

Overview

- An introduction to the parsing problem
- Context free grammars
- A brief(!) sketch of the syntax of English
- Examples of ambiguous structures
- PCFGs, their formal properties, and useful algorithms
- Weaknesses of PCFGs

Syntactic Formalisms

- Work in formal syntax goes back to Chomsky's PhD thesis in the 1950s
- Examples of current formalisms: minimalism, lexical functional grammar (LFG), head-driven phrase-structure grammar (HPSG), tree adjoining grammars (TAG), categorial grammars

Data for Parsing Experiments

- Penn WSJ Treebank = 50,000 sentences with associated trees
- Usual set-up: 40,000 training sentences, 2400 test sentences

2) Phrases

S

An Example Application: Machine Translation

• An introduction to the parsing problem • English word order is *subject* – *verb* – *object* • Context free grammars • Japanese word order is *subject – object – verb* • A brief(!) sketch of the syntax of English English: **IBM** bought Lotus • Examples of ambiguous structures Japanese: IBM Lotus bought • PCFGs, their formal properties, and useful algorithms English: Sources said that IBM bought Lotus yesterday • Weaknesses of PCFGs Sources yesterday IBM Lotus bought that said Japanese: 9 11 **Syntax and Compositional Semantics Context-Free Grammars** S:bought(IBM, Lotus) [Hopcroft and Ullman 1979] A context free grammar $G = (N, \Sigma, R, S)$ where: • N is a set of non-terminal symbols NP:*IBM* $VP:\lambda y \ bought(y, Lotus)$ • Σ is a set of terminal symbols • R is a set of rules of the form $X \to Y_1 Y_2 \dots Y_n$ IBM $V:\lambda x, y \ bought(y, x)$ NP:*Lotus* for $n \ge 0, X \in N, Y_i \in (N \cup \Sigma)$ • $S \in N$ is a distinguished start symbol bought Lotus • Each syntactic non-terminal now has an associated semantic expression

Overview

A Context-Free Grammar for English

		DERIVATION	RULES USED
$N = \{S, NP, VP, PP, DT, Vi, Vt, NN, IN \\S = S \\\Sigma = \{sleeps, saw, man, woman, telescop \\R = S \Rightarrow NP VP \\VP \Rightarrow Vi \\VP \Rightarrow Vt NP \\VP \Rightarrow VP PP \\NP \Rightarrow DT NN \\NP \Rightarrow NP PP \\PP \Rightarrow IN NP$	$ \begin{cases} \text{be, the, with, in} \\ \hline \text{Vi} & \Rightarrow \text{ sleeps} \\ \hline \text{Vt} & \Rightarrow \text{ saw} \\ \hline \text{NN} & \Rightarrow \text{ man} \\ \hline \text{NN} & \Rightarrow \text{ woman} \\ \hline \text{NN} & \Rightarrow \text{ telescope} \\ \hline \text{DT} & \Rightarrow \text{ the} \\ \hline \text{IN} & \Rightarrow \text{ with} \\ \hline \text{IN} & \Rightarrow \text{ in} \\ \end{cases} $	S NP VP DT N VP the N VP the dog VP the dog VB the dog laughs	$S \rightarrow NP VP$ $NP \rightarrow DT N$ $DT \rightarrow the$ $N \rightarrow dog$ $VP \rightarrow VB$ $VB \rightarrow laughs$
Note: S=sentence, VP=verb phrase, NP=n phrase, DT=determiner, Vi=intransitive verb,	oun phrase, PP=prepositional Vt=transitive verb, NN=noun,		DT N VB the dog laughs

13

Left-Most Derivations

A left-most derivation is a sequence of strings $s_1 \dots s_n$, where

• $s_1 = S$, the start symbol

IN=preposition

- $s_n \in \Sigma^*$, i.e. s_n is made up of terminal symbols only
- Each s_i for i = 2...n is derived from s_{i-1} by picking the left-most non-terminal X in s_{i-1} and replacing it by some β where X → β is a rule in R

For example: [S], [NP VP], [D N VP], [the N VP], [the man VP], [the man Vi], [the man sleeps]

Representation of a derivation as a tree:

Properties of CFGs

- A CFG defines a set of possible derivations
- A string $s \in \Sigma^*$ is in the *language* defined by the CFG if there is at least one derivation which yields s
- Each string in the language generated by the CFG may have more than one derivation ("ambiguity")

DERIVATION S NP VP he VP he VP PP he drove PP PP he drove down the street PP he drove down the street in the car $\int V P PP$ $\int V P PP$ V P PP V P V P PP V P V P PP V P V P PP V P V V P PP V P V V P PP V P V V P PP V	PULES USED $S \rightarrow NP VP$ $NP \rightarrow he$ $VP \rightarrow VP PP$ $VP \rightarrow VB PP$ $VB \rightarrow drove$ $PP \rightarrow down the street$ $PP \rightarrow in the car$	Input: She announced a program to promote safety in trucks and vans ↓ POSSIBLE OUTPUTS: ✓ <
17		19
DERIVATION S NP VP he VP he VB PP he drove PP he drove down NP he drove down NP PP he drove down the street PP he drove down the street in the car s s s s s s s s	RULES USED $S \rightarrow NP VP$ $NP \rightarrow he$ $VP \rightarrow VB PP$ $VB \rightarrow drove$ $PP \rightarrow down NP$ $NP \rightarrow NP PP$ $NP \rightarrow the street$ $PP \rightarrow in the car$	Overview• An introduction to the parsing problem• Context free grammars• A brief(!) sketch of the syntax of English• Examples of ambiguous structures• PCFGs, their formal properties, and useful algorithms• Weaknesses of PCFGs

	A Brief Overview of English Syntax Parts of Speech (tags from the Brown corpus):
Fiestaware 4-pace place settings start at only \$19.99 Shop the largest selection available Shop Fiestaware	
SEARCH READY TO BUY? BOOKS Add to Shopping Cart	• Nouns
Sun 19 to Winou 1-Click ordering: WITS STANCI WITS ST	 NN = singular noun e.g., man, dog, park NNS = plural noun e.g., telescopes, houses, building NNP = proper noun e.g., Smith, Gates, IBM Determiners DT = determiner e.g., the, a, some, every Adjectives JJ = adjective e.g., red, green, large, idealistic
Caphalon Sale 9. used & new from \$13.99 Sale of a new from \$13.90 Edito:: Hardcover Sale of a new from \$13.90 9. sende & new from \$13.90 Sale of a new from \$13.90 9. sende & new from \$13.90 Sale of a new from \$13.90 9. sende & new from \$13.90 Sale of a new from \$13.90 9. sende & new from \$13.90 Sale of a new from \$13.90 9. sende & new from \$13.90 Sale of a new from \$13.90 9. sende & new from \$13.90 Sale of a new from \$13.90 9. sende & new from \$13.90 Sale of a new from \$13.90 9. sende & new from \$13.90 Sale of a new from \$13.90 9. sende & new from \$13.90 Sale of a new from \$13.90 9. sende & new from \$13.90 Sale of a new from \$13.90 9. sende & new from \$13.90 Sale of a new from \$13.90 9. sende & new from \$13.90 Sale of a new from \$13.90 9. sende & new from \$13.90 Sale of a new from \$13.90 9. sende & new from \$13.90 Sale of a new from \$13.90 9. sende & new from \$13.90 Sale of a new from \$13.90 9. sende & new from \$13.90 Sale of a new from \$13.90 9. sende & new from \$13.90 Sale of a new from \$13.90 9. sende & new from \$13.90 <	23 A Fragment of a Noun Phrase Grammar
Support Support Support Support <td< td=""><td>$\begin{split} \bar{\mathbf{N}} & \Rightarrow & \mathbf{NN} \\ \bar{\mathbf{N}} & \Rightarrow & \mathbf{JJ} \\ \bar{\mathbf{N}} & \Rightarrow & \mathbf{JJ} \\ \bar{\mathbf{N}} & \Rightarrow & \mathbf{N} \\ \bar{\mathbf{N}} & \Rightarrow & \mathbf{JJ} \\ \bar{\mathbf{N}} & \bar{\mathbf{N}} \\ \bar{\mathbf{N}} & \Rightarrow & \mathbf{DT} \\ \bar{\mathbf{N}} & \Rightarrow & \mathbf{N} \\ \bar{\mathbf{N}} & \Rightarrow & \mathbf{N} \\ \mathbf{NP} & \Rightarrow & \mathbf{DT} \\ \bar{\mathbf{N}} & \mathbf{NP} \\ \end{split}$</td></td<>	$ \begin{split} \bar{\mathbf{N}} & \Rightarrow & \mathbf{NN} \\ \bar{\mathbf{N}} & \Rightarrow & \mathbf{JJ} \\ \bar{\mathbf{N}} & \Rightarrow & \mathbf{JJ} \\ \bar{\mathbf{N}} & \Rightarrow & \mathbf{N} \\ \bar{\mathbf{N}} & \Rightarrow & \mathbf{JJ} \\ \bar{\mathbf{N}} & \bar{\mathbf{N}} \\ \bar{\mathbf{N}} & \Rightarrow & \mathbf{DT} \\ \bar{\mathbf{N}} & \Rightarrow & \mathbf{N} \\ \bar{\mathbf{N}} & \Rightarrow & \mathbf{N} \\ \mathbf{NP} & \Rightarrow & \mathbf{DT} \\ \bar{\mathbf{N}} & \mathbf{NP} \\ \end{split} $
Public Start Carlon Wesley Pub Cc. (February 1989) Average Cutationer Review: Whith Based on 10 reviews. Write a review. Amazon.com Sales Rank: 114.478 Shipping: Due to this item's unusual size or weight, it requires special handling and will ship separately from other items in your order. <i>Reval Mare</i> What's Your Advice? Item outer items in your order. <i>Reval Mare</i> What's Your Advice? Item outer items in sour order. <i>Reval Mare</i> " In a starting the base base to the source of the	$\begin{array}{rcl} JJ & \Rightarrow & idealistic\\ JJ & \Rightarrow & clay \end{array}$ Generates:
Spotlight Reviews (<u>What's this?</u>) <u>White an online review</u> and Share your thoughts with other customers. 16 of 16 people found the following review helpful: stricter . Still Useful, but, March 11, 2003 Reviewer: <u>metrial face more about may</u> from Glendale, Ca. USA As the title and price suggest, this is a reference grammar of English, not a textbook. It's written	a box, the box, the metal box, the fast car mechanic,

Comr

e Grammar is an ea

Prepositions, and Prepositional Phrases

• Prepositions

IN = preposition e.g., of, in, out, beside, as

Verbs, Verb Phrases, and Sentences

Basic Verb Types Vi = Intransitive verb e.g., sleeps, walks, laughs Vt = Transitive verb e.g., sees, saw, likes Vd = Ditransitive verb e.g., gave
Basic VP Rules VP → Vi VP → Vt NP VP → Vd NP NP
Basic S Rule S → NP VP
Examples of VP: sleeps, walks, likes the mechanic, gave the mechanic the fast car, gave the fast car mechanic the pigeon in the box, ...

27

25

An Extended Grammar

							JJ	\Rightarrow	fast
Ň	_	NN	Í				JJ	\Rightarrow	metal
ÎN N	\rightarrow	ININ	Ň	NN	\Rightarrow	box	JJ	\Rightarrow	idealistic
IN N	\Rightarrow		IN N	NN	\Rightarrow	car	JJ	\Rightarrow	clay
IN N	\Rightarrow	JJ N	IN N	NN	\Rightarrow	mechanic			
IN ND	\Rightarrow	N DT	IN N	NN	\Rightarrow	pigeon	IN	\Rightarrow	in
NP	\Rightarrow	DI	IN				IN	\Rightarrow	under
DD		DI	ND	DT	\Rightarrow	the	IN	\Rightarrow	of
	\Rightarrow	IN Ū	NP	DT	\Rightarrow	а	IN	\Rightarrow	on
Ν	\Rightarrow	Ν	PP	1		I	IN	\Rightarrow	with
							IN	\Rightarrow	as

Generates:

in a box, under the box, the fast car mechanic under the pigeon in the box, \dots

Examples of S:

the man sleeps, the dog walks, the dog likes the mechanic, the dog in the box gave the mechanic the fast car,...

PPs Modifying Verb Phrases

A new rule: $VP \rightarrow VP PP$

New examples of VP:

sleeps in the car, walks like the mechanic, gave the mechanic the fast car on Tuesday, ...

More Verbs

New Verb Types
 V[5] e.g., said, reported
 V[6] e.g., told, informed
 V[7] e.g., bet

•	New 7	VP R	ules			
	VP	\rightarrow	V[5]	SBAR		
	VP	\rightarrow	V[6]	NP	SBAR	
	VP	\rightarrow	V[7]	NP	NP	SBAR

Examples of New VPs: said that the man sleeps told the dog that the mechanic likes the pigeon bet the pigeon \$50 that the mechanic owns a fast car

29	31
Complementizers, and SBARs	<u>Coordination</u>
• Complementizers COMP = complementizer e.g., that	• A New Part-of-Speech: CC = Coordinator e.g., and, or, but
• SBAR SBAR \rightarrow COMP S	• New Rules $NP \rightarrow NP CC NP$ $\bar{N} \rightarrow \bar{N} CC \bar{N}$
Examples: that the mechanic saw the dog	$\begin{array}{rcccc} VP & \rightarrow & VP & CC & VP \\ S & \rightarrow & S & CC & S \\ SBAR & \rightarrow & SBAR & CC & SBAR \end{array}$

Overview

- An introduction to the parsing problem
- Context free grammars
- A brief(!) sketch of the syntax of English
- Examples of ambiguous structures
- PCFGs, their formal properties, and useful algorithms
- Weaknesses of PCFGs

35

Sources of Ambiguity

- Part-of-Speech ambiguity $NNS \rightarrow walks$ $Vi \rightarrow walks$
- Prepositional Phrase Attachment the fast car mechanic under the pigeon in the box

Two analyses for: John was believed to have been shot by Bill

Sources of Ambiguity: Noun Premodifiers Overview • Noun premodifiers: • An introduction to the parsing problem NP NP • Context free grammars Ď Ñ Ď N • A brief(!) sketch of the syntax of English the the Π N Ń N • Examples of ambiguous structures fast NN JJ ŃN Ν • PCFGs, their formal properties, and useful algorithms NN car fast NN mechanic mechanic • Weaknesses of PCFGs car 41 43

A Funny Thing about the Penn Treebank

Leaves NP premodifier structure flat, or underspecified:

A Probabilistic Context-Free Grammar (PCFG)

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

• Probability of a tree with rules $\alpha_i \to \beta_i$ is $\prod_i P(\alpha_i \to \beta_i | \alpha_i)$

DERIVATION	RULES USED	PROBABILITY
S	$S \to NP \; VP$	1.0
NP VP	$NP \to DT \; N$	0.3
DT N VP	$DT \to the$	1.0
the N VP	$N \to dog$	0.1
the dog VP	$VP \to VB$	0.4
the dog VB	$VB \rightarrow laughs$	0.5
the dog laughs		

TOTAL PROBABILITY = $1.0 \times 0.3 \times 1.0 \times 0.1 \times 0.4 \times 0.5$

Deriving a PCFG from a Corpus

- Given a set of example trees, the underlying CFG can simply be **all rules seen in the corpus**
- Maximum Likelihood estimates:

$$P_{ML}(\alpha \to \beta \mid \alpha) = \frac{\operatorname{Count}(\alpha \to \beta)}{\operatorname{Count}(\alpha)}$$

where the counts are taken from a training set of example trees.

• If the training data is generated by a PCFG, then as the training data size goes to infinity, the maximum-likelihood PCFG will converge to the same distribution as the "true" PCFG.

47

Properties of PCFGs

45

- Assigns a probability to each *left-most derivation*, or parsetree, allowed by the underlying CFG
- Say we have a sentence S, set of derivations for that sentence is T(S). Then a PCFG assigns a probability to each member of T(S). i.e., we now have a ranking in order of probability.
- The probability of a string S is

$$\sum_{T \in \mathcal{T}(S)} P(T, S)$$

PCFGs

[Booth and Thompson 73] showed that a CFG with rule probabilities correctly defines a distribution over the set of derivations provided that:

- 1. The rule probabilities define conditional distributions over the different ways of rewriting each non-terminal.
- 2. A technical condition on the rule probabilities ensuring that the probability of the derivation terminating in a finite number of steps is 1. (This condition is not really a practical concern.)

Algorithms for PCFGs

- Given a PCFG and a sentence S, define T(S) to be the set of trees with S as the yield.
- Given a PCFG and a sentence S, how do we find

 $\arg\max_{T\in\mathcal{T}(S)}P(T,S)$

• Given a PCFG and a sentence S, how do we find

$$P(S) = \sum_{T \in \mathcal{T}(S)} P(T, S)$$

A Dynamic Programming Algorithm

• Given a PCFG and a sentence S, how do we find

 $\max_{T\in\mathcal{T}(S)}P(T,S)$

• Notation:

n = number of words in the sentence N_k for $k = 1 \dots K$ is k'th non-terminal $N_1 = S$ (the start symbol)

- Defi ne a dynamic programming table
 - $\pi[i, j, k] =$ maximum probability of a constituent with non-terminal N_k spanning words $i \dots j$ inclusive
- Our goal is to calculate $\max_{T \in \mathcal{T}(S)} P(T, S) = \pi[1, n, 1]$

51

A Dynamic Programming Algorithm

• Base case definition: for all $i = 1 \dots n$, for $k = 1 \dots K$

 $\pi[i, i, k] = P(N_k \to w_i \mid N_k)$

(note: define $P(N_k \rightarrow w_i \mid N_k) = 0$ if $N_k \rightarrow w_i$ is not in the grammar)

• Recursive definition: for all $i = 1 \dots n$, $j = (i + 1) \dots n$, $k = 1 \dots K$,

 $\pi[i,j,k] = \max_{\substack{i \leq s < j \\ 1 \leq l \leq K \\ 1 \leq m \leq K}} \{P(N_k \to N_l N_m \mid N_k) \times \pi[i,s,l] \times \pi[s+1,j,m]\}$

(note: define $P(N_k \rightarrow N_l N_m \mid N_k) = 0$ if $N_k \rightarrow N_l N_m$ is not in the grammar)

Chomsky Normal Form

49

A context free grammar $G = (N, \Sigma, R, S)$ in Chomsky Normal Form is as follows

- N is a set of non-terminal symbols
- Σ is a set of terminal symbols
- R is a set of rules which take one of two forms:
 - $X \to Y_1 Y_2$ for $X \in N$, and $Y_1, Y_2 \in N$ - $X \to Y$ for $X \in N$, and $Y \in \Sigma$
- $S \in N$ is a distinguished start symbol

Initialization:

For $\mathbf{i} = 1 \dots \mathbf{n}$, $\mathbf{k} = 1 \dots \mathbf{K}$ $\pi[i, i, k] = P(N_k \rightarrow w_i | N_k)$

Main Loop:

For $length = 1 \dots (n - 1), i = 1 \dots (n - 1ength), k = 1 \dots K$ $j \leftarrow i + length$ $max \leftarrow 0$ For $s = i \dots (j - 1),$ For N_l, N_m such that $N_k \rightarrow N_l N_m$ is in the grammar $prob \leftarrow P(N_k \rightarrow N_l N_m) \times \pi[i, s, l] \times \pi[s + 1, j, m]$ If prob > max $max \leftarrow prob$ //Store backpointers which imply the best parse $Split(i, j, k) = \{s, l, m\}$ $\pi[i, j, k] = max$

A Dynamic Programming Algorithm for the Sum

• Base case definition: for all $i = 1 \dots n$, for $k = 1 \dots K$

$$\pi[i, i, k] = P(N_k \to w_i \mid N_k)$$

(note: define $P(N_k \rightarrow w_i \mid N_k) = 0$ if $N_k \rightarrow w_i$ is not in the grammar)

• Recursive definition: for all $i = 1 \dots n$, $j = (i + 1) \dots n$, $k = 1 \dots K$,

 $\pi[i,j,k] = \sum_{\substack{i \leq s < j \\ 1 \leq l \leq K \\ 1 \leq m \leq K}} \{P(N_k \to N_l N_m \mid N_k) \times \pi[i,s,l] \times \pi[s+1,j,m]\}$

(note: define $P(N_k \rightarrow N_l N_m \mid N_k) = 0$ if $N_k \rightarrow N_l N_m$ is not in the grammar)

55

A Dynamic Programming Algorithm for the Sum

53

• Given a PCFG and a sentence S, how do we find

$$\sum_{T \in \mathcal{T}(S)} P(T, S)$$

• Notation:

n = number of words in the sentence N_k for $k = 1 \dots K$ is k'th non-terminal $N_1 = S$ (the start symbol)

- Defi ne a dynamic programming table
 - $\pi[i, j, k] =$ sum of probability of parses with root label N_k spanning words $i \dots j$ inclusive
- Our goal is to calculate $\sum_{T \in \mathcal{T}(S)} P(T, S) = \pi[1, n, 1]$

Initialization: For $i = 1 \dots n$, $k = 1 \dots K$

 $\pi[i, i, k] = P(N_k \to w_i | N_k)$

Main Loop:

For $length = 1 \dots (n-1), i = 1 \dots (n-1ength), k = 1 \dots K$ $j \leftarrow i + length$ $sum \leftarrow 0$ For $s = i \dots (j-1),$ For N_l, N_m such that $N_k \rightarrow N_l N_m$ is in the grammar $prob \leftarrow P(N_k \rightarrow N_l N_m) \times \pi[i, s, l] \times \pi[s+1, j, m]$ $sum \leftarrow sum + prob$ $\pi[i, j, k] = sum$

Overview

- An introduction to the parsing problem
- Context free grammars
- A brief(!) sketch of the syntax of English
- Examples of ambiguous structures
- PCFGs, their formal properties, and useful algorithms

57

• Weaknesses of PCFGs

• Context free grammars

• Weaknesses of PCFGs

Weaknesses of PCFGs

• Lack of sensitivity to lexical information • Lack of sensitivity to structural frequencies 59 S **Overview** ŃP ŴΡ • An introduction to the parsing problem NNP ŇΡ Vt IBM bought NNP Lotus • A brief(!) sketch of the syntax of English • Examples of ambiguous structures $PROB = P(S \rightarrow NP VP \mid S)$ $\times P(\text{NNP} \rightarrow IBM \mid \text{NNP})$ $\times P(\mathbf{VP} \rightarrow \mathbf{V} \mathbf{NP} \mid \mathbf{VP})$ $\times P(\mathbf{Vt} \rightarrow bought \mid \mathbf{Vt})$ • PCFGs, their formal properties, and useful algorithms $\times P(\mathbf{NP} \rightarrow \mathbf{NNP} \mid \mathbf{NP})$ $\times P(\text{NNP} \rightarrow Lotus \mid \text{NNP})$ $\times P(NP \rightarrow NNP \mid NP)$

		Rules
		$S \to NP \; VP$
		$NP \to NNS$
		$NP \rightarrow NP PP$
NP		$VP \to VBD \; NP$
		$\text{NP} \rightarrow \text{NNS}$
	(b)	$\text{PP} \rightarrow \text{IN NP}$
V	(0)	$NP \to DT \; NN$
ters		$NNS \rightarrow workers$
ped		$\text{VBD} \rightarrow \text{dumped}$
s		$NNS \rightarrow sacks$
		$IN \rightarrow into$
		$DT \to a$
		$NN \to bin$

If $P(NP \rightarrow NP PP \mid NP) > P(VP \rightarrow VP PP \mid VP)$ then (b) is more probable, else (a) is more probable.

Attachment decision is completely independent of the words

	Rules		Rules
	$NP \rightarrow NP \ CC \ NP$		$NP \rightarrow NP \ CC \ NP$
	$NP \to NP \; PP$		$NP \to NP \; PP$
	$\text{NP} \rightarrow \text{NNS}$		$\text{NP} \rightarrow \text{NNS}$
	$\text{PP} \rightarrow \text{IN NP}$		$\text{PP} \rightarrow \text{IN NP}$
(a)	$\text{NP} \rightarrow \text{NNS}$	(b)	$\text{NP} \rightarrow \text{NNS}$
(a)	$\text{NP} \rightarrow \text{NNS}$	(0)	$\text{NP} \rightarrow \text{NNS}$
	$NNS \rightarrow dogs$		$NNS \rightarrow dogs$
	$IN \to in$		$IN \to in$
	$NNS \rightarrow houses$		$NNS \rightarrow houses$
	$CC \rightarrow and$		$CC \rightarrow and$
	$NNS \rightarrow cats$		$NNS \rightarrow cats$

Here the two parses have identical rules, and therefore have identical probability under any assignment of PCFG rule probabilities

Structural Preferences: Close Attachment

- Example: president of a company in Africa
- Both parses have the same rules, therefore receive same probability under a PCFG
- "Close attachment" (structure (a)) is twice as likely in Wall Street Journal text.
 - 67

Structural Preferences: Close Attachment

Previous example: John was believed to have been shot by Bill

Here the low attachment analysis (Bill does the *shooting*) contains same rules as the high attachment analysis (Bill does the *believing*), so the two analyses receive same probability.

References

[Booth and Thompson 73] Booth, T., and Thompson, R. 1973. Applying probability measures to abstract languages. *IEEE Transactions on Computers*, C-22(5), pages 442–450.
 [Hopcroft and Ullman 1979] Hopcroft, J. E., and Ullman, J. D. 1979. *Introduction to automata theory, languages, and computation*. Reading, Mass.: Addison–Wesley.