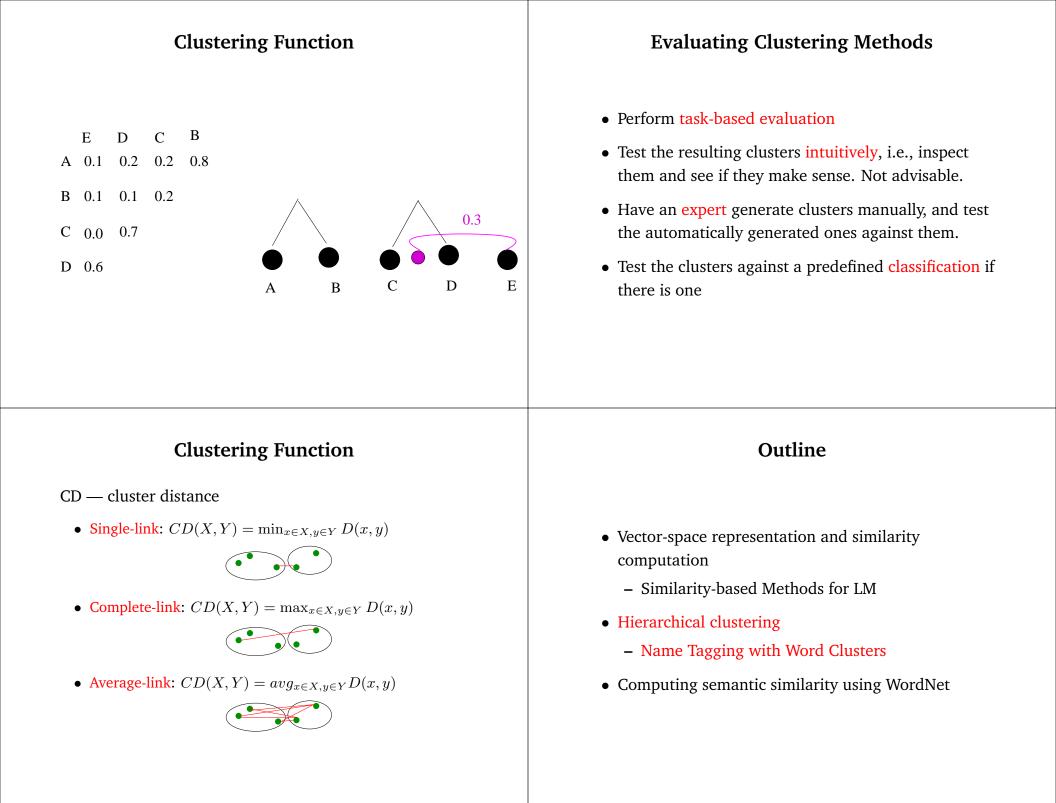
Greedy, bottom-up version:

- Initialization: Create a separate cluster for each object
- Each iteration: Find two most similar clusters and merge them
- Termination: All the objects are in the same cluster

## Agglomerative Clustering







## Named Entity Extraction as Tagging

**INPUT:** Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

**OUTPUT:** Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

NA = No entity

- SC = Start Company
- **CC** = Continue Company
- SL = Start Location
- **CL** = Continue Location

• • •

## The Set of Features for POS Tagging

• Word/tag features for all word/tag pairs, e.g.,

 $\phi_{100}(h,t) = \begin{cases} 1 & \text{if current word } w_i \text{ is base and } t = \forall t \\ 0 & \text{otherwise} \end{cases}$ 

 Spelling features for all prefixes/suffixes of length ≤ 4, e.g.,

$$\phi_{101}(h,t) = \begin{cases} 1 & \text{if current word } w_i \text{ ends in ing and } t = \text{VBG} \\ 0 & \text{otherwise} \end{cases}$$

$$\phi_{102}(h,t) = \begin{cases} 1 & \text{if current word } w_i \text{ starts with pre and } t = \text{NN} \\ 0 & \text{otherwise} \end{cases}$$

# Log-Linear Models

- We have some input domain X, and a finite label set Y. Aim is to provide a conditional probability P(y | x) for any x ∈ X and y ∈ Y.
- A feature is a function f : X × Y → ℝ
  (Often binary features or indicator functions f : X × Y → {0,1}).
- Say we have m features  $\phi_k$  for  $k = 1 \dots m$  $\Rightarrow$  A feature vector  $\phi(x, y) \in \mathbb{R}^m$  for any  $x \in \mathcal{X}$  and  $y \in \mathcal{Y}$ .
- We also have a **parameter vector**  $\mathbf{W} \in \mathbb{R}^m$

• We define  $P(y \mid x, \mathbf{W}) = \frac{e^{\mathbf{W} \cdot \phi(x, y)}}{\sum_{y' \in \mathcal{Y}} e^{\mathbf{W} \cdot \phi(x, y')}}$ 

# **Tagging Performance**

(Miller, Guinness & Zamanian, 2004)

| Training Size | Accuracy |
|---------------|----------|
| 10,000        | 74%      |
| 150,000       | 90%      |
| 1,000,000     | 95%      |

Annotation effort:

- Annotation rate: 5000 words per hour
- 4 person-days of annotation work are required for porting a tagger to a new domain

#### Name Tagging with Word Clusters

- Goal: reduce the amount of training data
- Implementation:
  - Induce word clusters from a large corpus of un-annotated data
  - Incorporate cluster features in a discriminatively trained tagging model

## **Encoding Clustering Structure**

A word is represented by a binary string

- Follow the traversal path from the root to a leaf
- Assign a 0 for each left branch, and 1 for each right branch

## Adding Clustering Information

How to select an appropriate level of granularity?

- Too small, and clusters provide insufficient generalization
- Too large, and they are inappropriately generalized

Use hierarchical clustering

#### Sample Bit Strings

| lawyer          | 1000001101000            |
|-----------------|--------------------------|
| newspaperman    | 100000110100100          |
| stewardess      | 100000110100101          |
| toxicologist    | 10000011010011           |
| slang           | 1000001101010            |
|                 |                          |
| Nike            | 10110111001001010111100  |
| Maytag          | 101101110010010101111010 |
| Generali        | 10110111001001010111011  |
| Gap             | 10110111001001010111110  |
| Harley-Davidson | 10110111001001010111110  |

#### **Cluster Based Features**

| 8.  | Tag + Pref8ofCurWord   |
|-----|------------------------|
| 9.  | Tag + Pref2ofCurWord   |
| 10. | Tag + Pref6ofCurWord   |
| 11. | Tag + Pref20ofCurWord  |
| 12. | Tag + Pref8ofPrevWord  |
| 13. | Tag + Pref2ofPrevWord  |
| 14. | Tag + Pref6ofPrevWord  |
| 15. | Tag + Pref20ofPrevWord |
| 16. | Tag + Pref8ofNextWord  |
| 17. | Tag + Pref2ofNextWord  |
| 18. | Tag + Pref6ofNextWord  |
| 19. | Tag + Pref20ofNextWord |

#### Outline

- Vector-space representation and similarity computation
  - Similarity-based Methods for LM
- Hierarchical clustering
  - Name Tagging with Word Clusters
- Computing semantic similarity using WordNet

## Results

- With 50,000 words of training, the cluster-based model exceeds 90F, a level not reached by the standard model until it has 150,000 words of training.
- At 1,000,000 words of training, the cluster-based model achieves 96.08F compared to 94.72 for the HMM, a 25% reduction in error.

#### WordNet

- Large scale semantic lexicon for the English language
- Started in 1990 as a language project by George Miller and Christiane Fellbaum at Princeton
- As of 2006, the database contains about 150,000 words organized in over 115,000 synsets for a total of 207,000 word-sense pairs

| Category  | Unique Forms | Number of Senses |
|-----------|--------------|------------------|
| Noun      | 114648       | 79689            |
| Verb      | 11306        | 13508            |
| Adjective | 21436        | 18563            |
| Adverb    | 4669         | 3664             |

## Word with the Corresponding Synsets

1. water, H2O – (binary compound that occurs at room temperature as a clear colorless odorless tasteless liquid; freezes into ice below 0 degrees centigrade and boils above 100 degrees centigrade; widely used as a solvent)

2. **body of water, water** – (the part of the earth's surface covered with water (such as a river or lake or ocean); "they invaded our territorial waters"; "they were sitting by the water's edge")

3. water system, water supply, water – (facility that provides a source of water; "the town debated the purification of the water supply"; "first you have to cut off the water")

4. water – (once thought to be one of four elements composing the universe (Empedocles))

5. **urine**, **piss**, **pee**, **piddle**, **weewee**, **water** – (liquid excretory product; "there was blood in his urine"; "the child had to make water")

6. water – (a fluid necessary for the life of most animals and plants; "he asked for a drink of water")

# Sense Distribution Statistics

| POS       | Monosemous | Polysemous |
|-----------|------------|------------|
| Noun      | 99524      | 15124      |
| Verb      | 6256       | 5050       |
| Adverb    | 16103      | 5333       |
| Adjective | 3901       | 768        |
| Total     | 125784     | 26275      |

# WordNet Relations

| Relation            | Example           |
|---------------------|-------------------|
| Synonymy            | marriage, wedlock |
| Hyponymy/Hyperonymy | computer, machine |
| Meronymy            | door, knob        |
| Antonymy            | large, small      |

Glosses: "computer (a machine for performing calculations automatically)

Links between derivationally related noun/verb pairs: "computer, computing, computed, ..."

# Hyponymy Hierarchy

computer, data processor, ... — (a machine for performing calculations automatimachine — (any mechanical or electrical device that performs or assists in the performent of the performent of the performance of the perfor

entity — something having concrete existence; living or nonliving

## **Computing Semantic Similarity**

Suppose you are given the following words. Your task is to group them according to how similar they are:

> apple infant man banana grapefruit baby grape

woman

Why use WordNet?

- Quality
  - Developed and maintained by researchers
- Habit
  - Many applications are currently using WordNet
- Available software
  - SenseRelate(Pedersen et al):

http://wn-similarity.sourceforge.com

# Using WordNet to Determine Similarity

apple man fruit produce . . . banana fruit woman produce . . .

male, male person person, individual organism

female, female person person, individual organism

# Similarity by Path Length

#### baby

child, kid

man

male, male person person, individual organism

#### . . .

woman

female, female person person, individual organism

offspring, progeny relative, relation person, individual

> organism . . .

## Why not use WordNet?

- Incomplete (technical terms may be absent)
- The length of the paths are irregular across the hierarchies
- How to relate terms that are not in the same hierarchies?

The "tennis problem":

- Player
- Racquet
- Ball
- Net

## Summary

- Corpus-based Similarity Computation
  - Vector Space Model
  - Similarity Measures
  - Hierarchical Clustering
- Lexicon-based Similarity Computation