
6.864 (Fall 2007): Lecture 5
Parsing and Syntax III

1

Recap: Adding Head Words/Tags to Trees

S(questioned, Vt)

NP(lawyer, NN)

DT

the

NN

lawyer

VP(questioned, Vt)

Vt

questioned

NP(witness, NN)

DT

the

NN

witness

• We now have lexicalized context-free rules, e.g.,

S(questioned,Vt) ⇒ NP(lawyer,NN) VP(questioned,Vt)

2

Recap: Lexicalized PCFGs

• We now need to estimate rule probabilities such as

Prob(S(questioned,Vt) ⇒ NP(lawyer,NN) VP(questioned,Vt) | S(questioned,Vt))

• Sparse data is a problem. We have a huge number of non-
terminals, and a huge number of possible rules. We have to
work hard to estimate these rule probabilities...

• Once we have estimated these rule probabilities, we can find
the highest scoring parse tree under the lexicalized PCFG
using dynamic programming methods (see Problem set 1).

3

Recap: Charniak’s Model

• The general form of a lexicalized rule is as follows:

X(h, t) ⇒ Ln(lwn, ltn) . . . L1(lw1, lt1) H(h, t) R1(rw1, rt1) . . . Rm(rwm, rtm)

• Charniak’s model decomposes the probability of each rule as:

Prob(X(h, t) ⇒ Ln(ltn) . . . L1(lt1)H(t)R1(rt1) . . . Rm(rtm) | X(h, t))

×

n∏

i=1

Prob(lwi | X(h, t), H, Li(lti)) ×

m∏

i=1

Prob(rwi | X(h, t), H, Ri(rti))

• For example,

Prob(S(questioned,Vt) ⇒ NP(lawyer,NN) VP(questioned,Vt) | S(questioned,Vt))

= Prob(S(questioned,Vt) ⇒ NP(NN) VP(Vt) | S(questioned,Vt))

= ×Prob(lawyer | S(questioned,Vt), VP, NP(NN))

4

Motivation for Breaking Down Rules

• First step of decomposition of (Charniak 1997):
S(questioned,Vt)

⇓ P (NP(NN) VP | S(questioned,Vt))

S(questioned,Vt)

NP(,NN) VP(questioned,Vt)

• Relies on counts of entire rules

• These counts are sparse:

– 40,000 sentences from Penn treebank have 12,409 rules.

– 15% of all test data sentences contain a rule never seen in training

5

Modeling Rule Productions as Markov Processes

• Collins (1997), Model 1

S(told,V)

STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V) STOP

We first generate the head label of the rule
Then generate the left modifiers
Then generate the right modifiers

Ph(VP | S, told, V) ×
Pd(NP(Hillary,NNP) | S,VP,told,V,LEFT)×
Pd(NP(yesterday,NN) | S,VP,told,V,LEFT) ×
Pd(STOP | S,VP,told,V,LEFT) ×
Pd(STOP | S,VP,told,V,RIGHT)

6

The General Form of Model 1

• The general form of a lexicalized rule is as follows:

X(h, t) ⇒ Ln(lwn, ltn) . . . L1(lw1, lt1) H(h, t) R1(rw1, rt1) . . . Rm(rwm, rtm)

• Collins model 1 decomposes the probability of each rule as:

Ph(H | X, h, t) ×
n∏

i=1

Pd(Li(lwi, lti) | X, H, h, t, LEFT) ×

Pd(STOP | X, H, h, t, LEFT) ×
m∏

i=1

Pd(Ri(rwi, rti) | X, H, h, t, RIGHT) ×

Pd(STOP | X, H, h, t, RIGHT)

7

• Ph term is a head-label probability

• Pd terms are dependency probabilities

• Both the Ph and Pd terms are smoothed, using similar
techniques to Charniak’s model

8

Overview of Today’s Lecture

• Refinements to Model 1

• Evaluating parsing models

• Extensions to the parsing models

9

A Refinement: Adding a Distance Variable

• ∆ = 1 if position is adjacent to the head, 0 otherwise

S(told,V)

?? VP(told,V)

⇓

S(told,V)

NP(Hillary,NNP) VP(told,V)

Ph(VP | S, told, V)×
Pd(NP(Hillary,NNP) | S,VP,told,V,LEFT,∆ = 1)

10

A Refinement: Adding a Distance Variable

• ∆ = 1 if position is adjacent to the head.

S(told,V)

?? NP(Hillary,NNP) VP(told,V)

⇓

S(told,V)

NP(yesterday,NN) NP(Hillary,NNP) VP(told,V)

Ph(VP | S, told, V) × Pd(NP(Hillary,NNP) | S,VP,told,V,LEFT)×
Pd(NP(yesterday,NN) | S,VP,told,V,LEFT,∆ = 0)

11

The Final Probabilities
S(told,V)

STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V) STOP

Ph(VP | S, told, V)×
Pd(NP(Hillary,NNP) | S,VP,told,V,LEFT,∆ = 1)×
Pd(NP(yesterday,NN) | S,VP,told,V,LEFT,∆ = 0)×
Pd(STOP | S,VP,told,V,LEFT,∆ = 0)×
Pd(STOP | S,VP,told,V,RIGHT,∆ = 1)

12

Adding the Complement/Adjunct Distinction

S

NP

subject

VP

V

verb

S(told,V)

NP(yesterday,NN)

NN

yesterday

NP(Hillary,NNP)

NNP

Hillary

VP(told,V)

V

told

. . .

• Hillary is the subject

• yesterday is a temporal modifier

• But nothing to distinguish them.

13

Adding the Complement/Adjunct Distinction

VP

V

verb

NP

object
VP(told,V)

V

told

NP(Bill,NNP)

NNP

Bill

NP(yesterday,NN)

NN

yesterday

SBAR(that,COMP)

. . .

• Bill is the object

• yesterday is a temporal modifier

• But nothing to distinguish them.

14

Complements vs. Adjuncts

• Complements are closely related to the head they modify,
adjuncts are more indirectly related

• Complements are usually arguments of the thing they modify
yesterday Hillary told . . . ⇒ Hillary is doing the telling

• Adjuncts add modifying information: time, place, manner etc.
yesterday Hillary told . . . ⇒ yesterday is a temporal modifier

• Complements are usually required, adjuncts are optional

vs. yesterday Hillary told . . . (grammatical)
vs. Hillary told . . . (grammatical)
vs. yesterday told . . . (ungrammatical)

15

Adding Tags Making the Complement/Adjunct Distinction

S

NP-C

subject

VP

V

verb

S

NP

modifier

VP

V

verb
S(told,V)

NP(yesterday,NN)

NN

yesterday

NP-C(Hillary,NNP)

NNP

Hillary

VP(told,V)

V

told

. . .

16

Adding Tags Making the Complement/Adjunct Distinction

VP

V

verb

NP-C

object

VP

V

verb

NP

modifier

VP(told,V)

V

told

NP-C(Bill,NNP)

NNP

Bill

NP(yesterday,NN)

NN

yesterday

SBAR-C(that,COMP)

. . .

17

Adding Subcategorization Probabilities

• Step 1: generate category of head child

S(told,V)

⇓

S(told,V)

VP(told,V)

Ph(VP | S, told, V)

18

Adding Subcategorization Probabilities

• Step 2: choose left subcategorization frame

S(told,V)

VP(told,V)

⇓

S(told,V)

VP(told,V)
{NP-C}

Ph(VP | S, told, V) × Plc({NP-C} | S, VP, told, V)

19

• Step 3: generate left modifiers in a Markov chain

S(told,V)

?? VP(told,V)
{NP-C}

⇓

S(told,V)

NP-C(Hillary,NNP) VP(told,V)
{}

Ph(VP | S, told, V) × Plc({NP-C} | S, VP, told, V)×
Pd(NP-C(Hillary,NNP) | S,VP,told,V,LEFT,{NP-C})

20

S(told,V)

?? NP-C(Hillary,NNP) VP(told,V)
{}

⇓

S(told,V)

NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V)
{}

Ph(VP | S, told, V) × Plc({NP-C} | S, VP, told, V)
Pd(NP-C(Hillary,NNP) | S,VP,told,V,LEFT,{NP-C})×
Pd(NP(yesterday,NN) | S,VP,told,V,LEFT,{})

21

S(told,V)

?? NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V)
{}

⇓

S(told,V)

STOP NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V)
{}

Ph(VP | S, told, V) × Plc({NP-C} | S, VP, told, V)
Pd(NP-C(Hillary,NNP) | S,VP,told,V,LEFT,{NP-C})×
Pd(NP(yesterday,NN) | S,VP,told,V,LEFT,{})×
Pd(STOP | S,VP,told,V,LEFT,{})

22

The Final Probabilities
S(told,V)

STOP NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V) STOP

Ph(VP | S, told, V)×
Plc({NP-C} | S, VP, told, V)×
Pd(NP-C(Hillary,NNP) | S,VP,told,V,LEFT,∆ = 1,{NP-C})×
Pd(NP(yesterday,NN) | S,VP,told,V,LEFT,∆ = 0,{})×
Pd(STOP | S,VP,told,V,LEFT,∆ = 0,{})×
Prc({} | S, VP, told, V)×
Pd(STOP | S,VP,told,V,RIGHT,∆ = 1,{})

23

Another Example

VP(told,V)

V(told,V) NP-C(Bill,NNP) NP(yesterday,NN) SBAR-C(that,COMP)

Ph(V | VP, told, V)×
Plc({} | VP, V, told, V)×
Pd(STOP | VP,V,told,V,LEFT,∆ = 1,{})×
Prc({NP-C, SBAR-C} | VP, V, told, V)×
Pd(NP-C(Bill,NNP) | VP,V,told,V,RIGHT,∆ = 1,{NP-C, SBAR-C})×
Pd(NP(yesterday,NN) | VP,V,told,V,RIGHT,∆ = 0,{SBAR-C})×
Pd(SBAR-C(that,COMP) | VP,V,told,V,RIGHT,∆ = 0,{SBAR-C})×
Pd(STOP | VP,V,told,V,RIGHT,∆ = 0,{})

24

Summary

• Identify heads of rules ⇒ dependency representations

• Presented two variants of PCFG methods applied to
lexicalized grammars.

– Break generation of rule down into small (markov
process) steps

– Build dependencies back up (distance, subcategorization)

25

Overview of Today’s Lecture

• Refinements to Model 1

• Evaluating parsing models

• Extensions to the parsing models

26

Evaluation: Representing Trees as Constituents

S

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

⇓

Label Start Point End Point

NP 1 2
NP 4 5
VP 3 5
S 1 5

27

Precision and Recall

Label Start Point End Point

NP 1 2
NP 4 5
NP 4 8
PP 6 8
NP 7 8
VP 3 8
S 1 8

Label Start Point End Point

NP 1 2
NP 4 5
PP 6 8
NP 7 8
VP 3 8
S 1 8

• G = number of constituents in gold standard = 7

• P = number in parse output = 6

• C = number correct = 6

Recall = 100% ×
C

G
= 100% ×

6

7
Precision = 100% ×

C

P
= 100% ×

6

6

28

Results

Method Recall Precision

PCFGs (Charniak 97) 70.6% 74.8%
Conditional Models – Decision Trees (Magerman 95) 84.0% 84.3%
Generative Lexicalized Model (Charniak 97) 86.7% 86.6%
Model 1 (no subcategorization) 87.5% 87.7%
Model 2 (subcategorization) 88.1% 88.3%

29

Effect of the Different Features

MODEL A V R P
Model 1 NO NO 75.0% 76.5%
Model 1 YES NO 86.6% 86.7%
Model 1 YES YES 87.8% 88.2%
Model 2 NO NO 85.1% 86.8%
Model 2 YES NO 87.7% 87.8%
Model 2 YES YES 88.7% 89.0%

Results on Section 0 of the WSJ Treebank. Model 1 has no subcategorization,
Model 2 has subcategorization. A = YES, V = YES mean that the
adjacency/verb conditions respectively were used in the distance measure. R/P =
recall/precision.

30

Weaknesses of Precision and Recall

Label Start Point End Point

NP 1 2
NP 4 5
NP 4 8
PP 6 8
NP 7 8
VP 3 8
S 1 8

Label Start Point End Point

NP 1 2
NP 4 5
PP 6 8
NP 7 8
VP 3 8
S 1 8

NP attachment:
(S (NP The men) (VP dumped (NP (NP large sacks) (PP of (NP the substance)))))

VP attachment:
(S (NP The men) (VP dumped (NP large sacks) (PP of (NP the substance))))

31

S(told,V)

NP-C(Hillary,NNP)

NNP

Hillary

VP(told,V)

V(told,V)

V

told

NP-C(Clinton,NNP)

NNP

Clinton

SBAR-C(that,COMP)

COMP

that

S-C

NP-C(she,PRP)

PRP

she

VP(was,Vt)

Vt

was

NP-C(president,NN)

NN

president

(told V TOP S SPECIAL)
(told V Hillary NNP S VP NP-C LEFT)
(told V Clinton NNP VP V NP-C RIGHT)
(told V that COMP VP V SBAR-C RIGHT)
(that COMP was Vt SBAR-C COMP S-C RIGHT)
(was Vt she PRP S-C VP NP-C LEFT)
(was Vt president NN VP Vt NP-C RIGHT)

32

Dependency Accuracies

• All parses for a sentence with n words have n dependencies
Report a single figure, dependency accuracy

• Model 2 with all features scores 88.3% dependency accuracy
(91% if you ignore non-terminal labels on dependencies)

• Can calculate precision/recall on particular dependency types
e.g., look at all subject/verb dependencies ⇒
all dependencies with label (S,VP,NP-C,LEFT)

Recall = number of subject/verb dependencies correct
number of subject/verb dependencies in gold standard

Precision = number of subject/verb dependencies correct
number of subject/verb dependencies in parser’s output

33

R CP P Count Relation Rec Prec
1 29.65 29.65 11786 NPB TAG TAG L 94.60 93.46
2 40.55 10.90 4335 PP TAG NP-C R 94.72 94.04
3 48.72 8.17 3248 S VP NP-C L 95.75 95.11
4 54.03 5.31 2112 NP NPB PP R 84.99 84.35
5 59.30 5.27 2095 VP TAG NP-C R 92.41 92.15
6 64.18 4.88 1941 VP TAG VP-C R 97.42 97.98
7 68.71 4.53 1801 VP TAG PP R 83.62 81.14
8 73.13 4.42 1757 TOP TOP S R 96.36 96.85
9 74.53 1.40 558 VP TAG SBAR-C R 94.27 93.93

10 75.83 1.30 518 QP TAG TAG R 86.49 86.65
11 77.08 1.25 495 NP NPB NP R 74.34 75.72
12 78.28 1.20 477 SBAR TAG S-C R 94.55 92.04
13 79.48 1.20 476 NP NPB SBAR R 79.20 79.54
14 80.40 0.92 367 VP TAG ADVP R 74.93 78.57
15 81.30 0.90 358 NPB TAG NPB L 97.49 92.82
16 82.18 0.88 349 VP TAG TAG R 90.54 93.49
17 82.97 0.79 316 VP TAG SG-C R 92.41 88.22

Accuracy of the 17 most frequent dependency types in section 0 of the treebank,
as recovered by model 2. R = rank; CP = cumulative percentage; P = percentage;
Rec = Recall; Prec = precision.

34

35

Type Sub-type Description Count Recall Precision

Complement to a verb S VP NP-C L Subject 3248 95.75 95.11
VP TAG NP-C R Object 2095 92.41 92.15

6495 = 16.3% of all cases VP TAG SBAR-C R 558 94.27 93.93
VP TAG SG-C R 316 92.41 88.22
VP TAG S-C R 150 74.67 78.32
S VP S-C L 104 93.27 78.86
S VP SG-C L 14 78.57 68.75
...
TOTAL 6495 93.76 92.96

Other complements PP TAG NP-C R 4335 94.72 94.04
VP TAG VP-C R 1941 97.42 97.98

7473 = 18.8% of all cases SBAR TAG S-C R 477 94.55 92.04
SBAR WHNP SG-C R 286 90.56 90.56
PP TAG SG-C R 125 94.40 89.39
SBAR WHADVP S-C R 83 97.59 98.78
PP TAG PP-C R 51 84.31 70.49
SBAR WHNP S-C R 42 66.67 84.85
SBAR TAG SG-C R 23 69.57 69.57
PP TAG S-C R 18 38.89 63.64
SBAR WHPP S-C R 16 100.00 100.00
S ADJP NP-C L 15 46.67 46.67
PP TAG SBAR-C R 15 100.00 88.24
...
TOTAL 7473 94.47 94.12

36

Type Sub-type Description Count Recall Precision

PP modification NP NPB PP R 2112 84.99 84.35
VP TAG PP R 1801 83.62 81.14

4473 = 11.2% of all cases S VP PP L 287 90.24 81.96
ADJP TAG PP R 90 75.56 78.16
ADVP TAG PP R 35 68.57 52.17
NP NP PP R 23 0.00 0.00
PP PP PP L 19 21.05 26.67
NAC TAG PP R 12 50.00 100.00
...
TOTAL 4473 82.29 81.51

Coordination NP NP NP R 289 55.71 53.31
VP VP VP R 174 74.14 72.47

763 = 1.9% of all cases S S S R 129 72.09 69.92
ADJP TAG TAG R 28 71.43 66.67
VP TAG TAG R 25 60.00 71.43
NX NX NX R 25 12.00 75.00
SBAR SBAR SBAR R 19 78.95 83.33
PP PP PP R 14 85.71 63.16
...
TOTAL 763 61.47 62.20

37

Type Sub-type Description Count Recall Precision

Mod’n within BaseNPs NPB TAG TAG L 11786 94.60 93.46
NPB TAG NPB L 358 97.49 92.82

12742 = 29.6% of all cases NPB TAG TAG R 189 74.07 75.68
NPB TAG ADJP L 167 65.27 71.24
NPB TAG QP L 110 80.91 81.65
NPB TAG NAC L 29 51.72 71.43
NPB NX TAG L 27 14.81 66.67
NPB QP TAG L 15 66.67 76.92
...
TOTAL 12742 93.20 92.59

Mod’n to NPs NP NPB NP R Appositive 495 74.34 75.72
NP NPB SBAR R Relative clause 476 79.20 79.54

1418 = 3.6% of all cases NP NPB VP R Reduced relative 205 77.56 72.60
NP NPB SG R 63 88.89 81.16
NP NPB PRN R 53 45.28 60.00
NP NPB ADVP R 48 35.42 54.84
NP NPB ADJP R 48 62.50 69.77
...
TOTAL 1418 73.20 75.49

38

Type Sub-type Description Count Recall Precision

Sentential head TOP TOP S R 1757 96.36 96.85
TOP TOP SINV R 89 96.63 94.51

1917 = 4.8% of all cases TOP TOP NP R 32 78.12 60.98
TOP TOP SG R 15 40.00 33.33
...
TOTAL 1917 94.99 94.99

Adjunct to a verb VP TAG ADVP R 367 74.93 78.57
VP TAG TAG R 349 90.54 93.49

2242 = 5.6% of all cases VP TAG ADJP R 259 83.78 80.37
S VP ADVP L 255 90.98 84.67
VP TAG NP R 187 66.31 74.70
VP TAG SBAR R 180 74.44 72.43
VP TAG SG R 159 60.38 68.57
S VP TAG L 115 86.96 90.91
S VP SBAR L 81 88.89 85.71
VP TAG ADVP L 79 51.90 49.40
S VP PRN L 58 25.86 48.39
S VP NP L 45 66.67 63.83
S VP SG L 28 75.00 52.50
VP TAG PRN R 27 3.70 12.50
VP TAG S R 11 9.09 100.00
...
TOTAL 2242 75.11 78.44

39

Some Conclusions about Errors in Parsing

• “Core” sentential structure (complements, NP chunks)
recovered with over 90% accuracy.

• Attachment ambiguities involving adjuncts are resolved with
much lower accuracy (≈ 80% for PP attachment, ≈ 50− 60%
for coordination).

40

Overview of Today’s Lecture

• Refinements to Model 1

• Evaluating parsing models

• Extensions to the parsing models

41

Trigram Language Models (from Lecture 2)

Step 1: The chain rule (note that wn+1 = STOP)

P (w1, w2, . . . , wn) =
n+1∏

i=1

P (wi | w1 . . . wi−1)

Step 2: Make Markov independence assumptions:

P (w1, w2, . . . , wn) =
n+1∏

i=1

P (wi | wi−2, wi−1)

For Example

P (the, dog, laughs) = P (the | START) ×P (dog | START, the)
×P (laughs | the, dog) ×P (STOP | dog, laughs)

42

Parsing Models as Language Models

• Generative models assign a probability P (T, S) to each
tree/sentence pair

• Say sentence is S, set of parses for S is T (S), then

P (S) =
∑

T∈T (S)

P (T, S)

• Can calculate perplexity for parsing models

43

A Quick Reminder of Perplexity

• We have some test data, n sentences

S1, S2, S3, . . . , Sn

• We could look at the probability under our model
∏n

i=1 P (Si).
Or more conveniently, the log probability

log
n∏

i=1

P (Si) =
n∑

i=1

log P (Si)

• In fact the usual evaluation measure is perplexity

Perplexity = 2−x where x =
1

W

n∑

i=1

log P (Si)

and W is the total number of words in the test data.

44

Trigrams Can’t Capture Long-Distance Dependencies

Actual Utterance: He is a resident of the U.S. and of the U.K.

Recognizer Output: He is a resident of the U.S. and that the U.K.

• Bigram and that is around 15 times as frequent as and of
⇒ Bigram model gives over 10 times greater probability to incorrect string

• Parsing models assign 78 times higher probability to the correct string

45

Examples of Long-Distance Dependencies

Subject/verb dependencies

Microsoft, the world’s largest software company, acquired . . .

Object/verb dependencies

. . . acquired the New-York based software company . . .

Appositives

Microsoft, the world’s largest software company, acquired . . .

Verb/Preposition Collocations

I put the coffee mug on the table

The USA elected the son of George Bush Sr. as president

Coordination

She said that . . . and that . . .

46

Work on Parsers as Language Models

• “The Structured Language Model”. Ciprian Chelba and Fred
Jelinek, see also recent work by Peng Xu, Ahmad Emami and
Fred Jelinek.

• “Probabilistic Top-Down Parsing and Language Modeling”.
Brian Roark.

• “Immediate Head-Parsing for Language Models”.
Eugene Charniak.

47

Some Perplexity Figures from (Charniak, 2000)

Model Trigram Grammar Interpolation
Chelba and Jelinek 167.14 158.28 148.90
Roark 167.02 152.26 137.26
Charniak 167.89 144.98 133.15

• Interpolation is a mixture of the trigram and grammatical models

• Chelba and Jelinek, Roark use trigram information in their grammatical
models, Charniak doesn’t!

• Note: Charniak’s parser in these experiments is as described in (Charniak
2000), and makes use of Markov processes generating rules (a shift away
from the Charniak 1997 model).

48

Extending Charniak’s Parsing Model

S(questioned,Vt)

NP(,NN) VP(questioned,Vt)

⇓ P (lawyer | S,VP,NP,NN, questioned,Vt))

S(questioned,Vt)

NP(lawyer,NN) VP(questioned,Vt)

49

Extending Charniak’s Parsing Model

She said that the lawyer questioned him

⇒ bigram lexical probabilies

P (questioned | SBAR,COMP,S,Vt, that,COMP))
P (lawyer | S,VP,NP,NN, questioned,Vt))
P (him | VP,Vt,NP,PRP, questioned,Vt)) . . .

50

Adding Syntactic Trigrams

SBAR(that,COMP)

COMP

that

S(questioned,Vt)

NP(,NN) VP(questioned,Vt)

⇓ P (lawyer | S,VP,NP,NN, questioned,Vt, that)

SBAR(that,COMP)

COMP

that

S(questioned,Vt)

NP(lawyer,NN) VP(questioned,Vt)

51

Extending Charniak’s Parsing Model

She said that the lawyer questioned him

⇒ trigram lexical probabilies

P (questioned | SBAR,COMP,S,Vt, that,COMP, said))
P (lawyer | S,VP,NP,NN, questioned,Vt, that))
P (him | VP,Vt,NP,PRP, questioned,Vt,that)) . . .

52

Some Perplexity Figures from (Charniak, 2000)

Model Trigram Grammar Interpolation
Chelba and Jelinek 167.14 158.28 148.90
Roark 167.02 152.26 137.26
Charniak 167.89 144.98 133.15
(Bigram)
Charniak 167.89 130.20 126.07
(Trigram)

53

Model 3: A Model of Wh-Movement

• Examples of Wh-movement:

Example 1 The person (SBAR who TRACE bought the shoes)

Example 2 The shoes (SBAR that I bought TRACE last week)

Example 3 The person (SBAR who I bought the shoes from TRACE)

Example 4 The person (SBAR who Jeff said I bought the shoes from TRACE)

• Key ungrammatical examples:

Example 1 The person (SBAR who Fran and TRACE bought the shoes)
(derived from Fran and Jeff bought the shoes)

Example 2
The store (SBAR that Jeff bought the shoes because Fran likes TRACE)
(derived from Jeff bought the shoes because Fran likes the store)

54

The Parse Trees at this Stage

NP(shoes,NNS)

NP(shoes,NNS)

The shoes

SBAR(that,WDT)

WHNP(that,WDT)

WDT

that

S-C(bought,Vt)

NP-C(I,PRP)

I

VP(bought,Vt)

Vt

bought

NP(week,NN)

last week

It’s difficult to recover “shoes” as the object of “bought”

55

Adding Gaps and Traces
NP(shoes,NNS)

NP(shoes,NNS)

The shoes

SBAR(that,WDT)(+gap)

WHNP(that,WDT)

WDT

that

S-C(bought,Vt)(+gap)

NP-C(I,PRP)

I

VP(bought,Vt)(+gap)

Vt

bought

TRACE NP(week,NN)

last week

It’s easy to recover “shoes” as the object of “bought”

56

Adding Gaps and Traces

• This information can be recovered from the treebank

• Doubles the number of non-terminals
(with/without gaps)

• Similar to treatment of Wh-movement in GPSG
(generalized phrase structure grammar)

• If our parser recovers this information, it’s easy to recover
syntactic relations

57

New Rules: Rules that Generate Gaps

NP(shoes,NNS)

NP(shoes,NNS) SBAR(that,WDT)(+gap)

• Modeled in a very similar way to previous rules

58

New Rules: Rules that Pass Gaps down the Tree

• Passing a gap to a modifier

SBAR(that,WDT)(+gap)

WHNP(that,WDT) S-C(bought,Vt)(+gap)

• Passing a gap to the head

S-C(bought,Vt)(+gap)

NP-C(I,PRP) VP(bought,Vt)(+gap)

59

New Rules: Rules that Discharge Gaps as a Trace

• Discharging a gap as a TRACE

VP(bought,Vt)(+gap)

Vt(bought,Vt) TRACE NP(week,NN)

60

Adding Gap Propagation (Example 1)

• Step 1: generate category of head child

SBAR(that,WDT)(+gap)

⇓

SBAR(that,WDT)(+gap)

WHNP(that,WDT)

Ph(WHNP | SBAR, that, WDT)

61

Adding Gap Propagation (Example 1)

• Step 2: choose to propagate the gap to the head, or to the left
or right of the head

SBAR(that,WDT)(+gap)

WHNP(that,WDT)

⇓

SBAR(that,WDT)(+gap)

WHNP(that,WDT)

Ph(WHNP | SBAR, that, WDT) × Pg(RIGHT | SBAR, that, WDT)

• In this case left modifiers are generated as before

62

Adding Gap Propagation (Example 1)

• Step 3: choose right subcategorization frame

SBAR(that,WDT)(+gap)

WHNP(that,WDT)

⇓

SBAR(that,WDT)(+gap)

WHNP(that,WDT)
{S-C,+gap}

Ph(WHNP | SBAR, that, WDT) × Pg(RIGHT | SBAR, that, WDT)×
Prc({S-C} | SBAR, WHNP, that, WDT)

63

Adding Gap Propagation (Example 1)

• Step 4: Generate right modifiers

SBAR(that,WDT)(+gap)

WHNP(that,WDT)
{S-C,+gap}

??

⇓

SBAR(that,WDT)(+gap)

WHNP(that,WDT)
{}

S-C(bought,Vt)(+gap)

Ph(WHNP | SBAR, that, WDT) × Pg(RIGHT | SBAR, that, WDT)×
Prc({S-C} | SBAR, WHNP, that, WDT)×
Pd(S-C(bought,Vt)(+gap) | SBAR, WHNP, that, WDT, RIGHT, {S-C,+gap})

64

Adding Gap Propagation (Example 2)

• Step 1: generate category of head child

S-C(bought,Vt)(+gap)

⇓

S-C(bought,Vt)(+gap)

VP(bought,Vt)

Ph(VP | S-C, bought, Vt)

65

Adding Gap Propagation (Example 2)

• Step 2: choose to propagate the gap to the head, or to the left
or right of the head

S-C(bought,Vt)(+gap)

VP(bought,Vt)

⇓

S-C(bought,Vt)(+gap)

VP(bought,Vt)(+gap)

Ph(VP | S-C, bought, Vt) × Pg(HEAD | S-C, VP, bought, Vt)

• In this case we’re done: rest of rule is generated as before

66

Adding Gap Propagation (Example 3)

• Step 1: generate category of head child

VP(bought,Vt)(+gap)

⇓

VP(bought,Vt)(+gap)

Vt(bought,Vt)

Ph(Vt | VP, bought, Vt)

67

Adding Gap Propagation (Example 3)

• Step 2: choose to propagate the gap to the head, or to the left
or right of the head

VP(bought,Vt)(+gap)

VP(bought,Vt)

⇓

VP(bought,Vt)(+gap)

VP(bought,Vt)

Ph(Vt | SBAR, that, WDT) × Pg(RIGHT | VP, Vt, bought, Vt)

• In this case left modifiers are generated as before

68

Adding Gap Propagation (Example 3)

• Step 3: choose right subcategorization frame

VP(bought,Vt)(+gap)

Vt(bought,Vt)

⇓

VP(bought,Vt)(+gap)

Vt(bought,Vt)
{NP-C,+gap}

Ph(Vt | SBAR, that, WDT) × Pg(RIGHT | VP, Vt, bought, Vt)×
Prc({NP-C} | VP, Vt, bought, Vt)

69

Adding Gap Propagation (Example 3)

• Step 4: generate right modifiers

VP(bought,Vt)(+gap)

Vt(bought,Vt)
{NP-C,+gap}

??

⇓

VP(bought,Vt)(+gap)

Vt(bought,Vt)
{}

TRACE

Ph(Vt | SBAR, that, WDT) × Pg(RIGHT | VP, Vt, bought, Vt)×
Prc({NP-C} | VP, Vt, bought, Vt)×
Pd(TRACE | VP, Vt, bought, Vt, RIGHT, {NP-C,+gap})

70

Adding Gap Propagation (Example 3)

VP(bought,Vt)(+gap)

Vt(bought,Vt)
{}

TRACE ??

⇓

VP(bought,Vt)(+gap)

Vt(bought,Vt)
{}

TRACE NP(yesterday,NN)

Ph(Vt | SBAR, that, WDT) × Pg(RIGHT | VP, Vt, bought, Vt)×
Prc({NP-C} | VP, Vt, bought, Vt)×
Pd(TRACE | VP, Vt, bought, Vt, RIGHT, {NP-C,+gap})×
Pd(NP(yesterday,NN) | VP, Vt, bought, Vt, RIGHT, {})

71

Adding Gap Propagation (Example 3)

VP(bought,Vt)(+gap)

Vt(bought,Vt)
{}

TRACE NP(yesterday,NN) ??

⇓

VP(bought,Vt)(+gap)

Vt(bought,Vt)
{}

TRACE NP(yesterday,NN) STOP

Ph(Vt | SBAR, that, WDT) × Pg(RIGHT | VP, Vt, bought, Vt)×
Prc({NP-C} | VP, Vt, bought, Vt)×
Pd(TRACE | VP, Vt, bought, Vt, RIGHT, {NP-C,+gap})×
Pd(NP(yesterday,NN) | VP, Vt, bought, Vt, RIGHT, {})×
Pd(STOP | VP, Vt, bought, Vt, RIGHT, {})

72

Ungrammatical Cases Contain Low Probability Rules

Example 1 The person (SBAR who Fran and TRACE bought the shoes)

S-C(bought,Vt)(+gap)

NP-C(Fran,NNP)(+gap)

NP(Fran,NNP) CC TRACE

VP(bought,Vt)

Example 2 The store (SBAR that Jeff bought the shoes because Fran likes TRACE)

VP(bought,Vt)(+gap)

Vt(bought,Vt) NP-C(shoes,NNS) SBAR(because,COMP)(+gap)

73

