
6.864 (Fall 2007): Lecture 4
Parsing and Syntax II

1

Overview

• Heads in context-free rules

• The anatomy of lexicalized rules

• Dependency representations of parse trees

• Two models making use of dependencies

– Charniak (1997)

– Collins (1997)

2

Heads in Context-Free Rules

Add annotations specifying the “head” of each rule:

S ⇒ NP VP
VP ⇒ Vi
VP ⇒ Vt NP
VP ⇒ VP PP
NP ⇒ DT NN
NP ⇒ NP PP
PP ⇒ IN NP

Vi ⇒ sleeps
Vt ⇒ saw
NN ⇒ man
NN ⇒ woman
NN ⇒ telescope
DT ⇒ the
IN ⇒ with
IN ⇒ in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional
phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun,
IN=preposition

3

More about Heads

• Each context-free rule has one “special” child that is the head
of the rule. e.g.,

S ⇒ NP VP (VP is the head)
VP ⇒ Vt NP (Vt is the head)
NP ⇒ DT NN NN (NN is the head)

• A core idea in syntax
(e.g., see X-bar Theory, Head-Driven Phrase Structure
Grammar)

• Some intuitions:

– The central sub-constituent of each rule.

– The semantic predicate in each rule.

4

Rules which Recover Heads:
An Example of rules for NPs

If the rule contains NN, NNS, or NNP:
Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP

Else If the rule contains a JJ: Choose the rightmost JJ

Else If the rule contains a CD: Choose the rightmost CD

Else Choose the rightmost child

e.g.,
NP ⇒ DT NNP NN
NP ⇒ DT NN NNP
NP ⇒ NP PP
NP ⇒ DT JJ
NP ⇒ DT

5

Rules which Recover Heads:
An Example of rules for VPs

If the rule contains Vi or Vt: Choose the leftmost Vi or Vt

Else If the rule contains an VP: Choose the leftmost VP

Else Choose the leftmost child

e.g.,
VP ⇒ Vt NP
VP ⇒ VP PP

6

Adding Headwords to Trees

S

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

⇓

S(questioned)

NP(lawyer)

DT(the)

the

NN(lawyer)

lawyer

VP(questioned)

Vt(questioned)

questioned

NP(witness)

DT(the)

the

NN(witness)

witness

7

Adding Headwords to Trees

S(questioned)

NP(lawyer)

DT(the)

the

NN(lawyer)

lawyer

VP(questioned)

Vt(questioned)

questioned

NP(witness)

DT(the)

the

NN(witness)

witness

• A constituent receives its headword from its head child.

S ⇒ NP VP (S receives headword from VP)
VP ⇒ Vt NP (VP receives headword from Vt)
NP ⇒ DT NN (NP receives headword from NN)

8

Chomsky Normal Form

A context free grammar G = (N, Σ, R, S) in Chomsky Normal
Form is as follows

• N is a set of non-terminal symbols

• Σ is a set of terminal symbols

• R is a set of rules which take one of two forms:

– X → Y1Y2 for X ∈ N , and Y1, Y2 ∈ N

– X → Y for X ∈ N , and Y ∈ Σ

• S ∈ N is a distinguished start symbol

We can find the highest scoring parse under a PCFG in this
form, in O(n3|R|) time where n is the length of the string being
parsed, and |R| is the number of rules in the grammar (see the
dynamic programming algorithm in the previous notes)

9

A New Form of Grammar

We define the following type of “lexicalized” grammar:
(we’ll call this is a lexicalized Chomsky normal form grammar)

• N is a set of non-terminal symbols

• Σ is a set of terminal symbols

• R is a set of rules which take one of three forms:

– X(h) → Y1(h) Y2(w) for X ∈ N , and Y1, Y2 ∈ N , and h, w ∈ Σ

– X(h) → Y1(w) Y2(h) for X ∈ N , and Y1, Y2 ∈ N , and h, w ∈ Σ

– X(h) → h for X ∈ N , and h ∈ Σ

• S ∈ N is a distinguished start symbol

10

A New Form of Grammar

• The new form of grammar looks just like a Chomsky normal
form CFG, but with potentially O(|Σ|2 × |N |3) possible rules.

• Naively, parsing an n word sentence using the dynamic
programming algorithm will take O(n3|Σ|2|N |3) time. But
|Σ| can be huge!!

• Crucial observation: at most O(n2 × |N |3) rules can be
applicable to a given sentence w1, w2, . . . wn of length n. This
is because any rules which contain a lexical item that is not
one of w1 . . . wn, can be safely discarded.

• The result: we can parse in O(n5|N |3) time.

11

Adding Headtags to Trees

S(questioned, Vt)

NP(lawyer, NN)

DT

the

NN

lawyer

VP(questioned, Vt)

Vt

questioned

NP(witness, NN)

DT

the

NN

witness

• Also propagate part-of-speech tags up the trees
(We’ll see soon why this is useful!)

12

Overview

• Heads in context-free rules

• The anatomy of lexicalized rules

• Dependency representations of parse trees

• Two models making use of dependencies

– Charniak (1997)

– Collins (1997)

13

Non-terminals in Lexicalized rules

An example lexicalized rule:

VP(told,V) ⇒ V(told,V) NP(Clinton,NNP) SBAR(that,COMP)

• Each non-terminal is a triple consisting of:

1. A label

2. A word

3. A tag (i.e., a part-of-speech tag)

• E.g., for VP(told,V): label = VP, word = told, tag = V

E.g., for V(told,V): label = V, word = told, tag = V

14

The Parent of a Lexicalized Rule

An example lexicalized rule:

VP(told,V) ⇒ V(told,V) NP(Clinton,NNP) SBAR(that,COMP)

• The parent of the rule is the non-terminal on the left-hand-
side (LHS) of the rule

• e.g., VP(told,V) in the above example

• We will also refer to the parent label, parent word, and
parent tag. In this case:

1. Parent label is VP

2. Parent word is told

3. Parent tag is V

15

The Head of a Lexicalized Rule

An example lexicalized rule:

VP(told,V) ⇒ V(told,V) NP(Clinton,NNP) SBAR(that,COMP)

• The head of the rule is a single non-terminal on the right-hand-
side (RHS) of the rule

• e.g., V(told,V) is the head in the above example.

• We will also refer to the head label, head word, and head
tag. In this case:

1. Head label is V

2. Head word is told

3. Head tag is V

16

• Note: we always have

– parent word = head word

– parent tag = head tag

17

The Left-Modifiers of a Lexicalized Rule

An example lexicalized rule:

VP(told,V) ⇒ V(told,V) NP(Clinton,NNP) SBAR(that,COMP)

• The left-modifiers of the rule are any non-terminals appearing
to the left of the head

• In this example there are no left-modifiers

• In general there can be any number (0 or greater) of left-
modifiers

18

The Left-Modifiers of a Lexicalized Rule

Another example lexicalized rule:

S(told,V) ⇒ NP(yesterday,NN) NP(Hillary,NNP) VP(told,V)

• The left-modifiers of the rule are any non-terminals appearing
to the left of the head

• In this example there are two left-modifiers:

– NP(yesterday,NN)

– NP(Hillary,NNP)

19

The Right-Modifiers of a Lexicalized Rule

An example lexicalized rule:

VP(told,V) ⇒ V(told,V) NP(Clinton,NNP) SBAR(that,COMP)

• The right-modifiers of the rule are any non-terminals
appearing to the right of the head

• In this example there are two right-modifiers:

– NP(Clinton,NNP)

– SBAR(that,COMP)

• In general there can be any number (0 or greater) of right-
modifiers

20

The General Form of a Lexicalized Rule

• The general form of a lexicalized rule is as follows:

X(h, t) ⇒ Ln(lwn, ltn) . . . L1(lw1, lt1) H(h, t) R1(rw1, rt1) . . . Rm(rwm, rtm)

• X(h, t) is the parent of the rule

• H(h, t) is the head of the rule

• There are n left modifiers, Li(lwi, lti) for i = 1 . . . n

• There are m right-modifiers, Ri(rwi, rti) for i = 1 . . .m

• There can be zero or more left or right modifiers:
i.e., n ≥ 0 and m ≥ 0

21

• X,H , Li for i = 1 . . . n and Ri for i = 1 . . . m are labels

• h, lwi for i = 1 . . . n and rwi for i = 1 . . . m are words

• t, lti for i = 1 . . . n and rti for i = 1 . . . m are tags

22

Overview

• Heads in context-free rules

• The anatomy of lexicalized rules

• Dependency representations of parse trees

• Two models making use of dependencies

– Charniak (1997)

– Collins (1997)

23

Headwords and Dependencies

• A new representation: a tree is represented as a set of
dependencies, not a set of context-free rules

• A dependency is an 8-tuple:

(head-word, head-tag,
modifer-word, modifer-tag,
parent-label, head-label,
modifier-label, direction)

• Each rule with n children contributes (n − 1) dependencies.
There is one dependency for each left or right modifier

VP(questioned,Vt) ⇒ Vt(questioned,Vt) NP(lawyer,NN)

⇓

(questioned, Vt, lawyer, NN, VP, Vt, NP, RIGHT)

24

Headwords and Dependencies

An example rule:
VP(told,V)

V(told,V) NP(Clinton,NNP) SBAR(that,COMP)

This rule contributes two dependencies:

head-word head-tag mod-word mod-tag parent-label head-label mod-label direction
told V Clinton NNP VP V NP RIGHT
told V that COMP VP V SBAR RIGHT

25

A Special Case: the Top of the Tree

TOP

S(told,V)

⇓

(, , told, V, TOP, S, , SPECIAL)

26

S(told,V)

NP(Hillary,NNP)

NNP

Hillary

VP(told,V)

V(told,V)

V

told

NP(Clinton,NNP)

NNP

Clinton

SBAR(that,COMP)

COMP

that

S

NP(she,PRP)

PRP

she

VP(was,Vt)

Vt

was

NP(president,NN)

NN

president

(told V TOP S SPECIAL)
(told V Hillary NNP S VP NP LEFT)
(told V Clinton NNP VP V NP RIGHT)
(told V that COMP VP V SBAR RIGHT)
(that COMP was Vt SBAR COMP S RIGHT)
(was Vt she PRP S VP NP LEFT)
(was Vt president NP VP Vt NP RIGHT)

27

Overview

• Heads in context-free rules

• The anatomy of lexicalized rules

• Dependency representations of parse trees

• Two models making use of dependencies

– Charniak (1997)

– Collins (1997)

28

A Model from Charniak (1997)

S(questioned,Vt)

⇓ Prob(NP(NN) VP(Vt) | S(questioned,Vt))

S(questioned,Vt)

NP(,NN) VP(questioned,Vt)

⇓ Prob(lawyer | S(questioned,Vt),VP,NP(NN))

S(questioned,Vt)

NP(lawyer,NN) VP(questioned,Vt)

29

The General Form of Charniak’s Model

• The general form of a lexicalized rule is as follows:

X(h, t) ⇒ Ln(lwn, ltn) . . . L1(lw1, lt1) H(h, t) R1(rw1, rt1) . . . Rm(rwm, rtm)

• Charniak’s model decomposes the probability of each rule as:

Prob(X(h, t) ⇒ Ln(ltn) . . . L1(lt1)H(t)R1(rt1) . . . Rm(rtm) | X(h, t))

×

n∏

i=1

Prob(lwi | X(h, t), H, Li(lti))

×

m∏

i=1

Prob(rwi | X(h, t), H, Ri(rti))

30

Dissecting Charniak’s Model: Rule Probabilities

• First term of Charniak’s model:

Prob(X(h, t) ⇒ Ln(ltn) . . . L1(lt1)H(t)R1(rt1) . . . Rm(rtm) | X(h, t))

• This corresponds to a choice of context-free rule,
at this stage no modifier words are generated

• For our old example rule,

VP(told,V) ⇒ V(told,V) NP(Clinton,NNP) SBAR(that,COMP)

we would have

P (VP(told,V) ⇒ V(V) NP(NNP) SBAR(COMP) | VP(told,V))

31

Dissecting Charniak’s Model: Modifier Probabilities

• For each right modifier, there is a term

Prob(rwi | X(h, t), H,Ri(rti))

• This corresponds to generating the modifier word rwi for the
i’th right modifier.

• This probability is conditioned on

1. the head-word h,

2. the labels X, H , and Ri

3. the tags t and rti.

• We now have a probability that is sensitive to the dependency
between rwi and h

• There is a similar probability for each left modifier

32

Smoothed Estimation

P (NP(NN) VP(Vt) | S(questioned,Vt)) =

λ1 ×
Count(S(questioned,Vt)→NP(NN) VP(Vt))

Count(S(questioned,Vt))

+λ2 ×
Count(S(,Vt)→NP(NN) VP(Vt))

Count(S(,Vt))

• Where 0 ≤ λ1, λ2 ≤ 1, and λ1 + λ2 = 1

33

Smoothed Estimation

P (lawyer | S(questioned,Vt), VP, NP(NN)) =

λ3 ×
Count(lawyer | S(questioned,Vt), VP, NP(NN))

Count(S(questioned,Vt), VP, NP(NN))

+λ4 ×
Count(lawyer | S(,Vt), VP, NP(NN))

Count(S(,Vt), VP, NP(NN))

+λ5 ×
Count(lawyer | NN)

Count(NN)

• Where 0 ≤ λ3, λ4, λ5 ≤ 1, and λ3 + λ4 + λ5 = 1

34

P (NP(lawyer,NN) VP | S(questioned,Vt)) =

(λ1 ×
Count(S(questioned,Vt)→NP(NN) VP(Vt))

Count(S(questioned,Vt))

+λ2 ×
Count(S(,Vt)→NP(NN) VP(Vt))

Count(S(,Vt)))

× (λ3 ×
Count(lawyer | S(questioned,Vt), VP, NP(NN))

Count(S(questioned,Vt), VP, NP(NN))

+λ4 ×
Count(lawyer | S(,Vt), VP, NP(NN))

Count(S(,Vt), VP, NP(NN))

+λ5 ×
Count(lawyer | NN)

Count(NN)

35

Motivation for Breaking Down Rules

• First step of decomposition of (Charniak 1997):

S(questioned,Vt)

⇓ P (NP(NN) VP | S(questioned,Vt))

S(questioned,Vt)

NP(,NN) VP(questioned,Vt)

• Relies on counts of entire rules

• These counts are sparse:

– 40,000 sentences from Penn treebank have 12,409 rules.

– 15% of all test data sentences contain a rule never seen in training

36

Motivation for Breaking Down Rules

Rule Count No. of Rules Percentage No. of Rules Percentage
by Type by Type by token by token

1 6765 54.52 6765 0.72
2 1688 13.60 3376 0.36
3 695 5.60 2085 0.22
4 457 3.68 1828 0.19
5 329 2.65 1645 0.18

6 ... 10 835 6.73 6430 0.68
11 ... 20 496 4.00 7219 0.77
21 ... 50 501 4.04 15931 1.70

51 ... 100 204 1.64 14507 1.54
> 100 439 3.54 879596 93.64

Statistics for rules taken from sections 2-21 of the treebank
(Table taken from my PhD thesis).

37

Modeling Rule Productions as Markov Processes

• Step 1: generate category of head child

S(told,V)

⇓

S(told,V)

VP(told,V)

Ph(VP | S, told, V)

38

Modeling Rule Productions as Markov Processes

• Step 2: generate left modifiers in a Markov chain

S(told,V)

?? VP(told,V)

⇓

S(told,V)

NP(Hillary,NNP) VP(told,V)

Ph(VP | S, told, V) × Pd(NP(Hillary,NNP) | S,VP,told,V,LEFT)

39

Modeling Rule Productions as Markov Processes

• Step 2: generate left modifiers in a Markov chain

S(told,V)

?? NP(Hillary,NNP) VP(told,V)

⇓

S(told,V)

NP(yesterday,NN) NP(Hillary,NNP) VP(told,V)

Ph(VP | S, told, V) × Pd(NP(Hillary,NNP) | S,VP,told,V,LEFT)×
Pd(NP(yesterday,NN) | S,VP,told,V,LEFT)

40

Modeling Rule Productions as Markov Processes

• Step 2: generate left modifiers in a Markov chain

S(told,V)

?? NP(yesterday,NN) NP(Hillary,NNP) VP(told,V)

⇓

S(told,V)

STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V)

Ph(VP | S, told, V) × Pd(NP(Hillary,NNP) | S,VP,told,V,LEFT)×
Pd(NP(yesterday,NN) | S,VP,told,V,LEFT) × Pd(STOP | S,VP,told,V,LEFT)

41

Modeling Rule Productions as Markov Processes

• Step 3: generate right modifiers in a Markov chain

S(told,V)

STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V) ??

⇓

S(told,V)

STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V) STOP

Ph(VP | S, told, V) × Pd(NP(Hillary,NNP) | S,VP,told,V,LEFT)×
Pd(NP(yesterday,NN) | S,VP,told,V,LEFT) × Pd(STOP | S,VP,told,V,LEFT) ×
Pd(STOP | S,VP,told,V,RIGHT)

42

