Words in Context

6.864 (Fall 2007)

Word-Sense Disambiguation, and Semi-Supervised Learning

Sense	Examples (keyword in context)
1	\ldots used to strain microscopic plant life from the \ldots
1	\ldots too rapid growth of aquatic plant life in water \ldots
2	\ldots automated manufacturing plant in Fremont \ldots
2	\ldots discovered at a St. Louis plant manufacturing \ldots

- The task: given a word in context, decide on its word sense

Overview

- A supervised method for word-sense disambiguation: decision lists
- A semi-supervised method for word-sense disambiguation
- A semi-supervised method for named-entity classification

Examples

Examples of words used in [Yarowsky, 1995]:

Word	Senses
plant	living/factory
tank	vehicle/container
poach	steal/boil
palm	tree/hand
axes	grind/tools
sake	benefit/drink
bass	fish/music
space	volume/outer
motion	legal/phsyical
crane	bird/machine

Features Used in the Model

- Word found in $+/-k$ word window
- Word immediately to the right (+1 W)
- Word immediately to the left (-1 W)
- Pair of words at offsets -2 and -1
- Pair of words at offsets -1 and +1
- Pair of words at offsets +1 and +2

Features Used in the Model

- Also maps words to parts of speech, and general classes (e.g., WEEKDAY, MONTH etc.)
- Local features including word classes are added:
- Pair of tags at offsets -2 and -1
- Tag at position -2, word at position -1
- etc.

An Example

The ocean reflects the color of the sky, but even on cloudless days the color of the ocean is not a consistent blue. Phytoplankton, microscopic plant life that floats freely in the lighted surface waters, may alter the color of the water. When a great number of organisms are concentrated in an area, the plankton changes the color of the ocean surface. This is called a 'bloom.'
$w_{-1}=$ Phytoplankton
\Downarrow
$w_{+1}=$ life
$w_{-2}, w_{-1}=$ (Phytoplankton,microscopic) $\quad t_{-2}, t_{-1}=(\mathrm{NN}, \mathrm{JJ})$
$w_{-1}, w_{+1}=($ microscopic, life $)$
$w_{+1}, w_{+2}=$ (life,that)
word-within- $\mathrm{k}=$ ocean
word-within- $\mathrm{k}=$ reflects
word-within- $\mathrm{k}=$ color
word-within- $\mathrm{k}=$ bloom

A Machine-Learning Method: Decision Lists

- For each feature, we can get an estimate of conditional probability of sense 1 and sense 2
- For example, take the feature $w_{+1}=l i f e$
- We might have

$$
\begin{aligned}
& \operatorname{Count}\left(\text { sense } 1 \text { of plant, } w_{+1}=\text { life }\right)=100 \\
& \operatorname{Count}\left(\text { sense } 2 \text { of plant, } w_{+1}=\text { life }\right)=1
\end{aligned}
$$

- Maximum-likelihood estimate

$$
P\left(\text { sense } 1 \text { of plant } \mid w_{+1}=\text { life }\right)=\frac{100}{101}
$$

Smoothed Estimates

- Usual problem: some counts are sparse
- We might have
$\operatorname{Count}\left(\right.$ sense 1 of plant, $w_{-1}=$ Phytoplankton $)=2$
$\operatorname{Count}\left(\right.$ sense 2 of plant, $w_{-1}=$ Phytoplankton) $=0$
- α smoothing (empirically, $\alpha \approx 0.1$ works well):

$$
\begin{aligned}
P\left(\text { sense } 1 \text { of plant } \mid w_{-1}=\text { Phytoplankton }\right) & =\frac{2+\alpha}{2+2 \alpha} \\
P\left(\text { sense } 1 \text { of plant } \mid w_{+1}=\text { life }\right) & =\frac{100+\alpha}{101+2 \alpha}
\end{aligned}
$$

with $\alpha=0.1$, gives values of 0.95 and 0.99 (unsmoothed gives values of 1 and 0.99)

Creating a Decision List

- Create a list of rules sorted by strength

Rule			Weight
$w_{+1}=$ life	\rightarrow	sense 1	0.99
$w_{-1}=$ manufacturing	\rightarrow	sense 2	0.985
word-within-k=life	\rightarrow	sense 1	0.98
word-within-k=manufacturing	\rightarrow	sense 2	0.979
word-within-k=animal	\rightarrow	sense 1	0.975
word-within-k=equipment	\rightarrow	sense 2	0.97
word-within-k=employee	\rightarrow	sense 2	0.968
$w_{-1}=$ assembly	\rightarrow	sense 2	0.965
\ldots			

- To apply the decision list: take the fi rst (strongest) rule in the list which applies to an example

Creating a Decision List

- For each feature, find

$$
\text { sense }(\text { feature })=\operatorname{argmax}_{\text {sense }} P(\text { sense } \mid \text { feature })
$$

e.g., sense $\left(w_{+1}=\right.$ life $)=$ sense 1

- Create a rule feature \rightarrow sense(feature) with weight $P($ sense (feature) \mid feature). e.g.,

Rule			Weight
$w_{+1}=$ life	\rightarrow	sense 1	0.99
$w_{-1}=$ Phytoplankton	\rightarrow	sense 1	0.95
\ldots			

11

The ocean reffects the color of the sky, but even on cloudless days the color of the ocean is not a consistent blue. Phytoplankton, microscopic plant life that fbats freely in the lighted surface waters, may alter the color of the water. When a great number of organisms are concentrated in an area, the plankton changes the color of the ocean surface. This is called a 'bloom.'

Feature	Sense	Strength
$w_{-1}=$ Phytoplankton	1	0.95
$w_{+1}=$ life	1	0.99
$w_{-2}, w_{-1}=$ (Phytoplankton,microscopic)	N/A	
$w_{-1}, w_{+1}=$ (microscopic,life)	N/A	
$w_{+1}, w_{+2}=$ (life,that)	1	0.96
word-within-k =ocean	1	0.93
word-within-k = reflects	N/A	
word-within-k = color	2	0.65
$t_{-1}=\mathrm{JJ}$	2	0.56
$t_{-2}, t_{-1}=(\mathrm{NN}, \mathrm{JJ})$	2	0.7
$t_{+1}=\mathrm{NN}$	1	0.64
\ldots		

- $\mathrm{N} / \mathrm{A} \Rightarrow$ feature has not been seen in training data
- $w_{+1}=$ life \rightarrow Sense 1 is chosen

Experiments

- [Yarowsky, 1994] applies the method to accent restoration in French, Spanish

De-accented form	Accented form	Percentage
cesse	cesse	53%
	cessé	47%
coute	coûte	53%
	coûté	47%
cote	côté	69%
	côte	28%
	cote	3%
	coté	$<1 \%$

- Task is to recover accents on words
- Very easy to collect training/test data
- Very similar task to word-sense disambiguation
- Useful for restoring accents in de-accented text, or in automatic generation of accents while typing

A Partially Supervised Method

- Collecting labeled data can be expensive
- We'll now describe an approach that uses a small amount of labeled data, and a large amount of unlabeled data

Overview

- A supervised method for word-sense disambiguation: decision lists
- A semi-supervised method for word-sense disambiguation
- A semi-supervised method for named-entity classification

Another Useful Property: "One Sense per Discourse"

- Yarowsky observes that if the same word appears more than once in a document, then it is very likely to have the same sense every time

An example: for the "plant" sense distinction, initial seeds are word-within-k=life and word-within-k=manufacturing

Partitions the unlabeled data into three sets:

- 82 examples labelled with "life" sense
- 106 examples labelled with "manufacturing" sense
- 7350 unlabeled examples

Step 1 of the Method: Collecting Seed Examples

- Goal: start with a small subset of the training data being labeled
- Various methods for achieving this:
- Label a number of training examples by hand
- Pick a single feature for each class by hand
e.g., word-within-k=bird and
word-within-k=machinery for crane
- Look through frequently occurring features, and label a few of them
- Using words in dictionary defi nitions
e.g., Pick words in the two defi nitions for "plant"

A vegetable organism, or part of one, ready for planting or lately planted.
equipment, machinery, apparatus, for an industrial activity

Training New Rules

1. From the seed data, learn a decision list of all rules with weight above some threshold (e.g., all rules with weight >0.97)
2. Using the new rules, relabel the data (usually we will now end up with more data being labeled)
3. Induce a new set of rules with weight above the threshold from the labeled data
4. If some examples are still not labeled, return to step 2

Experiments

- Yarowsky describes several experiments:
- A baseline score for just picking the most frequent sense for each word
- Score for a fully supervised method
- Partially supervised method with "two words" as a seed
- Partially supervised method with dictionary defn. as a seed
- Partially supervised method with hand-chosen rules as a seed
- Dictionary defn. method combined with one-sense-per-discourse constraint

Some Comments

- Very impressive results using relatively little supervision
- How well would this perform on words with "weaker" sense distinctions? (e.g., interest)
- Can we give formal guarantees for when this method will/won't work?
(how to give a formal characterization of redundancy, and show that this implies guarantees concerning the utility of unlabeled data?)
- There are several "tweakable" parameters of the method (e.g., the weight threshold used to filter the rules)
- Another issue: the method as described may not ever label all examples

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Word	Senses	Samp. Size	\%	Supvsd Algrtm	Seed Training Options			(7) + OSPD		Schütze Algrthm
			Major		Two	Dict.	Top	End	Each	
			Sense		Words	Defn.	Colls.	only	Iter.	
plant	living/factory	7538	53.1	97.7	97.1	97.3	97.6	98.3	98.6	92
space	volume/outer	5745	50.7	93.9	89.1	92.3	93.5	93.3	93.6	90
tank	vehicle/container	11420	58.2	97.1	94.2	94.6	95.8	96.1	96.5	95
motion	legal/physical	11968	57.5	98.0	93.5	97.4	97.4	97.8	97.9	92
bass	fish/music	1859	56.1	97.8	96.6	97.2	97.7	98.5	98.8	-
palm	tree/hand	1572	74.9	96.5	93.9	94.7	95.8	95.5	95.9	-
poach	steal/boil	585	84.6	97.1	96.6	97.2	97.7	98.4	98.5	-
axes	grid/tools	1344	71.8	95.5	94.0	94.3	94.7	96.8	97.0	-
duty	tax/obligation	1280	50.0	93.7	90.4	92.1	93.2	93.9	94.1	-
drug	medicine/narcotic	1380	50.0	93.0	90.4	91.4	92.6	93.3	93.9	-
sake	benefit/drink	407	82.8	96.3	59.6	95.8	96.1	96.1	97.5	-
crane	bird/machine	2145	78.0	96.6	92.3	93.6	94.2	95.4	95.5	-
AVG		3936	63.9	96.1	90.6	94.8	95.5	96.1	96.5	92.2

Overview

- A supervised method for word-sense disambiguation: decision lists
- A semi-supervised method for word-sense disambiguation
- A semi-supervised method for named-entity classification

Supervised Learning

- We have domains \mathcal{X}, \mathcal{Y}
- We have labeled examples $\left(x_{i}, y_{i}\right)$ for $i=1 \ldots n$
- Task is to learn a function $F: \mathcal{X} \rightarrow \mathcal{Y}$

Statistical Assumptions

- We have domains \mathcal{X}, \mathcal{Y}
- We have labeled examples $\left(x_{i}, y_{i}\right)$ for $i=1 \ldots n$
- Task is to learn a function $F: \mathcal{X} \rightarrow \mathcal{Y}$
- Typical assumption is that there is some distribution $P(x, y)$ from which examples are drawn
- Aim is to find a function F with a low value for

$$
\operatorname{Er}(F)=\sum_{x, y} P(x, y)[[F(x) \neq y]]
$$

i.e., minimize probability of error on new examples

Partially Supervised Learning

- We have domains \mathcal{X}, \mathcal{Y}
- We have labeled examples $\left(x_{i}, y_{i}\right)$ for $i=1 \ldots n$ (n is typically small)
- We have unlabeled examples $\left(x_{i}\right)$ for $i=(n+1) \ldots(n+m)$
- Task is to learn a function $F: \mathcal{X} \rightarrow \mathcal{Y}$
- New questions:
- Under what assumptions is unlabeled data "useful"?
- Can we fi nd NLP problems where these assumptions hold?
- Which algorithms are suggested by the theory?

Named Entity Classification

- Classify entities as organizations, people or locations

$$
\begin{array}{ll}
\text { Steptoe \& Johnson } & =\text { Organization } \\
\text { Mrs. Frank } & =\text { Person } \\
\text { Honduras } & =\text { Location }
\end{array}
$$

- Need to learn (weighted) rules such as

$$
\begin{array}{lll}
\text { contains(Mrs.) } & \Rightarrow & \text { Person } \\
\text { full-string=Honduras } & \Rightarrow & \text { Location } \\
\text { context=company } & \Rightarrow & \text { Organization }
\end{array}
$$

An Approach Using Minimal Supervision

- Assume a small set of "seed" rules

contains(Incorporated)	\Rightarrow	Organization
full-string=Microsoft	\Rightarrow	Organization
full-string=I.B.M.	\Rightarrow	Organization
contains(Mr.)	\Rightarrow	Person
full-string=New_York	\Rightarrow	Location
full-string=California	\Rightarrow	Location
full-string=U.S.	\Rightarrow	Location

- Assume a large amount of unlabeled data
.., says Mr. Cooper, a vice president of ...
- Methods gain leverage from redundancy:

Either Spelling or Context alone is often sufficient to determine an entity's type

The Data

- Approx 90,000 spelling/context pairs collected
- Two types of contexts identified by a parser

1. Appositives
.., says Mr. Cooper, a vice president of ...
2. Prepositional Phrases

Robert Haft , president of the Dart Group Corporation ...

Cotraining (Blum and Mitchell, 1998)

- We have domains \mathcal{X}, \mathcal{Y}
- We have labeled examples $\left(x_{i}, y_{i}\right)$ for $i=1 \ldots n$
- We have unlabeled examples $\left(x_{i}\right)$ for $i=(n+1) \ldots(n+m)$
- We assume each example x_{i} splits into two views, $x_{1 i}$ and $x_{2 i}$
- e.g., if x_{i} is a feature vector in $\mathbb{R}^{2 d}$, then $x_{1 i}$ and $x_{2 i}$ are representations in \mathbb{R}^{d}.

Features: Two Views of Each Example

.., says Mr. Cooper, a vice president of ...
\Downarrow
Spelling Features Contextual Features
Full-String $=$ Mr. Cooper appositive $=$ president

Two Assumptions Behind Cotraining

Assumption 1: Either view is sufficient for learning
There are functions F_{1} and F_{2} such that

$$
F(x)=F_{1}\left(x_{1}\right)=F_{2}\left(x_{2}\right)=y
$$

for all (x, y) pairs

A Key Property: Redundancy

The ocean reflects the color of the sky, but even on cloudless days the color of the ocean is not a consistent blue. Phytoplankton, microscopic plant life that floats freely in the lighted surface waters, may alter the color of the water. When a great number of organisms are concentrated in an area, the plankton changes the color of the ocean surface. This is called a 'bloom.'

$$
\begin{array}{ll}
& \Downarrow \\
w_{-1}=\text { Phytoplankton } & \text { word-within }-\mathrm{k}=\text { ocean } \\
w_{+1}=\text { life } & \text { word-within-k = reflects } \\
w_{-2}, w_{-1}=(\text { Phytoplankton,microscopic }) & \text { word-within-k = bloom } \\
w_{-1}, w_{+1}=\text { (microscopic,life) } & \text { word-within }-\mathrm{k}=\text { color } \\
\left.w_{+1}, w_{+2}=\text { (life,that }\right) & \ldots
\end{array}
$$

There are often many features which indicate the sense of the word

$\underline{\text { Examples of Problems with Two Natural Views }}$

- Named entity classification (spelling vs. context)
- Web page classification [Blum and Mitchell, 1998]

One view = words on the page, other view is pages linking to a page

- Word sense disambiguation: a random split of the text?

Two Assumptions Behind Cotraining

Assumption 2:

Some notion of independence between the two views
e.g., The Conditional-independence-given-label assumption:

If $P\left(x_{1}, x_{2}, y\right)$ is the distribution over examples, then

$$
P\left(x_{1}, x_{2}, y\right)=P_{0}(y) P_{1}\left(x_{1} \mid y\right) P_{2}\left(x_{2} \mid y\right)
$$

for some distributions P_{0}, P_{1} and P_{2}

Why are these Assumptions Useful?

- Two examples/scenarios:
- Rote learning, and a graph interpretation
- Constraints on hypothesis spaces

Rote Learning, and a Graph Interpretation

- Each node in the graph is a spelling or context

A node for Robert Jordan, Washington, law-in, partner etc.

- Each $\left(x_{1 i}, x_{2 i}\right)$ pair is an edge in the graph e.g., (Robert Jordan, partner)
- An edge between two nodes mean they have the same label (relies on assumption 1: each view is sufficient for classification)
- As quantity of unlabeled data increases, graph becomes more connected
(relies on assumption 2: some independence between the two views)

Rote Learning, and a Graph Interpretation

- In a rote learner, functions F_{1} and F_{2} are look-up tables

Spelling	Category
Robert-Jordan	PERSON
Washington	LOCATION
Washington	LOCATION
Jamie-Gorelick	PERSON
Jerry-Jasinowski	PERSON
Pacifi Corp	COMPANY
\ldots	\ldots

Context	Category
partner	PERSON
partner-at	COMPANY
law-in	LOCATION
fi rm-in	LOCATION
partner	PERSON
partner-of	COMPANY
\ldots	\ldots

- Note: this can be a very inefficient learning method (no chance to learn generalizations such as "any name containing Mr. is a person")

Constraints on Hypothesis Spaces

- $n+m$ training examples $x_{i}=\left(x_{1 i}, x_{2 i}\right)$
- First n examples have labels y_{i}
- Learn functions F_{1} and F_{2} such that

$$
\begin{gathered}
F_{1}\left(x_{1 i}\right)=F_{2}\left(x_{2 i}\right)=y_{i} \quad i=1 \ldots n \\
F_{1}\left(x_{1 i}\right)=F_{2}\left(x_{2 i}\right) \quad i=n+1 \ldots n+m
\end{gathered}
$$

- The second set of constraints is new, and may significantly restrict the set of possible functions F_{1} and F_{2}. This may significantly reduce the number of labeled examples, n, that are required for accurate learning.

A Linear Model

- How to build a classifier from spelling features alone? A linear model:
- GEN $\left(x_{1}\right)$ is possible labels \{person,location, organization\}
- $\mathbf{f}\left(x_{1}, y\right)$ is a set of features on spelling/label pairs, e.g.,

$$
\begin{aligned}
& f_{100}\left(x_{1}, y\right)= \begin{cases}1 & \text { if } x_{1} \text { contains } M r, \text { and } y=\text { person } \\
0 & \text { otherwise }\end{cases} \\
& f_{101}\left(x_{1}, y\right)= \begin{cases}1 & \text { if } x_{1} \text { is } I B M, \text { and } y=\text { person } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- w is parameter vector, as usual choose

$$
F_{1}\left(x_{1}, \mathbf{w}\right)=\arg \max _{y \in \operatorname{GEN}\left(x_{1}\right)} \mathbf{f}\left(x_{1}, y\right) \cdot \mathbf{w}
$$

- \Rightarrow each parameter in w gives a weight for a feature/label pair. e.g., $\mathrm{w}_{100}=2.5, \mathrm{w}_{101}=-1.3$

An Extension to the Cotraining Scenario

- Now build two linear models in parallel
- $\operatorname{GEN}\left(x_{1}\right)=\operatorname{GEN}\left(x_{2}\right)$ is set of possible labels \{person,location, organization\}
- $\mathbf{f}^{1}\left(x_{1}, y\right)$ is a set of features on spelling/label pairs
- $\mathbf{f}^{2}\left(x_{2}, y\right)$ is a set of features on context/label pairs, e.g.,

$$
f^{2}{ }_{100}\left(x_{2}, y\right)= \begin{cases}1 & \text { if } x_{2} \text { is president } \text { and } y=\text { person } \\ 0 & \text { otherwise }\end{cases}
$$

- w^{1} and w^{2} are the two parameter vectors

$$
\begin{aligned}
& F_{1}\left(x_{1}, \mathbf{w}^{1}\right)=\arg \max _{y \in \operatorname{GEN}\left(x_{1}\right)} \mathbf{f}^{1}\left(x_{1}, y\right) \cdot \mathbf{w}^{1} \\
& F_{2}\left(x_{2}, \mathbf{w}^{2}\right)=\arg \max _{y \in \operatorname{GEN}\left(x_{2}\right)} \mathbf{f}^{2}\left(x_{2}, y\right) \cdot \mathbf{w}^{2}
\end{aligned}
$$

An Extension to the Cotraining Scenario

- $n+m$ training examples $x_{i}=\left(x_{1 i}, x_{2 i}\right)$
- First n examples have labels y_{i}
- Linear models defi ne F_{1} and F_{2} as

$$
\begin{aligned}
& F_{1}\left(x_{1}, \mathrm{w}^{1}\right)=\arg \max _{y \in \operatorname{GEN}\left(x_{1}\right)} \mathbf{f}^{1}\left(x_{1}, y\right) \cdot \mathbf{w}^{1} \\
& F_{2}\left(x_{2}, \mathrm{w}^{2}\right)=\arg \max _{y \in \operatorname{GEN}\left(x_{2}\right)} \mathbf{f}^{2}\left(x_{2}, y\right) \cdot \mathbf{w}^{2}
\end{aligned}
$$

- Three types of errors:

$$
\begin{aligned}
E_{1} & =\sum_{i=1}^{n}\left[\left[F_{1}\left(x_{1 i}, \mathrm{w}^{1}\right) \neq y_{i}\right]\right] \\
E_{2} & =\sum_{i=1}^{n}\left[\left[F_{2}\left(x_{2 i}, \mathrm{w}^{2}\right) \neq y_{i}\right]\right] \\
E_{3} & =\sum_{i=n+1}^{m+1}\left[\left[F_{1}\left(x_{1 i}, \mathrm{w}^{1}\right) \neq F_{2}\left(x_{2 i}, \mathrm{w}^{2}\right)\right]\right]
\end{aligned}
$$

Objective Functions for Cotraining

- Defi ne "pseudo labels"

$$
\begin{array}{ll}
z_{1 i}\left(\mathrm{w}^{1}\right)=F_{1}\left(x_{1 i}, \mathrm{w}^{1}\right) & i=(n+1) \ldots(n+m) \\
z_{2 i}\left(\mathrm{w}^{2}\right)=F_{2}\left(x_{2 i}, \mathrm{w}^{2}\right) & i=(n+1) \ldots(n+m)
\end{array}
$$

e.g., $z_{1 i}$ is output of first classifi er on the i 'th example

$$
\begin{aligned}
L\left(\mathbf{w}^{1}, \mathbf{w}^{2}\right)= & \sum_{i=1}^{n} \sum_{y \neq y_{i}} e^{\mathbf{f}^{1}\left(x_{1 i}, y\right) \cdot \mathbf{w}^{1}-\mathbf{f}^{1}\left(x_{1 i}, y_{i}\right) \cdot \mathbf{w}^{1}} \\
& +\sum_{i=1}^{n} \sum_{y \neq y_{i}} e^{\mathbf{f}^{2}\left(x_{2 i}, y\right) \cdot \mathbf{w}^{2}-\mathbf{f}^{2}\left(x_{2 i}, y_{i}\right) \cdot \mathbf{w}^{2}} \\
& +\sum_{i=n+1}^{n+m} \sum_{y \neq z_{2 i}} e^{\mathbf{f}^{1}\left(x_{1 i}, y\right) \cdot \mathbf{w}^{1}-\mathbf{f}^{1}\left(x_{1 i}, z_{2 i}\right) \cdot \mathbf{w}^{1}} \\
& +\sum_{i=n+1}^{n+m} \sum_{y \neq z_{1 i}} e^{\mathbf{f}^{2}\left(x_{2 i}, y\right) \cdot \mathbf{w}^{2}-\mathbf{f}^{2}\left(x_{2 i}, z_{2 i}\right) \cdot \mathbf{w}^{2}}
\end{aligned}
$$

More Intuition

- Need to minimize $L\left(\mathrm{w}^{1}, \mathrm{w}^{2}\right)$, do this by greedily minimizing w.r.t. first w^{1}, then w^{2}
- Algorithm boils down to:

1. Start with labeled data alone
2. Induce a contextual feature for each class (person/location/organization) from the current set of labelled data
3. Label unlabeled examples using contextual rules
4. Induce a spelling feature for each class (person/location/organization) from the current set of labelled data
5. Label unlabeled examples using spelling rules
6. Return to step 2

Optimization Method

1. Set pseudo labels $z_{2 i}$
2. Update w^{1} to minimize

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{y \neq y_{i}} e^{\mathbf{f}^{1}\left(x_{1 i}, y\right) \cdot \mathrm{w}^{1}-\mathbf{f}^{1}\left(x_{1 i}, y_{i}\right) \cdot \mathrm{w}^{1}} \\
+ & \sum_{i=n+1}^{n+m} \sum_{y \neq z_{2 i}} e^{\mathbf{f}^{1}\left(x_{1 i}, y\right) \cdot \mathrm{w}^{1}-\mathbf{f}^{1}\left(x_{1 i}, z_{2 i}\right) \cdot \mathrm{w}^{1}}
\end{aligned}
$$

(for each class choose a spelling feature, weight)
3. Set pseudo labels $z_{1 i}$
4. Update w^{2} to minimize

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{y \neq y_{i}} e^{\mathbf{f}^{2}\left(x_{2 i}, y\right) \cdot \mathrm{w}^{2}-\mathbf{f}^{2}\left(x_{2 i}, y_{i}\right) \cdot \mathrm{w}^{2}} \\
+ & \sum_{i=n+1}^{n+m} \sum_{y \neq z_{1 i}} e^{\mathbf{f}^{2}\left(x_{2 i}, y\right) \cdot \mathrm{w}^{2}-\mathbf{f}^{2}\left(x_{2 i}, z_{2 i}\right) \cdot \mathrm{w}^{2}}
\end{aligned}
$$

(for each class choose a contextual feature, weight)
5. Return to step 1

An Example Trace

1. Use seeds to label 8593 examples (4160 companies, 2788 people, 1645 locations)
2. Pick a contextual feature for each class: COMPANY: preposition=unit of $\quad 2.386 \quad 274 / 2$ PERSON: appositive=president $\quad 1.593 \quad 120 / 6$ LOCATION: preposition=Company of 1.673 46/1
3. Set pseudo labels using seeds + contextual features (5319 companies, 6811 people, 1961 locations)
4. Pick a spelling feature for each class

COMPANY: Contains(Corporation) $2.475 \quad 495 / 10$
PERSON: Contains(.) $\quad 2.482 \quad 4229 / 106$ LOCATION: fullstring=America $\quad 2.311 \quad 91 / 0$
5. Set pseudo labels using seeds + spelling features (7180 companies, 8161 people, 1911 locations)
6. Continue ...

- Around 9% of examples were "noise", not falling into any of the three categories
- Two measures given: one excluding all noise items, the other counting noise items as errors

Evaluation

- 88,962 (spelling, context) pairs extracted as training data
- 7 seed rules used

| contains(Incorporated) | \Rightarrow Organization |
| :--- | :--- | :--- |
| full-string=Microsoft | \Rightarrow Organization |
| full-string=I.B.M. | \Rightarrow Organization |
| contains(Mr.) | \Rightarrow Person |
| full-string=New_York | \Rightarrow Location |
| full-string=California | \Rightarrow Location |
| full-string=U.S. | \Rightarrow Location |

- 1,000 examples picked at random, and labelled by hand to give a test set.

Other Methods

- EM approach
- Decision list (Yarowsky 95)
- Decision list 2 (modification of Yarowsky 95)
- DL-Cotrain:
decision list alternating between two feature types

Results

Learning Algorithm	Accuracy (Clean)	Accuracy (Noise)
Baseline	45.8%	41.8%
EM	83.1%	75.8%
Decision List	81.3%	74.1%
Decision List 2	91.2%	83.2%
DL-CoTrain	91.3%	83.3%
CoBoost	91.1%	83.1%

Summary

- Appears to be a complex task: many features/rules required
- With unlabeled data, supervision is reduced to 7 "seed" rules
- Key is redundancy in the data
- Cotraining suggests training two classifiers that "agree" as much as possible on unlabeled examples
- CoBoost algorithm builds two additive models in parallel, with an objective function that bounds the rate of agreement

Learning Curves for Coboosting

