6.864 (Fall 2007): Lecture 5 Parsing and Syntax III

Recap: Lexicalized PCFGs

- We now need to estimate rule probabilities such as
$\operatorname{Prob}(\mathrm{S}($ questioned,Vt) $\Rightarrow \mathrm{NP}($ lawyer,NN $) \quad \mathrm{VP}($ questioned, Vt) $\mid \mathrm{S}$ (questioned, Vt))
- Sparse data is a problem. We have a huge number of nonterminals, and a huge number of possible rules. We have to work hard to estimate these rule probabilities...
- Once we have estimated these rule probabilities, we can find the highest scoring parse tree under the lexicalized PCFG using dynamic programming methods (see Problem set 1).

Recap: Adding Head Words/Tags to Trees

- We now have lexicalized context-free rules, e.g.,

$$
\mathrm{S}(\text { questioned, } \mathrm{Vt}) \Rightarrow \mathrm{NP}(\text { lawyer, } \mathrm{NN}) \quad \mathrm{VP} \text { (questioned, } \mathrm{Vt})
$$

Recap: Charniak's Model

- The general form of a lexicalized rule is as follows:
$X(h, t) \Rightarrow L_{n}\left(l w_{n}, l t_{n}\right) \ldots L_{1}\left(l w_{1}, l t_{1}\right) H(h, t) R_{1}\left(r w_{1}, r t_{1}\right) \ldots R_{m}\left(r w_{m}, r t_{m}\right)$
- Charniak's model decomposes the probability of each rule as:

$$
\begin{aligned}
& \operatorname{Prob}\left(X(h, t) \Rightarrow L_{n}\left(l t_{n}\right) \ldots L_{1}\left(l t_{1}\right) H(t) R_{1}\left(r t_{1}\right) \ldots R_{m}\left(r t_{m}\right) \mid X(h, t)\right) \\
& \times \prod_{i=1}^{n} \operatorname{Prob}\left(l w_{i} \mid X(h, t), H, L_{i}\left(l t_{i}\right)\right) \times \prod_{i=1}^{m} \operatorname{Prob}\left(r w_{i} \mid X(h, t), H, R_{i}\left(r t_{i}\right)\right)
\end{aligned}
$$

- For example,
$\operatorname{Prob}(\mathrm{S}($ questioned,Vt $) \Rightarrow \quad \mathrm{NP}($ lawyer,NN $) \quad \mathrm{VP}($ questioned,Vt) $\mid \mathrm{S}($ questioned,Vt) $)$
$=\operatorname{Prob}(\mathrm{S}($ questioned, Vt$) \Rightarrow \mathrm{NP}(\mathrm{NN}) \quad \mathrm{VP}(\mathrm{Vt}) \mid \mathrm{S}($ questioned, Vt$))$
$\times \operatorname{Prob}($ lawyer $\mid \mathrm{S}($ questioned, Vt$), \mathrm{VP}, \mathrm{NP}(\mathrm{NN}))$

Motivation for Breaking Down Rules

- First step of decomposition of (Charniak 1997):

S(questioned,Vt)
$\Downarrow \quad P(\mathrm{NP}(\mathrm{NN}) \mathrm{VP} \mid \mathrm{S}($ questioned, Vt) $)$
S(questioned,Vt)
$\mathrm{NP}($ _-,NN $) \quad \mathrm{VP}($ questioned,Vt)

- Relies on counts of entire rules
- These counts are sparse:
- 40,000 sentences from Penn treebank have 12,409 rules.
- 15% of all test data sentences contain a rule never seen in training

The General Form of Model 1

- The general form of a lexicalized rule is as follows:
$X(h, t) \Rightarrow L_{n}\left(l w_{n}, l t_{n}\right) \ldots L_{1}\left(l w_{1}, l t_{1}\right) H(h, t) R_{1}\left(r w_{1}, r t_{1}\right) \ldots R_{m}\left(r w_{m}, r t_{m}\right)$
- Collins model 1 decomposes the probability of each rule as:

$$
\begin{aligned}
& P_{h}(H \mid X, h, t) \times \\
& \prod_{i=1}^{n} P_{d}\left(L_{i}\left(l w_{i}, l t_{i}\right) \mid X, H, h, t, \mathrm{LEFT}\right) \times \\
& P_{d}(\mathrm{STOP} \mid X, H, h, t, \mathrm{LEFT}) \times \\
& \prod_{i=1}^{m} P_{d}\left(R_{i}\left(r w_{i}, r t_{i}\right) \mid X, H, h, t, \mathrm{RIGHT}\right) \times \\
& P_{d}(\mathrm{STOP} \mid X, H, h, t, \mathrm{RIGHT})
\end{aligned}
$$

5

Modeling Rule Productions as Markov Processes

- Collins (1997), Model 1

We first generate the head label of the rule
Then generate the left modifiers
Then generate the right modifiers
$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V $) \times$
$P_{d}(\mathrm{NP}($ Hillary, NNP$) \mid \mathrm{S}, \mathrm{VP}$, told, V,LEFT $) \times$
$P_{d}(\mathrm{NP}($ yesterday,NN $) \mid \mathrm{S}, \mathrm{VP}$, told,V,LEFT $) \times$
$P_{d}($ STOP \mid S,VP,told,V,LEFT $) \times$
$P_{d}($ STOP $\mid \mathrm{S}, \mathrm{VP}$, told,V,RIGHT $)$

- P_{h} term is a head-label probability
- P_{d} terms are dependency probabilities
- Both the P_{h} and P_{d} terms are smoothed, using similar techniques to Charniak's model

Overview of Today's Lecture

- Refinements to Model 1
- Evaluating parsing models
- Extensions to the parsing models

A Refi nement: Adding a Distance Variable

- $\Delta=1$ if position is adjacent to the head, 0 otherwise

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V$) \times$
$P_{d}(\mathrm{NP}($ Hillary,NNP $) \mid \mathrm{S}, \mathrm{VP}$, told,V,LEFT, $\Delta=1)$

A Refi nement: Adding a Distance Variable

- $\Delta=1$ if position is adjacent to the head.
NP(yesterday, NN)
$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V$) \times P_{d}(\mathrm{NP}($ Hillary,NNP $) \mid \mathrm{S}, \mathrm{VP}$, told, V,LEFT $) \times$
$P_{d}(\mathrm{NP}($ yesterday,NN $) \mid \mathrm{S}, \mathrm{VP}$, told, V,LEFT, $\Delta=0)$

11

The Final Probabilities

Adding the Complement/Adjunct Distinction

- Hillary is the subject
- yesterday is a temporal modifier
- But nothing to distinguish them.

Complements vs. Adjuncts

- Complements are closely related to the head they modify, adjuncts are more indirectly related
- Complements are usually arguments of the thing they modify yesterday Hillary told $\ldots \Rightarrow$ Hillary is doing the telling
- Adjuncts add modifying information: time, place, manner etc. yesterday Hillary told $\ldots \Rightarrow$ yesterday is a temporal modifier
- Complements are usually required, adjuncts are optional
yesterday Hillary told . . . (grammatical)
vs. Hillary told . . . (grammatical)
vs. yesterday told ... (ungrammatical)

13

Adding the Complement/Adjunct Distinction

- Bill is the object
- yesterday is a temporal modifier
- But nothing to distinguish them.

Adding Tags Making the Complement/Adjunct Distinction

Adding Tags Making the Complement/Adjunct Distinction

17

Adding Subcategorization Probabilities

- Step 1: generate category of head child

	S(told, V)
	\Downarrow
	$\begin{gathered} \text { S(told,V) } \\ \mid \\ \mathrm{VP}(\text { told, } \mathrm{V}) \end{gathered}$
$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V$)$	

Adding Subcategorization Probabilities

- Step 2: choose left subcategorization frame

S(told, V)

\Downarrow
S(told, V)
I
VP(told, V)
\{NP-C $\}$
$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V$) \times P_{l c}(\{\mathrm{NP}-\mathrm{C}\} \mid \mathrm{S}, \mathrm{VP}$, told, V $)$

19

- Step 3: generate left modifiers in a Markov chain

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V$) \times P_{l c}(\{\mathrm{NP}-\mathrm{C}\} \mid \mathrm{S}, \mathrm{VP}$, told, V $) \times$
$P_{d}($ NP-C(Hillary,NNP) \mid S,VP,told,V,LEFT, $\{$ NP-C $\})$

The Final Probabilities

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V$) \times$
$P_{l c}(\{$ NP-C $\} \mid \mathrm{S}, \mathrm{VP}$, told, V $) \times$
$P_{d}($ NP-C(Hillary,NNP) $\mid \mathrm{S}, \mathrm{VP}$, told, V,LEFT, $\Delta=1,\{$ NP-C $\}) \times$
$P_{d}(\mathrm{NP}($ yesterday,NN $) \mid \mathrm{S}, \mathrm{VP}$, told,V,LEFT, $\Delta=0,\{ \}) \times$
$P_{d}($ STOP $\mid \mathrm{S}, \mathrm{VP}$, told,V,LEFT, $\Delta=0,\{ \}) \times$
$P_{r c}(\{ \} \mid \mathrm{S}, \mathrm{VP}$, told, V $) \times$
$P_{d}($ STOP $\mid \mathrm{S}, \mathrm{VP}$, told, $\mathrm{V}, \mathrm{RIGHT}, \Delta=1,\{ \})$
$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V $) \times P_{l c}(\{\mathrm{NP}-\mathrm{C}\} \mid \mathrm{S}, \mathrm{VP}$, told, V $)$
$P_{d}($ NP-C(Hillary,NNP) \mid S,VP,told,V,LEFT, $\{$ NP-C $\}) \times$
$P_{d}($ NP (yesterday,NN $) \mid$ S,VP,told,V,LEFT, $\})$

\{\}
$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V $) \times P_{l c}(\{\mathrm{NP}-\mathrm{C}\} \mid \mathrm{S}, \mathrm{VP}$, told, V $)$
$P_{d}($ NP-C(Hillary,NNP) |S,VP,told,V,LEFT, $\{$ NP-C $\}) \times$
$P_{d}(\mathrm{NP}($ yesterday,NN $) \mid \mathrm{S}, \mathrm{VP}$, told,V,LEFT, $\{ \}) \times$
P_{d} (STOP | S,VP,told,V,LEFT, $\}$)

Summary

- Identify heads of rules \Rightarrow dependency representations
- Presented two variants of PCFG methods applied to lexicalized grammars.
- Break generation of rule down into small (markov process) steps
- Build dependencies back up (distance, subcategorization)

Overview of Today's Lecture

- Refinements to Model 1
- Evaluating parsing models
- Extensions to the parsing models

Evaluation: Representing Trees as Constituents

27

Precision and Recall

$\left.$| Label | Start Point | End Point |
| :--- | :--- | :--- |
| | | |
| NP | 1 | 2 |
| NP | 4 | 8 |
| NP | 4 | 8 |
| PP | 6 | 8 |
| NP | 7 | 8 |
| VP | 3 | 8 |
| S | 1 | |$\quad \right\rvert\,$| Label | Start Point | End Point |
| :--- | :--- | :--- |
| | | |
| NP | 1 | 2 |
| NP | 4 | 5 |
| PP | 6 | 8 |
| NP | 7 | 8 |
| VP | 3 | 8 |
| S | 1 | 8 |

- $G=$ number of constituents in gold standard $=7$
- $P=$ number in parse output $=6$
- $C=$ number correct $=6$

Recall $=100 \% \times \frac{C}{G}=100 \% \times \frac{6}{7} \quad$ Precision $=100 \% \times \frac{C}{P}=100 \% \times \frac{6}{6}$

Results

Method	Recall	Precision
PCFGs (Charniak 97)	70.6%	74.8%
Conditional Models - Decision Trees (Magerman 95)	84.0%	84.3%
Generative Lexicalized Model (Charniak 97)	86.7%	86.6%
Model 1 (no subcategorization)	87.5%	87.7%
Model 2 (subcategorization)	88.1%	88.3%

Effect of the Different Features

MODEL	A	V	R	P
Model 1	NO	NO	75.0%	76.5%
Model 1	YES	NO	86.6%	86.7%
Model 1	YES	YES	87.8%	88.2%
Model 2	NO	NO	85.1%	86.8%
Model 2	YES	NO	87.7%	87.8%
Model 2	YES	YES	88.7%	89.0%

Results on Section 0 of the WSJ Treebank. Model 1 has no subcategorization, Model 2 has subcategorization. $\mathrm{A}=\mathrm{YES}, \mathrm{V}=$ YES mean that the adjacency/verb conditions respectively were used in the distance measure. $\mathbf{R} / \mathbf{P}=$ recall/precision.

Label	Start Point	End Point
NP	1	2
NP	4	5
NP	4	8
PP	6	8
NP	7	8
VP	3	8
S	1	8

Label	Start Point	End Point
NP	1	2
NP	4	5
PP	6	8
NP	7	8
VP	3	8
S	1	8

NP attachment:
(S (NP The men) (VP dumped (NP (NP large sacks) (PP of (NP the substance)))))

VP attachment:
(S (NP The men) (VP dumped (NP large sacks) (PP of (NP the substance))))
Weaknesses of Precision and Recall

Dependency Accuracies

- All parses for a sentence with n words have n dependencies Report a single figure, dependency accuracy
- Model 2 with all features scores 88.3% dependency accuracy (91% if you ignore non-terminal labels on dependencies)
- Can calculate precision/recall on particular dependency types e.g., look at all subject/verb dependencies \Rightarrow
all dependencies with label (S,VP,NP-C,LEFT)
Recall $=$ number of subject/verb dependencies correct number of subject/verb dependencies in gold standard

Precision $=\frac{\text { number of subject } / \text { verb dependencies correct }}{\text { number of subject } / \text { verb }}$ number of subject/verb dependencies in parser's output

R	CP	P	Count	Relation	Rec	Prec
1	29.65	29.65	11786	NPB TAG TAG L	94.60	93.46
2	40.55	10.90	4335	PP TAG NP-C R	94.72	94.04
3	48.72	8.17	3248	S VP NP - C L	95.75	95.11
4	54.03	5.31	2112	NP NPB PP R	84.99	84.35
5	59.30	5.27	2095	VP TAG NP-C R	92.41	92.15
6	64.18	4.88	1941	VP TAG VP-C R	97.42	97.98
7	68.71	4.53	1801	VP TAG PP R	83.62	81.14
8	73.13	4.42	1757	TOP TOP S R	96.36	96.85
9	74.53	1.40	558	VP TAG SBAR-C R	94.27	93.93
10	75.83	1.30	518	QP TAG TAG R	86.49	86.65
11	77.08	1.25	495	NP NPB NP R	74.34	75.72
12	78.28	1.20	477	SBAR TAG S-C R	94.55	92.04
13	79.48	1.20	476	NP NPB SBAR R	79.20	79.54
14	80.40	0.92	367	VP TAG ADVP R	74.93	78.57
15	81.30	0.90	358	NPB TAG NPB L	97.49	92.82
16	82.18	0.88	349	VP TAG TAG R	90.54	93.49
17	82.97	0.79	316	VP TAG SG-C R	92.41	88.22

Accuracy of the 17 most frequent dependency types in section 0 of the treebank, as recovered by model $2 . \mathrm{R}=$ rank; $\mathrm{CP}=$ cumulative percentage; $\mathrm{P}=$ percentage; Rec = Recall; Prec = precision.

Type	Sub-type	Description	Count	Recall	Precision
Complement to a verb $6495=16.3 \%$ of all cases	$\begin{array}{lll} \hline \hline \text { S VP } & \text { NP-C L } & \\ \text { VP } & \text { TAG NP-C R } \\ \text { VP } & \text { TAG SBAR-C } & \text { R } \\ \text { VP } & \text { TAG SG-C R } \\ \text { VP TAG S-C R } \\ \text { S VP S-C L } \\ \text { S VP } & \text { SG-C L } \\ \ldots & & \end{array}$	Subject Object	$\begin{gathered} \hline \hline 3248 \\ 2095 \\ 558 \\ 316 \\ 150 \\ 104 \\ 14 \end{gathered}$	95.75 92.41 94.27 92.41 74.67 93.27 78.57	95.11 92.15 93.93 88.22 78.32 78.86 68.75
	TOTAL		6495	93.76	92.96
Other complements $7473=18.8 \%$ of all cases	PP TAG NP-C R VP TAG VP-C R SBAR TAG S-C R SBAR WHNP SG-C R PP TAG SG-C R SBAR WHADVP S-C R PP TAG PP-C R SBAR WHNP S-C R SBAR TAG SG-C R PP TAG S-C R SBAR WHPP S-C R S ADJP NP-C L PP TAG SBAR-C R ...		4335 1941 477 286 125 83 51 42 23 18 16 15 15	$\begin{gathered} \hline \hline 94.72 \\ 97.42 \\ 94.55 \\ 90.56 \\ 94.40 \\ 97.59 \\ 84.31 \\ 66.67 \\ 69.57 \\ 38.89 \\ 100.00 \\ 46.67 \\ 100.00 \end{gathered}$	94.04 97.98 92.04 90.56 89.39 98.78 70.49 84.85 69.57 63.64 100.00 46.67 88.24
	TOTAL		7473	94.47	94.12

Type	Sub-type	Description	Count	Recall	Precision
PP modifi cation	NP NPB PP R		2112	84.99	84.35
	VP TAG PP R		1801	83.62	81.14
$4473=11.2 \%$ of all cases	S VP PP L		287	90.24	81.96
	ADJP TAG PP R		90	75.56	78.16
	ADVP TAG PP R		35	68.57	52.17
	NP NP PP R		23	0.00	0.00
	PP PP PP L		19	21.05	26.67
	NAC TAG PP R		12	50.00	100.00
	TOTAL		4473	82.29	81.51
Coordination	NP NP NP R		289	55.71	53.31
	VP VP VP R		174	74.14	72.47
$763=1.9 \%$ of all cases	S S S R		129	72.09	69.92
	ADJP TAG TAG R		28	71.43	66.67
	VP TAG TAG R		25	60.00	71.43
	NX NX NX R		25	12.00	75.00
	SBAR SBAR SBAR R		19	78.95	83.33
	PP PP PP R		14	85.71	63.16
	TOTAL		763	61.47	62.20

Type	Sub-type	Description	Count	Recall	Precision
Sentential head	TOP TOP S R		1757	96.36	96.85
	TOP TOP SINV R		89	96.63	94.51
$1917=4.8 \%$ of all cases	TOP TOP NP R		32	78.12	60.98
	TOP TOP SG R		15	40.00	33.33
	...				
	TOTAL		1917	94.99	94.99
Adjunct to a verb $2242=5.6 \%$ of all cases	VP TAG ADVP R		367	74.93	78.57
	VP TAG TAG R		349	90.54	93.49
	VP TAG ADJP R		259	83.78	80.37
	S VP ADVP L		255	90.98	84.67
	VP TAG NP R		187	66.31	74.70
	VP TAG SBAR R		180	74.44	72.43
	VP TAG SG R		159	60.38	68.57
	S VP TAG L		115	86.96	90.91
	S VP SBAR L		81	88.89	85.71
	VP TAG ADVP L		79	51.90	49.40
	S VP PRN L		58	25.86	48.39
	S VP NP L		45	66.67	63.83
	S VP SG L		28	75.00	52.50
	VP TAG PRN R		27	3.70	12.50
	VP TAG S R		11	9.09	100.00
	\ldots				
	TOTAL		2242	75.11	78.44

39

Some Conclusions about Errors in Parsing

- "Core" sentential structure (complements, NP chunks) recovered with over 90% accuracy.
- Attachment ambiguities involving adjuncts are resolved with much lower accuracy ($\approx 80 \%$ for PP attachment, $\approx 50-60 \%$ for coordination).

Overview of Today's Lecture

- Refinements to Model 1
- Evaluating parsing models
- Extensions to the parsing models

Trigram Language Models (from Lecture 2)

Step 1: The chain rule (note that $w_{n+1}=$ STOP)

$$
P\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\prod_{i=1}^{n+1} P\left(w_{i} \mid w_{1} \ldots w_{i-1}\right)
$$

Step 2: Make Markov independence assumptions:

$$
P\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\prod_{i=1}^{n+1} P\left(w_{i} \mid w_{i-2}, w_{i-1}\right)
$$

For Example

$$
\begin{aligned}
P(\text { the }, \text { dog, laughs })= & P(\text { the } \mid \text { START }) \times P(\operatorname{dog} \mid \text { START, the }) \\
& \times P(\text { laughs } \mid \text { the } \text { dog }) \times P(\text { STOP } \mid \text { dog, laughs })
\end{aligned}
$$

Parsing Models as Language Models

- Generative models assign a probability $P(T, S)$ to each tree/sentence pair
- Say sentence is S, set of parses for S is $\mathcal{T}(S)$, then

$$
P(S)=\sum_{T \in \mathcal{T}(S)} P(T, S)
$$

- Can calculate perplexity for parsing models

A Quick Reminder of Perplexity

- We have some test data, n sentences

$$
S_{1}, S_{2}, S_{3}, \ldots, S_{n}
$$

- We could look at the probability under our model $\prod_{i=1}^{n} P\left(S_{i}\right)$. Or more conveniently, the log probability

$$
\log \prod_{i=1}^{n} P\left(S_{i}\right)=\sum_{i=1}^{n} \log P\left(S_{i}\right)
$$

- In fact the usual evaluation measure is perplexity

$$
\text { Perplexity }=2^{-x} \quad \text { where } \quad x=\frac{1}{W} \sum_{i=1}^{n} \log P\left(S_{i}\right)
$$

and W is the total number of words in the test data.

Trigrams Can't Capture Long-Distance Dependencies

Work on Parsers as Language Models

Actual Utterance: He is a resident of the U.S. and of the U.K.

Recognizer Output: He is a resident of the U.S. and that the U.K.

- Bigram and that is around 15 times as frequent as and of
\Rightarrow Bigram model gives over 10 times greater probability to incorrect string
- "The Structured Language Model". Ciprian Chelba and Fred Jelinek, see also recent work by Peng Xu, Ahmad Emami and Fred Jelinek.
- "Probabilistic Top-Down Parsing and Language Modeling". Brian Roark.
- "Immediate Head-Parsing for Language Models". Eugene Charniak.
- Parsing models assign 78 times higher probability to the correct string

Examples of Long-Distance Dependencies

Some Perplexity Figures from (Charniak, 2000)

Subject/verb dependencies

Microsoft, the world's largest software company, acquired ...
Object/verb dependencies
... acquired the New-York based software company ...

Appositives

Microsoft, the world's largest software company, acquired...

Verb/Preposition Collocations

I put the coffee mug on the table
The USA elected the son of George Bush Sr. as president

Coordination

She said that . . . and that . . .

Model	Trigram	Grammar	Interpolation
Chelba and Jelinek	167.14	158.28	148.90
Roark	167.02	152.26	137.26
Charniak	167.89	144.98	133.15

- Interpolation is a mixture of the trigram and grammatical models
- Chelba and Jelinek, Roark use trigram information in their grammatical models, Charniak doesn't!
- Note: Charniak's parser in these experiments is as described in (Charniak 2000), and makes use of Markov processes generating rules (a shift away from the Charniak 1997 model).

Extending Charniak's Parsing Model

Extending Charniak's Parsing Model

She said that the lawyer questioned him
\Rightarrow bigram lexical probabilies
$P($ questioned | SBAR,COMP,S,Vt, that,COMP) $)$
$P($ lawyer | S, VP,NP,NN, questioned, Vt) $)$
$P($ him | VP,Vt,NP,PRP, questioned,Vt) $)$. .

Adding Syntactic Trigrams

Extending Charniak's Parsing Model

She said that the lawyer questioned him
\Rightarrow trigram lexical probabilies
$P($ questioned | SBAR,COMP,S, Vt, that,COMP, said) $)$
$P($ lawyer | S,VP,NP,NN, questioned, Vt, that) $)$
$P($ him | VP,Vt,NP,PRP, questioned, Vt ,that $)) \ldots$

Some Perplexity Figures from (Charniak, 2000)

Model	Trigram	Grammar	Interpolation
Chelba and Jelinek	167.14	158.28	148.90
Roark	167.02	152.26	137.26
Charniak (Bigram)	167.89	144.98	133.15
Charniak (Trigram)	167.89	130.20	126.07

Model 3: A Model of Wh-Movement

- Examples of Wh-movement:

Example 1 The person (SBAR who TRACE bought the shoes)
Example 2 The shoes (SBAR that I bought TRACE last week)
Example 3 The person (SBAR who I bought the shoes from TRACE)
Example 4 The person (SBAR who Jeff said I bought the shoes from TRACE)

- Key ungrammatical examples:

Example 1 The person (SBAR who Fran and TRACE bought the shoes) (derived from Fran and Jeff bought the shoes)

Example 2

The store (SBAR that Jeff bought the shoes because Fran likes TRACE) (derived from Jeff bought the shoes because Fran likes the store)

The Parse Trees at this Stage

It's diffi cult to recover "shoes" as the object of "bought"

Adding Gaps and Traces

It's easy to recover "shoes" as the object of "bought"

Adding Gaps and Traces

- This information can be recovered from the treebank
- Doubles the number of non-terminals (with/without gaps)
- Similar to treatment of Wh-movement in GPSG (generalized phrase structure grammar)
- If our parser recovers this information, it's easy to recover syntactic relations

New Rules: Rules that Pass Gaps down the Tree

- Passing a gap to a modifier

- Passing a gap to the head

New Rules: Rules that Discharge Gaps as a Trace

- Discharging a gap as a TRACE

Adding Gap Propagation (Example 1)

- Step 1: generate category of head child

```
SBAR(that,WDT)(+gap)
```


$P_{h}($ WHNP \mid SBAR, that, WDT $)$

Adding Gap Propagation (Example 1)

- Step 3: choose right subcategorization frame
SBAR(that,WDT)(+gap)
WHNP(that,WDT)
\Downarrow
SBAR(that,WDT)(+gap)
WHNP(that,WDT)
$\{$ S-C,+gap $\}$
$P_{h}($ WHNP \mid SBAR, that, WDT $) \times P_{g}($ RIGHT \mid SBAR, that, WDT $) \times$
$P_{r c}(\{\mathrm{~S}-\mathrm{C}\} \mid$ SBAR, WHNP, that, WDT $)$

63

Adding Gap Propagation (Example 1)

- Step 4: Generate right modifiers

$P_{h}($ WHNP \mid SBAR, that, WDT $) \times P_{g}($ RIGHT \mid SBAR, that, WDT $) \times$ $P_{r c}(\{\mathrm{~S}-\mathrm{C}\} \mid$ SBAR, WHNP, that, WDT $) \times$
$P_{d}(\mathrm{~S}-\mathrm{C}($ bought,Vt)(+gap) \mid SBAR, WHNP, that, WDT, RIGHT, $\{\mathrm{S}-\mathrm{C},+$ gap $\})$

Adding Gap Propagation (Example 2)

- Step 1: generate category of head child

$P_{h}(\mathrm{VP} \mid \mathrm{S}-\mathrm{C}$, bought, Vt)

Adding Gap Propagation (Example 3)

- Step 1: generate category of head child

```
VP(bought,Vt)(+gap)
```


$P_{h}(\mathrm{Vt} \mid \mathrm{VP}$, bought, Vt $)$

Adding Gap Propagation (Example 3)

- Step 2: choose to propagate the gap to the head, or to the left or right of the head

$P_{h}($ VP \mid S-C, bought, Vt$) \times P_{g}($ HEAD \mid S-C, VP, bought, Vt $)$
- In this case we're done: rest of rule is generated as before

$P_{h}(\mathrm{Vt} \mid \mathrm{SBAR}$, that, WDT $) \times P_{g}(\mathrm{RIGHT} \mid \mathrm{VP}, \mathrm{Vt}$, bought, Vt $)$
- In this case left modifi ers are generated as before

Adding Gap Propagation (Example 3)

- Step 3: choose right subcategorization frame

$$
\begin{gathered}
\mathrm{VP}(\text { bought,Vt)(+gap) } \\
\mathrm{Vt}(\text { bought, Vt) } \\
\Downarrow \\
\mathrm{VP}(\text { bought,Vt })(+ \text { gap }) \\
\mid \\
\mathrm{Vt}(\text { bought, } \mathrm{Vt}) \\
\{\mathrm{NP}-\mathrm{C},+ \text { gap }\}
\end{gathered}
$$

$P_{h}(\mathrm{Vt} \mid \mathrm{SBAR}$, that, WDT $) \times P_{g}($ RIGHT $\mid \mathrm{VP}, \mathrm{Vt}$, bought, Vt$) \times$ $P_{r c}(\{\mathrm{NP}-\mathrm{C}\} \mid \mathrm{VP}, \mathrm{Vt}$, bought, Vt $)$

Adding Gap Propagation (Example 3)

$P_{h}(\mathrm{Vt} \mid \mathrm{SBAR}$, that, WDT $) \times P_{g}($ RIGHT $\mid \mathrm{VP}, \mathrm{Vt}$, bought, Vt $) \times$ $P_{r c}(\{\mathrm{NP}-\mathrm{C}\} \mid \mathrm{VP}, \mathrm{Vt}$, bought, Vt $) \times$
$P_{d}($ TRACE \mid VP, Vt, bought, Vt, RIGHT, $\{$ NP-C,+gap $\}) \times$
$P_{d}($ NP (yesterday,NN) | VP, Vt, bought, Vt, RIGHT, $\{ \})$

Adding Gap Propagation (Example 3)

- Step 4: generate right modifiers

[^0]71

Adding Gap Propagation (Example 3)

\Downarrow

$P_{h}($ Vt \mid SBAR, that, WDT $) \times P_{g}($ RIGHT \mid VP, Vt, bought, Vt $) \times$ $P_{r c}(\{$ NP-C $\} \mid V P, V t$, bought, Vt $) \times$
$P_{d}($ TRACE \mid VP, Vt, bought, Vt, RIGHT, $\{$ NP-C,+gap $\}) \times$
$P_{d}($ NP $($ yesterday, NN $) \mid$ VP, Vt, bought, Vt, RIGHT, $\{ \}) \times$
$P_{d}($ STOP \mid VP, Vt, bought, Vt, RIGHT, $\{ \})$

Ungrammatical Cases Contain Low Probability Rules

Example 1 The person (SBAR who Fran and TRACE bought the shoes)

Example 2 The store (SBAR that Jeff bought the shoes because Fran likes TRACE)

[^0]: \Downarrow

 VP(bought,Vt)(+gap)
 Vt (bought, Vt $)$
 $\}$ TRACE
 $P_{h}(\mathrm{Vt} \mid$ SBAR, that, WDT $) \times P_{g}($ RIGHT $\mid \mathrm{VP}, \mathrm{Vt}$, bought, Vt$) \times$
 $P_{r c}(\{\mathrm{NP}-\mathrm{C}\} \mid \mathrm{VP}, \mathrm{Vt}$, bought, Vt$) \times$
 $P_{d}($ TRACE \mid VP, Vt, bought, Vt, RIGHT, $\{$ NP-C, + gap $\})$

