Heads in Context-Free Rules

Add annotations specifying the "head" of each rule:

S	\Rightarrow	NP	VP
VP	\Rightarrow	Vi	
VP	\Rightarrow	Vt	NP
VP	\Rightarrow	VP	PP
NP	\Rightarrow	DT	NN
NP	\Rightarrow	NP	PP
PP	\Rightarrow	IN	NP

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

1 3 Overview **More about Heads** • Each context-free rule has one "special" child that is the head • Heads in context-free rules of the rule. e.g., S \Rightarrow NP VP (VP is the head) • The anatomy of lexicalized rules NP (Vt is the head) $VP \Rightarrow Vt$ $NP \Rightarrow DT NN NN$ (NN is the head) • Dependency representations of parse trees • A core idea in syntax (e.g., see X-bar Theory, Head-Driven Phrase Structure • Two models making use of dependencies Grammar) - Charniak (1997) • Some intuitions: - Collins (1997) - The central sub-constituent of each rule. - The semantic predicate in each rule.

6.864 (Fall 2007): Lecture 4 Parsing and Syntax II

Chomsky Normal Form

A context free grammar $G=(N,\Sigma,R,S)$ in Chomsky Normal Form is as follows

- N is a set of non-terminal symbols
- Σ is a set of terminal symbols
- R is a set of rules which take one of two forms:
 - $X \to Y_1 Y_2$ for $X \in N$, and $Y_1, Y_2 \in N$
 - $X \to Y$ for $X \in N$, and $Y \in \Sigma$
- $S \in N$ is a distinguished start symbol

We can find the highest scoring parse under a PCFG in this form, in $O(n^3|R|)$ time where n is the length of the string being parsed, and |R| is the number of rules in the grammar (see the dynamic programming algorithm in the previous notes)

A New Form of Grammar

- The new form of grammar looks just like a Chomsky normal form CFG, but with potentially $O(|\Sigma|^2 \times |N|^3)$ possible rules.
- Naively, parsing an n word sentence using the dynamic programming algorithm will take O(n³|Σ|²|N|³) time. But |Σ| can be huge!!
- Crucial observation: at most $O(n^2 \times |N|^3)$ rules can be applicable to a given sentence $w_1, w_2, \ldots w_n$ of length n. This is because any rules which contain a lexical item that is not one of $w_1 \ldots w_n$, can be safely discarded.
- The result: we can parse in $O(n^5|N|^3)$ time.

11

A New Form of Grammar

9

We define the following type of "lexicalized" grammar: (we'll call this is a lexicalized Chomsky normal form grammar)

- N is a set of non-terminal symbols
- Σ is a set of terminal symbols
- R is a set of rules which take one of three forms:
 - $-X(h) \rightarrow Y_1(h) Y_2(w)$ for $X \in N$, and $Y_1, Y_2 \in N$, and $h, w \in \Sigma$
 - $-X(h) \rightarrow Y_1(w) \ Y_2(h)$ for $X \in N$, and $Y_1, Y_2 \in N$, and $h, w \in \Sigma$
 - $X(h) \rightarrow h$ for $X \in N$, and $h \in \Sigma$
- $S \in N$ is a distinguished start symbol

• Also propagate **part-of-speech tags** up the trees (We'll see soon why this is useful!)

Overview

- Heads in context-free rules
- The anatomy of lexicalized rules
- Dependency representations of parse trees
- Two models making use of dependencies
 - Charniak (1997)
 - Collins (1997)

13

Non-terminals in Lexicalized rules

An example lexicalized rule:

 $VP(told,V) \Rightarrow V(told,V) \quad NP(Clinton,NNP) \quad SBAR(that,COMP)$

- Each **non-terminal** is a triple consisting of:
 - 1. A label
 - 2. A word
 - 3. A tag (i.e., a part-of-speech tag)
- E.g., for VP(told,V): label = VP, word = told, tag = V

for V(told,V): label = V, word = told, tag = V

The Parent of a Lexicalized Rule

An example lexicalized rule:

 $VP(told, V) \Rightarrow V(told, V)$ NP(Clinton, NNP) SBAR(that, COMP)

- The **parent** of the rule is the non-terminal on the left-hand-side (LHS) of the rule
- e.g., VP(told,V) in the above example
- We will also refer to the **parent label**, **parent word**, and **parent tag**. In this case:
 - 1. Parent label is VP
 - 2. Parent word is told
 - 3. Parent tag is V

15

The Head of a Lexicalized Rule

An example lexicalized rule:

 $VP(told,V) \Rightarrow V(told,V)$ NP(Clinton,NNP) SBAR(that,COMP)

- The **head** of the rule is a single non-terminal on the right-handside (RHS) of the rule
- e.g., V(told, V) is the head in the above example.
- We will also refer to the **head label**, **head word**, and **head tag**. In this case:
 - 1. Head label is V
 - 2. Head word is told
 - 3. Head tag is V

 Note: we always have parent word = head word parent tag = head tag 	<pre>In this example there are two left-modifiers:</pre>
17	19
The Left-Modifiers of a Lexicalized Rule	The Right-Modifiers of a Lexicalized Rule
An example lexicalized rule:	An example lexicalized rule:
$VP(told,V) \Rightarrow V(told,V)$ NP(Clinton,NNP) SBAR(that,COMP)	$VP(told,V) \Rightarrow V(told,V) NP(Clinton,NNP) SBAR(that,COMP)$
• The left-modifiers of the rule are any non-terminals appearing to the left of the head	• The right-modifiers of the rule are any non-terminals appearing to the right of the head
• In this example there are no left-modifiers	• In this example there are two right-modifiers:
• In general there can be any number (0 or greater) of left- modifiers	NP(Clinton,NNP)SBAR(that,COMP)
	• In general there can be any number (0 or greater) of right-

• In general there can be any number (0 or greater) of right-modifiers

The General Form of a Lexicalized Rule

• The general form of a lexicalized rule is as follows:

 $X(h,t) \Rightarrow L_n(lw_n, lt_n) \dots L_1(lw_1, lt_1) H(h,t) R_1(rw_1, rt_1) \dots R_m(rw_m, rt_m)$

- X(h,t) is the parent of the rule
- H(h, t) is the head of the rule
- There are *n* left modifiers, $L_i(lw_i, lt_i)$ for $i = 1 \dots n$
- There are m right-modifiers, $R_i(rw_i, rt_i)$ for $i = 1 \dots m$
- There can be zero or more left or right modifiers: i.e., $n \ge 0$ and $m \ge 0$

Overview

- Heads in context-free rules
- The anatomy of lexicalized rules
- Dependency representations of parse trees
- Two models making use of dependencies
 - Charniak (1997)
 - Collins (1997)

21

- X, H, L_i for $i = 1 \dots n$ and R_i for $i = 1 \dots m$ are labels
- h, lw_i for $i = 1 \dots n$ and rw_i for $i = 1 \dots m$ are words
- t, lt_i for $i = 1 \dots n$ and rt_i for $i = 1 \dots m$ are tags

23

Headwords and Dependencies

- A new representation: a tree is represented as a set of *dependencies*, not a set of *context-free rules*
- A **dependency** is an 8-tuple:

(head-word,head-tag,modifer-word,modifer-tag,parent-label,head-label,modifier-label,direction)

• Each rule with n children contributes (n - 1) dependencies. There is one dependency for each left or right modifier

 $VP(questioned,Vt) \Rightarrow Vt(questioned,Vt) NP(lawyer,NN)$ $\downarrow \downarrow$

(questioned, Vt, lawyer, NN, VP, Vt, NP, RIGHT)

Headwords and Dependencies

This rule contributes two dependencies:

head-wordhead-tagmod-wordmod-tagparent-labelhead-labelmod-labeldirectiontoldVClintonNNPVPVNPRIGHTtoldVthatCOMPVPVSBARRIGHT	(toldVTOPSSPECIAL)(toldVHillaryNNPSVPNPLEFT)(toldVClintonNNPVPVNPRIGHT)(toldVthatCOMPVPVSBARRIGHT)(thatCOMPwasVtSBARCOMPSRIGHT)(wasVtshePRPSVPNPLEFT)(wasVtpresidentNPVPVtNPRIGHT)
25	27
A Special Case: the Top of the Tree	<u>Overview</u>
TOP S(told,V)	• Heads in context-free rules
\downarrow	• The anatomy of lexicalized rules
(,, told, V, TOP, S,, SPECIAL)	• Dependency representations of parse trees
	• Two models making use of dependencies
	– Charniak (1997)
	– Collins (1997)

S(told,V)

V(told,V)

V I told VP(told,V)

NP(Clinton,NNP)

NNP Clinton SBAR(that,COMP)

NP(she,PRP)

PRP

VP(was,Vt)

NP(president,NN)

NN I president

Vt

wa

COMP

NP(Hillary,NNP)

NNP

Hillary

- This corresponds to generating the modifier word rw_i for the *i*'th right modifier.
 - This probability is conditioned on
 - 1. the head-word h,
 - 2. the labels X, H, and R_i
 - 3. the tags t and rt_i .
 - We now have a probability that is sensitive to the **dependency** between rw_i and h
 - There is a similar probability for each left modifier

30

• Charniak's model decomposes the probability of each rule as:

 $Prob(X(h,t) \Rightarrow L_n(lt_n) \dots L_1(lt_1)H(t)R_1(rt_1) \dots R_m(rt_m) \mid X(h,t))$

 $\times \prod Prob(lw_i \mid X(h,t), H, L_i(lt_i))$

 $\times \prod Prob(rw_i \mid X(h,t), H, R_i(rt_i))$

32

Smoothed Estimation

$P(\text{NP(NN) VP(Vt)} S(\text{questioned}, Vt)) = \lambda_1 \times \frac{Count(S(\text{questioned}, Vt) \rightarrow \text{NP(NN) VP(Vt)})}{Count(S(\text{questioned}, Vt))} + \lambda_2 \times \frac{Count(S(_,Vt) \rightarrow \text{NP(NN) VP(Vt)})}{Count(S(_,Vt))}$ • Where $0 \le \lambda_1, \lambda_2 \le 1$, and $\lambda_1 + \lambda_2 = 1$	$P(\text{NP}(\text{lawyer},\text{NN}) \text{ VP} \mid \text{S}(\text{questioned},\text{Vt})) = \\ \left(\lambda_1 \times \frac{Count(\text{S}(\text{questioned},\text{Vt}) \rightarrow \text{NP}(\text{NN}) \text{ VP}(\text{Vt}))}{Count(\text{S}(\text{questioned},\text{Vt}))} + \lambda_2 \times \frac{Count(\text{S}(_,\text{Vt}) \rightarrow \text{NP}(\text{NN}) \text{ VP}(\text{Vt}))}{Count(\text{S}(_,\text{Vt}))}\right) \\ \times \left(\lambda_3 \times \frac{Count(\text{lawyer} \mid \text{S}(\text{questioned},\text{Vt}), \text{ VP}, \text{NP}(\text{NN}))}{Count(\text{S}(\text{questioned},\text{Vt}), \text{ VP}, \text{NP}(\text{NN}))} + \lambda_4 \times \frac{Count(\text{lawyer} \mid \text{S}(_,\text{Vt}), \text{ VP}, \text{NP}(\text{NN}))}{Count(\text{S}(_,\text{Vt}), \text{ VP}, \text{NP}(\text{NN}))} + \lambda_5 \times \frac{Count(\text{lawyer} \mid \text{NN})}{Count(\text{NN})}$
33	35
Smoothed Estimation	Motivation for Breaking Down Rules
<u>Smoothed Estimation</u> P(lawyer S(questioned,Vt), VP, NP(NN)) =	 Motivation for Breaking Down Rules First step of decomposition of (Charniak 1997):
	• First step of decomposition of (Charniak 1997): S(questioned,Vt)
$P(\text{lawyer} \mid \textbf{S}(\text{questioned}, \textbf{Vt}), \textbf{VP}, \textbf{NP}(\textbf{NN})) = \lambda_3 \times \frac{Count(\text{lawyer} \mid \textbf{S}(\text{questioned}, \textbf{Vt}), \textbf{VP}, \textbf{NP}(\textbf{NN}))}{Count(\textbf{S}(\text{questioned}, \textbf{Vt}), \textbf{VP}, \textbf{NP}(\textbf{NN}))}$	 First step of decomposition of (Charniak 1997): S(questioned,Vt) ↓ P(NP(NN) VP S(questioned,Vt)) S(questioned,Vt)

Motivation for Breaking Down Rules

Rule Count	No. of Rules	Percentage	No. of Rules	Percentage
	by Type	by Type	by token	by token
1	6765	54.52	6765	0.72
2	1688	13.60	3376	0.36
3	695	5.60	2085	0.22
4	457	3.68	1828	0.19
5	329	2.65	1645	0.18
6 10	835	6.73	6430	0.68
11 20	496	4.00	7219	0.77
21 50	501	4.04	15931	1.70
51 100	204	1.64	14507	1.54
> 100	439	3.54	879596	93.64

37

∜

 $P_h(\mathbf{VP} \mid \mathbf{S}, \text{told}, \mathbf{V})$

Statistics for rules taken from sections 2-21 of the treebank (Table taken from my PhD thesis).

Modeling Rule Productions as Markov Processes

• Step 2: generate left modifiers in a Markov chain

38

40

Modeling Rule Productions as Markov Processes

• Step 2: generate left modifiers in a Markov chain

Modeling Rule Productions as Markov Processes

 $P_d(NP(yesterday,NN) | S,VP,told,V,LEFT) \times P_d(STOP | S,VP,told,V,LEFT) \times P_d(STOP | S,VP,told,V,RIGHT)$