|                                                                   | <b>Recap: Lexicalized PCFGs</b>                                                                                                                                                                                                                            |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                   | • We now need to estimate rule probabilities such as                                                                                                                                                                                                       |
|                                                                   | $Prob(S(questioned,Vt) \Rightarrow NP(lawyer,NN) VP(questioned,Vt)   S(questioned,Vt))$                                                                                                                                                                    |
| 6.864 (Fall 2007): Lecture 5<br>Parsing and Syntax III            | <ul> <li>Sparse data is a problem. We have a huge number of non-terminals, and a huge number of possible rules. We have to work hard to estimate these rule probabilities</li> <li>Once we have estimated these rule probabilities, we can find</li> </ul> |
|                                                                   | the highest scoring parse tree under the lexicalized PCFG using dynamic programming methods (see Problem set 1).                                                                                                                                           |
|                                                                   |                                                                                                                                                                                                                                                            |
| 1                                                                 | 3                                                                                                                                                                                                                                                          |
| <b>Recap: Adding Head Words/Tags to Trees</b>                     | Recap: Charniak's Model                                                                                                                                                                                                                                    |
| S(questioned, Vt)                                                 | • The general form of a lexicalized rule is as follows:                                                                                                                                                                                                    |
|                                                                   | $X(h,t) \Rightarrow L_n(lw_n, lt_n) \dots L_1(lw_1, lt_1) \ H(h,t) \ R_1(rw_1, rt_1) \dots R_m(rw_m, rt_m)$                                                                                                                                                |
| NP(lawyer, NN) VP(questioned, Vt)<br>DT NN                        | • Charniak's model decomposes the probability of each rule as:                                                                                                                                                                                             |
| the lawyer                                                        | $Prob(X(h,t) \Rightarrow L_n(lt_n) \dots L_1(lt_1)H(t)R_1(rt_1) \dots R_m(rt_m) \mid X(h,t))$                                                                                                                                                              |
| questioned DT NN<br>   <br>the witness                            | $\times \prod_{i=1}^{n} Prob(lw_i \mid X(h,t), H, L_i(lt_i)) \times \prod_{i=1}^{m} Prob(rw_i \mid X(h,t), H, R_i(rt_i))$                                                                                                                                  |
|                                                                   | • For example,                                                                                                                                                                                                                                             |
| • We now have <i>lexicalized</i> context-free rules, e.g.,        | $Prob(S(questioned,Vt) \Rightarrow NP(lawyer,NN) VP(questioned,Vt)   S(questioned,Vt))$                                                                                                                                                                    |
| $S(questioned, Vt) \Rightarrow NP(lawyer, NN) VP(questioned, Vt)$ | $= Prob(S(questioned,Vt) \Rightarrow NP(NN) VP(Vt)   S(questioned,Vt))$<br>$\times Prob(lawyer   S(questioned,Vt), VP, NP(NN))$                                                                                                                            |

## **Motivation for Breaking Down Rules**

• First step of decomposition of (Charniak 1997): S(questioned,Vt)



- Relies on counts of entire rules
- These counts are *sparse*:
  - 40,000 sentences from Penn treebank have 12,409 rules.
  - 15% of all test data sentences contain a rule never seen in training
    - 5

## **Modeling Rule Productions as Markov Processes**

• Collins (1997), Model 1



# **The General Form of Model 1**

• The general form of a lexicalized rule is as follows:

 $X(h,t) \Rightarrow L_n(lw_n, lt_n) \dots L_1(lw_1, lt_1) H(h,t) R_1(rw_1, rt_1) \dots R_m(rw_m, rt_m)$ 

• Collins model 1 decomposes the probability of each rule as:

```
\begin{split} &P_{h}(H \mid X, h, t) \times \\ &\prod_{i=1}^{n} P_{d}(L_{i}(lw_{i}, lt_{i}) \mid X, H, h, t, \text{LEFT}) \times \\ &P_{d}(\text{STOP} \mid X, H, h, t, \text{LEFT}) \times \\ &\prod_{i=1}^{m} P_{d}(R_{i}(rw_{i}, rt_{i}) \mid X, H, h, t, \text{RIGHT}) \times \\ &P_{d}(\text{STOP} \mid X, H, h, t, \text{RIGHT}) \end{split}
```

7

- $P_h$  term is a head-label probability
- $P_d$  terms are dependency probabilities
- Both the  $P_h$  and  $P_d$  terms are smoothed, using similar techniques to Charniak's model





#### 





### Summary

- Identify heads of rules  $\Rightarrow$  dependency representations
- Presented two variants of PCFG methods applied to *lexicalized grammars*.
  - Break generation of rule down into small (markov process) steps
  - Build dependencies back up (distance, subcategorization)

## **Evaluation: Representing Trees as Constituents**



# **Overview of Today's Lecture**

25

- Refinements to Model 1
- Evaluating parsing models
- Extensions to the parsing models

## **Precision and Recall**

| Label                      | Start Point                | End Point                       | Label                           | Start Point           | End Point                  |
|----------------------------|----------------------------|---------------------------------|---------------------------------|-----------------------|----------------------------|
| NP<br>NP<br>PP<br>NP<br>VP | 1<br>4<br>4<br>6<br>7<br>3 | 2<br>5<br>8<br>8<br>8<br>8<br>8 | NP<br>NP<br>PP<br>NP<br>VP<br>S | 1<br>4<br>6<br>7<br>3 | 2<br>5<br>8<br>8<br>8<br>8 |

- G = number of constituents in gold standard = 7
- P = number in parse output = 6
- C =number correct = 6

$$\text{Recall} = 100\% \times \frac{C}{G} = 100\% \times \frac{6}{7} \qquad \text{Precision} = 100\% \times \frac{C}{P} = 100\% \times \frac{6}{6}$$

**Results** 

| Method                                            | Recall | Precision |
|---------------------------------------------------|--------|-----------|
| PCFGs (Charniak 97)                               | 70.6%  | 74.8%     |
| Conditional Models – Decision Trees (Magerman 95) | 84.0%  | 84.3%     |
| Generative Lexicalized Model (Charniak 97)        | 86.7%  | 86.6%     |
| Model 1 (no subcategorization)                    | 87.5%  | 87.7%     |
| Model 2 (subcategorization)                       | 88.1%  | 88.3%     |

## Weaknesses of Precision and Recall

| Lab | el Start Poi | int End Point | Labal | Start Point  | End Doint |
|-----|--------------|---------------|-------|--------------|-----------|
|     |              |               | Laber | Start Follit | End Fonit |
| NP  | 1            | 2             | NP    | 1            | 2         |
| NP  | 4            | 5             |       | 1            | 2         |
|     |              | 0             | NP    | 4            | 5         |
| NP  | 4            | 8             | PP    | 6            | 8         |
| PP  | 6            | 8             |       | 0            | 0         |
| ND  | 7            | 0             | NP    | 7            | 8         |
| NP  | /            | 8             | VP    | 3            | 8         |
| VP  | 3            | 8             | 1.1   | 5            | 0         |
| C   | 1            | 0             | S     | I            | 8         |
| 0   | 1            | 0             |       |              |           |

#### NP attachment:

(S (NP The men) (VP dumped (NP (NP large sacks) (PP of (NP the substance)))))

#### **VP** attachment:

(S (NP The men) (VP dumped (NP large sacks) (PP of (NP the substance))))

### **Effect of the Different Features**

| MODEL   | A   | V   | R     | P     |
|---------|-----|-----|-------|-------|
| Model 1 | NO  | NO  | 75.0% | 76.5% |
| Model 1 | YES | NO  | 86.6% | 86.7% |
| Model 1 | YES | YES | 87.8% | 88.2% |
| Model 2 | NO  | NO  | 85.1% | 86.8% |
| Model 2 | YES | NO  | 87.7% | 87.8% |
| Model 2 | YES | YES | 88.7% | 89.0% |

Results on Section 0 of the WSJ Treebank. Model 1 has no subcategorization, Model 2 has subcategorization. A = YES, V = YES mean that the adjacency/verb conditions respectively were used in the distance measure.  $\mathbf{R/P} =$ recall/precision.



## **Dependency Accuracies**

- All parses for a sentence with *n* words have *n* dependencies *Report a single figure, dependency accuracy*
- Model 2 with all features scores 88.3% dependency accuracy (91% if you ignore non-terminal labels on dependencies)
- Can calculate precision/recall on particular dependency types e.g., look at all subject/verb dependencies ⇒ all dependencies with label (S,VP,NP-C,LEFT)

 $Recall = \frac{number of subject/verb dependencies correct}{number of subject/verb dependencies in gold standard}$ 

 $Precision = \frac{number of subject/verb dependencies correct}{number of subject/verb dependencies in parser's output}$ 

#### 33

| R  | СР    | Р     | Count | Relation        | Rec   | Prec  |
|----|-------|-------|-------|-----------------|-------|-------|
| 1  | 29.65 | 29.65 | 11786 | NPB TAG TAG L   | 94.60 | 93.46 |
| 2  | 40.55 | 10.90 | 4335  | PP TAG NP-C R   | 94.72 | 94.04 |
| 3  | 48.72 | 8.17  | 3248  | S VP NP-C L     | 95.75 | 95.11 |
| 4  | 54.03 | 5.31  | 2112  | NP NPB PP R     | 84.99 | 84.35 |
| 5  | 59.30 | 5.27  | 2095  | VP TAG NP-C R   | 92.41 | 92.15 |
| 6  | 64.18 | 4.88  | 1941  | VP TAG VP-C R   | 97.42 | 97.98 |
| 7  | 68.71 | 4.53  | 1801  | VP TAG PP R     | 83.62 | 81.14 |
| 8  | 73.13 | 4.42  | 1757  | TOP TOP S R     | 96.36 | 96.85 |
| 9  | 74.53 | 1.40  | 558   | VP TAG SBAR-C R | 94.27 | 93.93 |
| 10 | 75.83 | 1.30  | 518   | QP TAG TAG R    | 86.49 | 86.65 |
| 11 | 77.08 | 1.25  | 495   | NP NPB NP R     | 74.34 | 75.72 |
| 12 | 78.28 | 1.20  | 477   | SBAR TAG S-C R  | 94.55 | 92.04 |
| 13 | 79.48 | 1.20  | 476   | NP NPB SBAR R   | 79.20 | 79.54 |
| 14 | 80.40 | 0.92  | 367   | VP TAG ADVP R   | 74.93 | 78.57 |
| 15 | 81.30 | 0.90  | 358   | NPB TAG NPB L   | 97.49 | 92.82 |
| 16 | 82.18 | 0.88  | 349   | VP TAG TAG R    | 90.54 | 93.49 |
| 17 | 82.97 | 0.79  | 316   | VP TAG SG-C R   | 92.41 | 88.22 |

Accuracy of the 17 most frequent dependency types in section 0 of the treebank, as recovered by model 2. R = rank; CP = cumulative percentage; P = percentage; Rec = Recall; Prec = precision.

| Туре                      | Sub-type          | Description | Count | Recall | Precision |
|---------------------------|-------------------|-------------|-------|--------|-----------|
| Complement to a verb      | S VP NP-C L       | Subject     | 3248  | 95.75  | 95.11     |
| _                         | VP TAG NP-C R     | Object      | 2095  | 92.41  | 92.15     |
| 6495 = 16.3% of all cases | VP TAG SBAR-C R   | -           | 558   | 94.27  | 93.93     |
|                           | VP TAG SG-C R     |             | 316   | 92.41  | 88.22     |
|                           | VP TAG S-C R      |             | 150   | 74.67  | 78.32     |
|                           | S VP S-C L        |             | 104   | 93.27  | 78.86     |
|                           | S VP SG-C L       |             | 14    | 78.57  | 68.75     |
|                           |                   |             |       |        |           |
|                           | TOTAL             |             | 6495  | 93.76  | 92.96     |
| Other complements         | PP TAG NP-C R     |             | 4335  | 94.72  | 94.04     |
| _                         | VP TAG VP-C R     |             | 1941  | 97.42  | 97.98     |
| 7473 = 18.8% of all cases | SBAR TAG S-C R    |             | 477   | 94.55  | 92.04     |
|                           | SBAR WHNP SG-C R  |             | 286   | 90.56  | 90.56     |
|                           | PP TAG SG-C R     |             | 125   | 94.40  | 89.39     |
|                           | SBAR WHADVP S-C R |             | 83    | 97.59  | 98.78     |
|                           | PP TAG PP-C R     |             | 51    | 84.31  | 70.49     |
|                           | SBAR WHNP S-C R   |             | 42    | 66.67  | 84.85     |
|                           | SBAR TAG SG-C R   |             | 23    | 69.57  | 69.57     |
|                           | PP TAG S-C R      |             | 18    | 38.89  | 63.64     |
|                           | SBAR WHPP S-C R   |             | 16    | 100.00 | 100.00    |
|                           | S ADJP NP-C L     |             | 15    | 46.67  | 46.67     |
|                           | PP TAG SBAR-C R   |             | 15    | 100.00 | 88.24     |
|                           |                   |             |       |        |           |
|                           | TOTAL             |             | 7473  | 94.47  | 94.12     |

| Туре                      | Sub-type         | Description | Count | Recall | Precision |
|---------------------------|------------------|-------------|-------|--------|-----------|
| PP modifi cation          | NP NPB PP R      |             | 2112  | 84.99  | 84.35     |
|                           | VP TAG PP R      |             | 1801  | 83.62  | 81.14     |
| 4473 = 11.2% of all cases | S VP PP L        |             | 287   | 90.24  | 81.96     |
|                           | ADJP TAG PP R    |             | 90    | 75.56  | 78.16     |
|                           | ADVP TAG PP R    |             | 35    | 68.57  | 52.17     |
|                           | NP NP PP R       |             | 23    | 0.00   | 0.00      |
|                           | PP PP PP L       |             | 19    | 21.05  | 26.67     |
|                           | NAC TAG PP R     |             | 12    | 50.00  | 100.00    |
|                           |                  |             |       |        |           |
|                           | TOTAL            |             | 4473  | 82.29  | 81.51     |
| Coordination              | NP NP NP R       |             | 289   | 55.71  | 53.31     |
|                           | VP VP VP R       |             | 174   | 74.14  | 72.47     |
| 763 = 1.9% of all cases   | SSSR             |             | 129   | 72.09  | 69.92     |
|                           | ADJP TAG TAG R   |             | 28    | 71.43  | 66.67     |
|                           | VP TAG TAG R     |             | 25    | 60.00  | 71.43     |
|                           | NX NX NX R       |             | 25    | 12.00  | 75.00     |
|                           | SBAR SBAR SBAR R |             | 19    | 78.95  | 83.33     |
|                           | PP PP PP R       |             | 14    | 85.71  | 63.16     |
|                           |                  |             |       |        |           |
|                           | TOTAL            |             | 763   | 61.47  | 62.20     |

| 2 | 7 |  |
|---|---|--|
| J | 1 |  |

| Туре                       | Sub-type       | Description      | Count | Recall | Precision |
|----------------------------|----------------|------------------|-------|--------|-----------|
| Mod'n within BaseNPs       | NPB TAG TAG L  |                  | 11786 | 94.60  | 93.46     |
|                            | NPB TAG NPB L  |                  | 358   | 97.49  | 92.82     |
| 12742 = 29.6% of all cases | NPB TAG TAG R  |                  | 189   | 74.07  | 75.68     |
|                            | NPB TAG ADJP L |                  | 167   | 65.27  | 71.24     |
|                            | NPB TAG QP L   |                  | 110   | 80.91  | 81.65     |
|                            | NPB TAG NAC L  |                  | 29    | 51.72  | 71.43     |
|                            | NPB NX TAG L   |                  | 27    | 14.81  | 66.67     |
|                            | NPB QP TAG L   |                  | 15    | 66.67  | 76.92     |
|                            |                |                  |       |        |           |
|                            | TOTAL          |                  | 12742 | 93.20  | 92.59     |
| Mod'n to NPs               | NP NPB NP R    | Appositive       | 495   | 74.34  | 75.72     |
|                            | NP NPB SBAR R  | Relative clause  | 476   | 79.20  | 79.54     |
| 1418 = 3.6% of all cases   | NP NPB VP R    | Reduced relative | 205   | 77.56  | 72.60     |
|                            | NP NPB SG R    |                  | 63    | 88.89  | 81.16     |
|                            | NP NPB PRN R   |                  | 53    | 45.28  | 60.00     |
|                            | NP NPB ADVP R  |                  | 48    | 35.42  | 54.84     |
|                            | NP NPB ADJP R  |                  | 48    | 62.50  | 69.77     |
|                            |                |                  |       |        |           |
|                            | TOTAL          |                  | 1418  | 73.20  | 75.49     |

| Туре                     | Sub-type       | Description | Count | Recall | Precision |
|--------------------------|----------------|-------------|-------|--------|-----------|
| Sentential head          | TOP TOP S R    |             | 1757  | 96.36  | 96.85     |
|                          | TOP TOP SINV R |             | 89    | 96.63  | 94.51     |
| 1917 = 4.8% of all cases | TOP TOP NP R   |             | 32    | 78.12  | 60.98     |
|                          | TOP TOP SG R   |             | 15    | 40.00  | 33.33     |
|                          |                |             |       |        |           |
|                          | TOTAL          |             | 1917  | 94.99  | 94.99     |
| Adjunct to a verb        | VP TAG ADVP R  |             | 367   | 74.93  | 78.57     |
|                          | VP TAG TAG R   |             | 349   | 90.54  | 93.49     |
| 2242 = 5.6% of all cases | VP TAG ADJP R  |             | 259   | 83.78  | 80.37     |
|                          | S VP ADVP L    |             | 255   | 90.98  | 84.67     |
|                          | VP TAG NP R    |             | 187   | 66.31  | 74.70     |
|                          | VP TAG SBAR R  |             | 180   | 74.44  | 72.43     |
|                          | VP TAG SG R    |             | 159   | 60.38  | 68.57     |
|                          | S VP TAG L     |             | 115   | 86.96  | 90.91     |
|                          | S VP SBAR L    |             | 81    | 88.89  | 85.71     |
|                          | VP TAG ADVP L  |             | 79    | 51.90  | 49.40     |
|                          | S VP PRN L     |             | 58    | 25.86  | 48.39     |
|                          | S VP NP L      |             | 45    | 66.67  | 63.83     |
|                          | S VP SG L      |             | 28    | 75.00  | 52.50     |
|                          | VP TAG PRN R   |             | 27    | 3.70   | 12.50     |
|                          | VP TAG S R     |             | 11    | 9.09   | 100.00    |
|                          |                |             |       |        |           |
|                          | TOTAL          |             | 2242  | 75.11  | 78.44     |

39

# Some Conclusions about Errors in Parsing

- "Core" sentential structure (complements, NP chunks) recovered with over 90% accuracy.
- Attachment ambiguities involving adjuncts are resolved with much lower accuracy ( $\approx 80\%$  for PP attachment,  $\approx 50 60\%$  for coordination).

| <b>Overview of Today's Lecture</b>                                                                                                                                              | Parsing Models as Language Models                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Refinements to Model 1</li> <li>Evaluating parsing models</li> <li>Extensions to the parsing models</li> </ul>                                                         | <ul> <li>Generative models assign a probability P(T, S) to each tree/sentence pair</li> <li>Say sentence is S, set of parses for S is T(S), then P(S) = ∑<sub>T∈T(S)</sub> P(T, S)</li> </ul> |
|                                                                                                                                                                                 | • Can calculate perplexity for parsing models                                                                                                                                                 |
| 41                                                                                                                                                                              | 43                                                                                                                                                                                            |
| Trigram Language Models (from Lecture 2)Step 1: The chain rule (note that $w_{n+1} = \text{STOP}$ ) $P(w_1, w_2, \dots, w_n) = \prod_{i=1}^{n+1} P(w_i \mid w_1 \dots w_{i-1})$ | • We have some test data, $n$ sentences<br>$S_1, S_2, S_3, \dots, S_n$                                                                                                                        |

• We could look at the probability under our model  $\prod_{i=1}^{n} P(S_i)$ . Or more conveniently, the *log probability* 

$$\log \prod_{i=1}^{n} P(S_i) = \sum_{i=1}^{n} \log P(S_i)$$

• In fact the usual evaluation measure is *perplexity* 

Perplexity = 
$$2^{-x}$$
 where  $x = \frac{1}{W} \sum_{i=1}^{n} \log P(S_i)$ 

and W is the total number of words in the test data.

For Example

$$P(\text{the, dog, laughs}) = P(\text{the} | \text{START}) \times P(\text{dog} | \text{START, the}) \\ \times P(\text{laughs} | \text{the, dog}) \times P(\text{STOP} | \text{dog, laughs})$$

 $P(w_1, w_2, \dots, w_n) = \prod_{i=1}^{n+1} P(w_i \mid w_{i-2}, w_{i-1})$ 

Step 2: Make Markov independence assumptions:

| Trigrams Can't Capture Long-Distance Dependencies                                                                                                                              | Work on Parsers as Language Models                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Actual Utterance: He is a resident of the U.S. and of the U.K.                                                                                                                 | • "The Structured Language Model". Ciprian Chelba and Fred Jelinek, see also recent work by Peng Xu, Ahmad Emami and Fred Jelinek. |
| <b>Recognizer Output:</b> He is a resident of the U.S. and <i>that</i> the U.K.                                                                                                | <ul> <li>"Probabilistic Top-Down Parsing and Language Modeling".<br/>Brian Roark.</li> </ul>                                       |
| <ul> <li>Bigram <i>and that</i> is around 15 times as frequent as <i>and of</i></li> <li>⇒ Bigram model gives over 10 times greater probability to incorrect string</li> </ul> | <ul> <li>"Immediate Head-Parsing for Language Models".</li> <li>Eugene Charniak.</li> </ul>                                        |
| • Parsing models assign 78 times higher probability to the correct string                                                                                                      |                                                                                                                                    |
| 45                                                                                                                                                                             | 47                                                                                                                                 |
| Examples of Long-Distance Dependencies                                                                                                                                         | Some Perplexity Figures from (Charniak, 2000)                                                                                      |

### Subject/verb dependencies

Microsoft, the world's largest software company, acquired ....

### **Object/verb dependencies**

... acquired the New-York based software company ...

### Appositives

Microsoft, the world's largest software company, acquired ....

### **Verb/Preposition Collocations**

I put the coffee mug on the table

The USA elected the son of George Bush Sr. as president

### Coordination

She said that . . . and that . . .

| Model              | Trigram | Grammar | Interpolation |
|--------------------|---------|---------|---------------|
| Chelba and Jelinek | 167.14  | 158.28  | 148.90        |
| Roark              | 167.02  | 152.26  | 137.26        |
| Charniak           | 167.89  | 144.98  | 133.15        |

- Interpolation is a mixture of the trigram and grammatical models
- Chelba and Jelinek, Roark use trigram information in their grammatical models, Charniak doesn't!
- Note: Charniak's parser in these experiments is as described in (Charniak 2000), and makes use of Markov processes generating rules (a shift away from the Charniak 1997 model).

## **Extending Charniak's Parsing Model**



**Adding Syntactic Trigrams** 

# Some Perplexity Figures from (Charniak, 2000)

| Model              | Trigram | Grammar | Interpolation |
|--------------------|---------|---------|---------------|
| Chelba and Jelinek | 167.14  | 158.28  | 148.90        |
| Roark              | 167.02  | 152.26  | 137.26        |
| Charniak           | 167.89  | 144.98  | 133.15        |
| (Bigram)           |         |         |               |
| Charniak           | 167.89  | 130.20  | 126.07        |
| (Trigram)          |         |         |               |

## The Parse Trees at this Stage



### It's diffi cult to recover "shoes" as the object of "bought"

55



#### It's easy to recover "shoes" as the object of "bought"

• Examples of Wh-movement:

Example 1 The person (SBAR who TRACE bought the shoes)

Example 2 The shoes (SBAR that I bought TRACE last week)

Example 3 The person (SBAR who I bought the shoes from TRACE)

Example 4 The person (SBAR who Jeff said I bought the shoes from TRACE)

53

Model 3: A Model of Wh-Movement

• Key ungrammatical examples:

**Example 1** The person (SBAR who Fran and TRACE bought the shoes) (derived from *Fran and Jeff bought the shoes*)

#### Example 2

The store (SBAR that Jeff bought the shoes because Fran likes TRACE) (derived from *Jeff bought the shoes because Fran likes the store*)

## **Adding Gaps and Traces**

- This information can be recovered from the treebank
- Doubles the number of non-terminals (with/without gaps)
- Similar to treatment of Wh-movement in GPSG (generalized phrase structure grammar)
- If our parser recovers this information, it's easy to recover syntactic relations

# New Rules: Rules that Pass Gaps down the Tree

• Passing a gap to a modifier

SBAR(that,WDT)(+gap) WHNP(that,WDT) S-C(bought,Vt)(+gap)

• Passing a gap to the head

S-C(bought,Vt)(+gap)

NP-C(I,PRP) VP(bought,Vt)(+gap)

57

# New Rules: Rules that Generate Gaps



• Modeled in a very similar way to previous rules

# New Rules: Rules that Discharge Gaps as a Trace

59

• Discharging a gap as a TRACE









# **Ungrammatical Cases Contain Low Probability Rules**

