6.864 (Fall 2007): Lecture 4 Parsing and Syntax II

Heads in Context-Free Rules

Add annotations specifying the "head" of each rule:

S	\Rightarrow	NP	VP
VP	\Rightarrow	Vi	
VP	\Rightarrow	Vt	NP
VP	\Rightarrow	VP	PP
NP	\Rightarrow	DT	NN
NP	\Rightarrow	NP	PP
PP	\Rightarrow	IN	NP

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

Note: $\mathrm{S}=$ sentence, $\mathrm{VP}=$ verb phrase, $\mathrm{NP}=$ noun phrase, $\mathrm{PP}=$ prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, $\mathrm{IN}=$ preposition

Overview

- Heads in context-free rules
- The anatomy of lexicalized rules
- Dependency representations of parse trees
- Two models making use of dependencies
- Charniak (1997)
- Collins (1997)

More about Heads

- Each context-free rule has one "special" child that is the head of the rule. e.g.,

S	\Rightarrow	NP	VP	
VP	\Rightarrow	Vt	NP	
NP	\Rightarrow	DT	NN	NN

- A core idea in syntax
(e.g., see X-bar Theory, Head-Driven Phrase Structure Grammar)
- Some intuitions:
- The central sub-constituent of each rule.
- The semantic predicate in each rule.

Rules which Recover Heads: An Example of rules for NPs

If the rule contains NN , NNS, or NNP:
Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP

Else If the rule contains a JJ: Choose the rightmost JJ

Else If the rule contains a CD: Choose the rightmost CD

Else Choose the rightmost child

e.g.,				
NP	\Rightarrow	DT	NNP	NN
NP	\Rightarrow	DT	NN	NNP
NP	\Rightarrow	NP	PP	
NP	\Rightarrow	DT	JJ	
NP	\Rightarrow	DT		

Adding Headwords to Trees

\Downarrow

7

Rules which Recover Heads: An Example of rules for VPs

If the rule contains Vi or Vt: Choose the leftmost Vi or Vt
Else If the rule contains an VP: Choose the leftmost VP
Else Choose the leftmost child

$$
\begin{array}{llll}
\text { e.g., } & & & \\
\text { VP } & \Rightarrow & \text { Vt } & \text { NP } \\
\text { VP } & \Rightarrow & \text { VP } & \text { PP }
\end{array}
$$

Adding Headwords to Trees

the witness

- A constituent receives its headword from its head child.

S	\Rightarrow	NP	VP		(S receives headword from VP)
VP	\Rightarrow	Vt	NP		(VP receives headword from Vt)
NP	\Rightarrow	DT		NN	(NP receives headword from NN)

Chomsky Normal Form

A context free grammar $G=(N, \Sigma, R, S)$ in Chomsky Normal Form is as follows

- N is a set of non-terminal symbols
- Σ is a set of terminal symbols
- R is a set of rules which take one of two forms:
- $X \rightarrow Y_{1} Y_{2}$ for $X \in N$, and $Y_{1}, Y_{2} \in N$
- $X \rightarrow Y$ for $X \in N$, and $Y \in \Sigma$
- $S \in N$ is a distinguished start symbol

We can find the highest scoring parse under a PCFG in this form, in $O\left(n^{3}|R|\right)$ time where n is the length of the string being parsed, and $|R|$ is the number of rules in the grammar (see the dynamic programming algorithm in the previous notes)

A New Form of Grammar

- The new form of grammar looks just like a Chomsky normal form CFG, but with potentially $O\left(|\Sigma|^{2} \times|N|^{3}\right)$ possible rules.
- Naively, parsing an n word sentence using the dynamic programming algorithm will take $O\left(n^{3}|\Sigma|^{2}|N|^{3}\right)$ time. But $|\Sigma|$ can be huge!!
- Crucial observation: at most $O\left(n^{2} \times|N|^{3}\right)$ rules can be applicable to a given sentence $w_{1}, w_{2}, \ldots w_{n}$ of length n. This is because any rules which contain a lexical item that is not one of $w_{1} \ldots w_{n}$, can be safely discarded.
- The result: we can parse in $O\left(n^{5}|N|^{3}\right)$ time.

A New Form of Grammar

We define the following type of "lexicalized" grammar: (we'll call this is a lexicalized Chomsky normal form grammar)

- N is a set of non-terminal symbols
- Σ is a set of terminal symbols
- R is a set of rules which take one of three forms:
- $X(h) \rightarrow Y_{1}(h) Y_{2}(w)$ for $X \in N$, and $Y_{1}, Y_{2} \in N$, and $h, w \in \Sigma$
- $X(h) \rightarrow Y_{1}(w) Y_{2}(h)$ for $X \in N$, and $Y_{1}, Y_{2} \in N$, and $h, w \in \Sigma$
- $X(h) \rightarrow h$ for $X \in N$, and $h \in \Sigma$
- $S \in N$ is a distinguished start symbol

Adding Headtags to Trees

- Also propagate part-of-speech tags up the trees (We'll see soon why this is useful!)

Overview

- Heads in context-free rules
- The anatomy of lexicalized rules
- Dependency representations of parse trees
- Two models making use of dependencies
- Charniak (1997)
- Collins (1997)

The Parent of a Lexicalized Rule

An example lexicalized rule:
$\mathrm{VP}($ told, V$) \Rightarrow \mathrm{V}($ told, V$) \quad \mathrm{NP}($ Clinton,NNP) \quad SBAR(that,COMP)

- The parent of the rule is the non-terminal on the left-handside (LHS) of the rule
- e.g., $\mathrm{VP}($ told, V$)$ in the above example
- We will also refer to the parent label, parent word, and parent tag. In this case:

1. Parent label is VP
2. Parent word is told
3. Parent tag is V

Non-terminals in Lexicalized rules

An example lexicalized rule:
$\mathrm{VP}($ told, V$) \Rightarrow \mathrm{V}($ told, V$) \quad \mathrm{NP}($ Clinton,NNP) \quad SBAR(that,COMP)

- Each non-terminal is a triple consisting of:

1. A label
2. A word
3. A tag (i.e., a part-of-speech tag)

- E.g., for $\mathrm{VP}($ told, V$)$: label $=\mathrm{VP}$, word $=$ told, $\operatorname{tag}=\mathrm{V}$ for $\mathrm{V}($ told, V$)$: label $=\mathrm{V}$, word $=$ told, $\operatorname{tag}=\mathrm{V}$

The Head of a Lexicalized Rule

An example lexicalized rule:
$\mathrm{VP}($ told, V$) \Rightarrow \mathrm{V}($ told, V$) \quad \mathrm{NP}($ Clinton,NNP) \quad SBAR(that,COMP)

- The head of the rule is a single non-terminal on the right-handside (RHS) of the rule
- e.g., $\mathrm{V}($ told, V$)$ is the head in the above example.
- We will also refer to the head label, head word, and head tag. In this case:

1. Head label is V
2. Head word is told
3. Head tag is V

- Note: we always have
- parent word = head word
- parent tag = head tag

The Left-Modifiers of a Lexicalized Rule

Another example lexicalized rule:
S(told,V) \Rightarrow NP(yesterday,NN) NP(Hillary,NNP) VP(told,V)

- The left-modifiers of the rule are any non-terminals appearing to the left of the head
- In this example there are two left-modifiers:
- NP(yesterday,NN)
- NP(Hillary,NNP)

The Left-Modifiers of a Lexicalized Rule

An example lexicalized rule:
$\mathrm{VP}($ told, V$) \Rightarrow \mathrm{V}($ told, V$) \quad \mathrm{NP}($ Clinton,NNP) \quad SBAR(that,COMP)

- The left-modifiers of the rule are any non-terminals appearing to the left of the head
- In this example there are no left-modifiers
- In general there can be any number (0 or greater) of leftmodifiers

The Right-Modifiers of a Lexicalized Rule

An example lexicalized rule:
$\mathrm{VP}($ told, V$) \Rightarrow \mathrm{V}($ told, V$) \quad \mathrm{NP}($ Clinton,NNP) \quad SBAR(that,COMP)

- The right-modifiers of the rule are any non-terminals appearing to the right of the head
- In this example there are two right-modifiers:
- NP(Clinton,NNP)
- SBAR(that,COMP)
- In general there can be any number (0 or greater) of rightmodifiers

The General Form of a Lexicalized Rule

- The general form of a lexicalized rule is as follows:
$X(h, t) \Rightarrow L_{n}\left(l w_{n}, l t_{n}\right) \ldots L_{1}\left(l w_{1}, l t_{1}\right) H(h, t) R_{1}\left(r w_{1}, r t_{1}\right) \ldots R_{m}\left(r w_{m}, r t_{m}\right)$
- $X(h, t)$ is the parent of the rule
- $H(h, t)$ is the head of the rule
- There are n left modifiers, $L_{i}\left(l w_{i}, l t_{i}\right)$ for $i=1 \ldots n$
- There are m right-modifiers, $R_{i}\left(r w_{i}, r t_{i}\right)$ for $i=1 \ldots m$
- There can be zero or more left or right modifiers:
i.e., $n \geq 0$ and $m \geq 0$

Overview

- Heads in context-free rules
- The anatomy of lexicalized rules
- Dependency representations of parse trees
- Two models making use of dependencies
- Charniak (1997)
- Collins (1997)
- X, H, L_{i} for $i=1 \ldots n$ and R_{i} for $i=1 \ldots m$ are labels
- $h, l w_{i}$ for $i=1 \ldots n$ and $r w_{i}$ for $i=1 \ldots m$ are words
- $t, l t_{i}$ for $i=1 \ldots n$ and $r t_{i}$ for $i=1 \ldots m$ are tags

Headwords and Dependencies

- A new representation: a tree is represented as a set of dependencies, not a set of context-free rules
- A dependency is an 8-tuple:
(head-word, head-tag, modifer-word, modifer-tag, parent-label, modifier-label, head-label, direction)
- Each rule with n children contributes $(n-1)$ dependencies. There is one dependency for each left or right modifier

VP (questioned, Vt) $\Rightarrow \mathrm{Vt}(q u e s t i o n e d, \mathrm{Vt}) \quad \mathrm{NP}($ lawyer, NN) \Downarrow
(questioned, Vt, lawyer, NN, VP, Vt, NP, RIGHT)

Headwords and Dependencies

This rule contributes two dependencies:

head-word	head-tag	mod-word	mod-tag	parent-label	head-label	mod-label	direction
told	V	Clinton	NNP	VP	V	NP	RIGHT
told	V	that	COMP	VP	V	SBAR	RIGHT

A Special Case: the Top of the Tree

\Downarrow
(_, , , told, V, TOP, S, ,_, SPECIAL)

(--	--	told	V	TOP	S	-	SPECIAL)
(told	V	Hillary	NNP	S	VP	NP	LEFT)
(told	V	Clinton	NNP	VP	V	NP	RIGHT)
(told	V	that	COMP	VP	V	SBAR	RIGHT)
(that	COMP	was	Vt	SBAR	COMP	S	RIGHT)
(was	Vt	she	PRP	S	VP	NP	LEFT)
(was	Vt	president	NP	VP	Vt	NP	RIGHT)

Overview

- Heads in context-free rules
- The anatomy of lexicalized rules
- Dependency representations of parse trees
- Two models making use of dependencies
- Charniak (1997)
- Collins (1997)

A Model from Charniak (1997)

```
S(questioned,Vt)
    \Downarrow Prob(NP(NN) VP(Vt)| S(questioned,Vt))
```


$\Downarrow \quad \operatorname{Prob}($ lawyer $\|$ S(questioned,Vt),VP,NP(NN))
S(questioned,Vt)
$\mathrm{NP}($ lawyer, NN$) \quad \mathrm{VP}($ questioned, Vt$)$

Dissecting Charniak's Model: Rule Probabilities

- First term of Charniak's model:
$\operatorname{Prob}\left(X(h, t) \Rightarrow L_{n}\left(l t_{n}\right) \ldots L_{1}\left(l t_{1}\right) H(t) R_{1}\left(r t_{1}\right) \ldots R_{m}\left(r t_{m}\right) \mid X(h, t)\right)$
- This corresponds to a choice of context-free rule, at this stage no modifier words are generated
- For our old example rule,
$\mathrm{VP}($ told, V$) \Rightarrow \mathrm{V}($ told, V$) \quad \mathrm{NP}($ Clinton,NNP) \quad SBAR(that,COMP)
we would have

The General Form of Charniak's Model

- The general form of a lexicalized rule is as follows:

```
X(h,t)=>\mp@subsup{L}{n}{}(l\mp@subsup{w}{n}{},l\mp@subsup{t}{n}{})\ldots\mp@subsup{L}{1}{}(l\mp@subsup{w}{1}{},l\mp@subsup{t}{1}{})H(h,t)\mp@subsup{R}{1}{}(r\mp@subsup{w}{1}{},r\mp@subsup{t}{1}{})\ldots..R}\mp@subsup{R}{m}{}(r\mp@subsup{w}{m}{},r\mp@subsup{t}{m}{}
```

- Charniak's model decomposes the probability of each rule as:

$$
\begin{aligned}
& \operatorname{Prob}\left(X(h, t) \Rightarrow L_{n}\left(l t_{n}\right) \ldots L_{1}\left(l t_{1}\right) H(t) R_{1}\left(r t_{1}\right) \ldots R_{m}\left(r t_{m}\right) \mid X(h, t)\right) \\
& \times \prod_{i=1}^{n} \operatorname{Prob}\left(l w_{i} \mid X(h, t), H, L_{i}\left(l t_{i}\right)\right) \\
& \times \prod_{i=1}^{m} \operatorname{Prob}\left(r w_{i} \mid X(h, t), H, R_{i}\left(r t_{i}\right)\right)
\end{aligned}
$$

Dissecting Charniak's Model: Modifier Probabilities

- For each right modifier, there is a term

$$
\operatorname{Prob}\left(r w_{i} \mid X(h, t), H, R_{i}\left(r t_{i}\right)\right)
$$

- This corresponds to generating the modifier word $r w_{i}$ for the i 'th right modifier.
- This probability is conditioned on

1. the head-word h,
2. the labels X, H, and R_{i}
3. the tags t and $r t_{i}$.

- We now have a probability that is sensitive to the dependency between $r w_{i}$ and h
- There is a similar probability for each left modifier

Smoothed Estimation

$P(\mathrm{NP}(\mathrm{NN}) \mathrm{VP}(\mathrm{Vt}) \mid \mathrm{S}($ questioned, Vt$))=$

$$
\begin{aligned}
& \lambda_{1} \times \frac{\operatorname{Count}(\mathbf{S}(\text { questioned,Vt }) \rightarrow \mathrm{NP}(\mathrm{NN}) \mathrm{VP}(\mathrm{Vt}))}{\operatorname{Count}(\mathrm{S}(\mathrm{questioned}, \mathrm{Vt}))} \\
+ & \lambda_{2} \times \frac{\operatorname{Count}(\mathbf{S}(-, \mathrm{Vt}) \rightarrow \mathrm{NP}(\mathrm{NN}) \mathrm{VP}(\mathrm{Vt}))}{\operatorname{Count}(\mathbf{S}(--, \mathrm{Vt}))}
\end{aligned}
$$

- Where $0 \leq \lambda_{1}, \lambda_{2} \leq 1$, and $\lambda_{1}+\lambda_{2}=1$

$$
\begin{aligned}
& P(\mathrm{NP}(\text { lawyer, } \mathrm{NN}) \mathrm{VP} \mid \mathrm{S}(\text { questioned, } \mathrm{Vt}))= \\
& \left(\lambda_{1} \times \frac{\operatorname{Count}(\mathrm{S}(\text { questioned, } \mathrm{Vt}) \rightarrow \mathrm{NP}(\mathrm{NN}) \mathrm{VP}(\mathrm{Vt}))}{\operatorname{Count}(\mathrm{S}(\text { questioned }, \mathrm{Vt}))}\right. \\
& \left.+\lambda_{2} \times \frac{\operatorname{Count}(\mathbf{S}(\ldots, \mathrm{Vt}) \rightarrow \mathrm{NP}(\mathrm{NN}) \mathrm{VP}(\mathrm{Vt}))}{\operatorname{Count}(\mathbf{S}(\ldots, \mathrm{Vt}))}\right) \\
& \times\left(\lambda_{3} \times \frac{\operatorname{Count}(\text { lawyer } \mid \text { S(questioned, Vt), VP, NP(NN) })}{\operatorname{Count}(S(\text { questioned,Vt), VP, NP(NN)) }}\right. \\
& +\lambda_{4} \times \frac{\operatorname{Count}(\operatorname{lawyer} \mid \mathrm{S}(-, \mathrm{Vt}), \mathrm{VP}, \mathrm{NP}(\mathrm{NN}))}{\operatorname{Count}(\mathrm{S}(-, \mathrm{Vt}), \mathrm{VP}, \mathrm{NP}(\mathrm{NN}))} \\
& +\lambda_{5} \times \frac{\operatorname{Count}(\operatorname{lawyer} \mid \mathrm{NN})}{\operatorname{Count}(\mathrm{NN})}
\end{aligned}
$$

Smoothed Estimation

$P($ lawyer $\mid \mathrm{S}($ questioned, Vt$), \mathrm{VP}, \mathrm{NP}(\mathrm{NN}))=$

$$
\begin{aligned}
& \lambda_{3} \times \frac{\operatorname{Count}(\operatorname{lawyer} \mid \mathrm{S}(\text { questioned, Vt), VP, NP(NN) }}{\operatorname{Count}(\mathrm{S}(\text { questioned,Vt), VP, NP(NN) })} \\
+ & \lambda_{4} \times \frac{\operatorname{Count}(\operatorname{lawyer} \mid \mathrm{S}(\ldots, \mathrm{Vt}), \mathrm{VP}, \mathrm{NP}(\mathrm{NN}))}{\operatorname{Count}(\mathrm{S}(., \mathrm{Vt}), \mathrm{VP}, \mathrm{NP}(\mathrm{NN}))} \\
+ & \lambda_{5} \times \frac{\operatorname{Count} t \operatorname{lawyer} \mid \mathrm{NN})}{\operatorname{Count}(\mathrm{NN})}
\end{aligned}
$$

- Where $0 \leq \lambda_{3}, \lambda_{4}, \lambda_{5} \leq 1$, and $\lambda_{3}+\lambda_{4}+\lambda_{5}=1$

Motivation for Breaking Down Rules

- First step of decomposition of (Charniak 1997):

S(questioned,Vt)
$\Downarrow \quad P(\mathrm{NP}(\mathrm{NN}) \mathrm{VP} \mid \mathrm{S}($ questioned, Vt $))$

- Relies on counts of entire rules
- These counts are sparse:
- 40,000 sentences from Penn treebank have 12,409 rules.
- 15% of all test data sentences contain a rule never seen in training

Motivation for Breaking Down Rules

Rule Count	No. of Rules by Type	Percentage by Type	No. of Rules by token	Percentage by token
1	6765	54.52	6765	0.72
2	1688	13.60	3376	0.36
3	695	5.60	2085	0.22
4	457	3.68	1828	0.19
5	329	2.65	1645	0.18
$6 \ldots 10$	835	6.73	6430	0.68
$11 \ldots 20$	496	4.00	7219	0.77
$21 \ldots 50$	501	4.04	15931	1.70
$51 \ldots 100$	204	1.64	14507	1.54
>100	439	3.54	879596	93.64

Statistics for rules taken from sections 2-21 of the treebank (Table taken from my PhD thesis).

Modeling Rule Productions as Markov Processes

S(told,V)
\Downarrow
S(told, V)
VP(told,V)

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V$)$

Modeling Rule Productions as Markov Processes

- Step 1: generate category of head child
- Step 2: generate left modifiers in a Markov chain

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V$) \times P_{d}(\mathrm{NP}($ Hillary,NNP $) \mid \mathrm{S}, \mathrm{VP}$, told, V,LEFT $)$

Modeling Rule Productions as Markov Processes

- Step 2: generate left modifiers in a Markov chain
mana, of a a

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V$) \times P_{d}(\mathrm{NP}($ Hillary,NNP $) \mid \mathrm{S}, \mathrm{VP}$, told, V,LEFT $) \times$ $P_{d}($ NP (yesterday,NN $) \mid \mathrm{S}, \mathrm{VP}$, told, V,LEFT $)$

Modeling Rule Productions as Markov Processes

- Step 2: generate left modifiers in a Markov chain

Modeling Rule Productions as Markov Processes

- Step 3: generate right modifiers in a Markov chain

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V$) \times P_{d}(\mathrm{NP}($ Hillary,NNP $) \mid \mathrm{S}, \mathrm{VP}$, told, V,LEFT $) \times$
$P_{d}(\mathrm{NP}($ yesterday,NN $) \mid \mathrm{S}, \mathrm{VP}$, told,V,LEFT $) \times P_{d}(\mathrm{STOP} \mid \mathrm{S}, \mathrm{VP}$, told,V,LEFT $) \times$ $P_{d}($ STOP $\mid \mathrm{S}, \mathrm{VP}$, told, V,RIGHT)

