6.864 (Fall 2007)

Machine Translation Part III

Roadmap for the Next Few Lectures

- Lecture 1 (last time): IBM Models 1 and 2
- Lecture 2 (today): phrase-based models
- Lecture 3: Syntax in statistical machine translation

Overview

- Learning phrases from alignments
- A phrase-based model
- Decoding in phrase-based models
(Thanks to Philipp Koehn for giving me the slides from his EACL 2006 tutorial)

3

Phrase-Based Models

- First stage in training a phrase-based model is extraction of a phrase-based (PB) lexicon
- A PB lexicon pairs strings in one language with strings in another language, e.g.,

nach Kanada	\leftrightarrow
in Canada	
zur Konferenz	\leftrightarrow
to the conference	
Morgen	\leftrightarrow
tomorrow	
fliege	\leftrightarrow
.. will fly	

An Example (from tutorial by Koehn and Knight)

- A training example (Spanish/English sentence pair):

Spanish: Maria no daba una bofetada a la bruja verde
English: Mary did not slap the green witch

- Some (not all) phrase pairs extracted from this example:
(Maria \leftrightarrow Mary), (bruja \leftrightarrow witch), (verde \leftrightarrow green),
(no \leftrightarrow did not), (no daba una bofetada \leftrightarrow did not slap), (daba una bofetada a la \leftrightarrow slap the)
- We'll see how to do this using alignments from the IBM models (e.g., from IBM model 2)

Representation as Alignment Matrix

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	\bullet								
did						\bullet			
not		\bullet							
slap			\bullet	\bullet	\bullet				
the							\bullet		
green									\bullet
witch								\bullet	

(Note: "bof"" = "bofetada")
In IBM model 2, each foreign (Spanish) word is aligned to exactly one English word. The matrix shows these alignments.

Recap: IBM Model 2

- IBM model 2 defines a distribution

$$
P(\mathbf{a}, \mathbf{f} \mid \mathbf{e})
$$

where f is foreign (French) sentence, e is an English sentence, \mathbf{a} is an alignment

- A useful by-product: once we've trained the model, for any (f, e) pair, we can calculate

$$
\mathbf{a}^{*}=\arg \max _{\mathbf{a}} P(\mathbf{a} \mid \mathbf{f}, \mathbf{e})=\arg \max _{\mathbf{a}} P(\mathbf{a}, \mathbf{f} \mid \mathbf{e})
$$

under the model. \mathbf{a}^{*} is the most likely alignment

Finding Alignment Matrices

- Step 1: train IBM model 2 for $P(\mathbf{f} \mid \mathbf{e})$, and come up with most likely alignment for each (\mathbf{e}, \mathbf{f}) pair
- Step 2: train IBM model 4 for $P(\mathbf{e} \mid \mathbf{f})$ and come up with most likely alignment for each (e,f) pair
- We now have two alignments:
take intersection of the two alignments as a starting point

Alignment from $P(\mathbf{f} \mid \mathbf{e})$ model:

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	\bullet								
did						\bullet			
not		\bullet							
slap			\bullet	\bullet	\bullet				
the							\bullet		
green									\bullet
witch								\bullet	

Alignment from $P(\mathbf{e} \mid \mathbf{f})$ model:

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	\bullet								
did		\bullet							
not		\bullet							
slap					\bullet				
the							\bullet		
green									\bullet
witch								\bullet	

The intersection of the two alignments has been found to be a very reliable starting point

Intersection of the two alignments:

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	\bullet								
did									
not		\bullet							
slap					\bullet				
the							\bullet		
green									\bullet
witch								\bullet	

Heuristics for Growing Alignments

- Only explore alignment in union of $P(f \mid e)$ and $P(e \mid f)$ alignments
- Add one alignment point at a time
- Only add alignment points which align a word that currently has no alignment
- At first, restrict ourselves to alignment points that are "neighbors" (adjacent or diagonal) of current alignment points
- Later, consider other alignment points

The final alignment, created by taking the intersection of the two alignments, then adding new points using the growing heuristics:

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	\bullet								
did		\bullet							
not		\bullet							
slap			\bullet	\bullet	\bullet				
the						\bullet	\bullet		
green									\bullet
witch								\bullet	

Note that the alignment is no longer many-to-one: potentially multiple Spanish words can be aligned to a single English word, and vice versa.

Extracting Phrase Pairs from the Alignment Matrix

	Maria	no	daba	una	bof $^{\prime}$	a	la	bruja	verde
Mary	\bullet								
did		\bullet							
not		\bullet							
slap			\bullet	\bullet	\bullet				
the						\bullet	\bullet		
green									\bullet
witch								\bullet	

- A phrase-pair consists of a sequence of English words, e, paired with a sequence of foreign words, f
- A phrase-pair (e, f) is consistent if there are no words in f aligned to words outside e, and there are no words in e aligned to words outside f e.g., (Mary did not, Maria no) is consistent. (Mary did, Maria no) is not consistent: "no" is aligned to "not", which is not in the string "Mary did"
- We extract all consistent phrase pairs from the training example. See Koehn, EACL 2006 tutorial, pages 103-108 for illustration.

An Example Phrase Translation Table

An example from Koehn, EACL 2006 tutorial. (Note that we have $P(e \mid f)$ not $P(f \mid e)$ in this example.)

- Phrase Translations for den Vorschlag

English	$P(\mathrm{e} \mid \mathrm{f})$	English	$P(\mathrm{e} \mid \mathrm{f})$
the proposal	0.6227	the suggestions	0.0114
's proposal	0.1068	the proposed	0.0114
a proposal	0.0341	the motion	0.0091
the idea	0.0250	the idea of	0.0091
this proposal	0.0227	the proposal,	0.0068
proposal	0.0205	its proposal	0.0068
of the proposal	0.0159	it	0.0068
the proposals	0.0159	\ldots	\ldots

Overview

- For any phrase pair (f, e) extracted from the training data, we can calculate

$$
P(f \mid e)=\frac{\operatorname{Count}(f, e)}{\operatorname{Count}(e)}
$$

e.g.,
$P($ daba una bofetada \mid slap $)=\frac{\operatorname{Count}(\text { daba una bofetada, slap })}{\operatorname{Count}(\text { slap })}$

- Learning phrases from alignments
- A phrase-based model
- Decoding in phrase-based models

Translate using a greedy, left-to-right decoding method

```
Today werden wir uber die Wiedereroffnung des Mont-Blanc-
    Tunnels diskutieren
```

 Score \(=\underbrace{\log P(\text { Today } \mid \text { START })}_{\text {Language model }}\)
    ```
    Score \(=\underbrace{\log P(\text { Today } \mid \text { START })}_{\text {Language model }}\)
\(+\underbrace{\log P \text { (Heute } \mid \text { Today })}\)
\(+\underbrace{\log P \text { (Heute } \mid \text { Today })}\)
                    Phrase model
                    Phrase model
\(+\underbrace{\log P(1-1 \mid 1-1)}\)
\(+\underbrace{\log P(1-1 \mid 1-1)}\)
                Distortion model
```

```
                Distortion model
```

```

\section*{Phrase-Based Systems: A Sketch}

Translate using a greedy, left-to-right decoding method Today we shall be
Heute werden wir uber die Wiedereroffnung des Mont-BlancTunnels diskutieren
\[
\text { Score }=\underbrace{\log P(\text { we shall be } \mid \text { today })}_{\text {Language model }}
\]
\(+\underbrace{\log P(\text { werden wir } \mid \text { we will be })}\)
Phrase model
\(+\underbrace{\log P(2-3 \mid 2-4)}\)
Distortion model

Translate using a greedy, left-to-right decoding method
Today we shall be debating
Heute werden wir uber die Wiedereroffnung des Mont-Blanc-Tunnels diskutieren

\section*{Phrase-Based Systems: A Sketch}

Translate using a greedy, left-to-right decoding method
Today we shall be debating the reopening
Heute werden wir uber die Wiedereroffnung des Mont-Blanc-
Tunnels diskutieren

\section*{Phrase-Based Systems: A Sketch}

Translate using a greedy, left-to-right decoding method
Today we shall be debating the reopening of the Mont Blanc tunnel Heute werden wir uber die Wiedereroffnung des Mont-Blanc-Tunnels diskutieren

\section*{Phrase-Based Systems: Formal Definitions}
- We then have
\[
\operatorname{Cost}(E, F)=P(E) \prod_{i=1}^{l} P\left(f_{i} \mid e_{i}\right) d\left(a_{i}-b_{i-1}\right)
\]
- \(P(E)\) is the language model score for the string defined by \(E\)
- \(P\left(f_{i} \mid e_{i}\right)\) is the phrase-table probability for the \(i\) 'th phrase pair
- \(d\left(a_{i}-b_{i-1}\right)\) is some probability/penalty for the distance between the \(i\) 'th phrase and the \((i-1)\) 'th phrase. Usually, we define
\[
d\left(a_{i}-b_{i-1}\right)=\alpha^{\left|a_{i}-b_{i-1}-1\right|}
\]
for some \(\alpha<1\).
- Note that this is not a coherent probability model

\section*{Phrase-Based Systems: Formal Definitions}
(following notation in Jurafsky and Martin, chapter 25)
- We'd like to translate a French string f
- \(E\) is a sequence of \(l\) English phrases, \(e_{1}, e_{2}, \ldots, e_{l}\). For example,
\(e_{1}=\) Mary,\(e_{2}=\operatorname{did}\) not, \(e_{3}=\operatorname{slap}, e_{4}=\) the,\(e_{5}=\) green witch
\(E\) defines a possible translation, in this case \(e_{1} e_{2} \ldots e_{5}=\) Mary did not slap the green witch.
- \(F\) is a sequence of \(l\) foreign phrases, \(f_{1}, f_{2}, \ldots, f_{l}\). For example,
\(f_{1}=\) Maria, \(f_{2}=\) no, \(f_{3}=\) dio una bofetada, \(f_{4}=\) a la, \(f_{5}=\) bruja verde
- \(a_{i}\) for \(i=1 \ldots l\) is the position of the first word of \(f_{i}\) in \(\mathbf{f} . b_{i}\) for \(i=1 \ldots l\) is the position of the last word of \(f_{i}\) in \(\mathbf{f}\).

\section*{An Example}
\begin{tabular}{l|lllll} 
Position & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) \\
\hline English & Mary & did not & slap & the & green witch \\
Spanish & Maria & no & dio una bofetada & a la & bruja verde
\end{tabular}

In this case,
```

$\operatorname{Cost}(E, F)=P_{L}($ Mary did not slap the green witch $) \times$
$P($ Maria \mid Mary $) \times d(1) \times P($ no \mid did not $) \times d(1) \times$
$P($ dio una bofetada \mid slap $) \times d(1) \times P($ a la \mid the $) \times d(1) \times$
$P($ bruja verde \mid green witch $) \times d(1)$

```
\(P_{L}\) is the score from a language model

\section*{Another Example}
\begin{tabular}{l|llllll} 
Position & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) \\
\hline English & Mary & did not & slap & the & green & witch \\
Spanish & Maria & no & dio una bofetada & a la & verde & bruje
\end{tabular}

The original Spanish string was Maria no dio una bofetada a la bruje verde, so notice that the last two phrase pairs involve reordering

In this case,
\(\operatorname{Cost}(E, F)=P_{L}(\) Mary did not slap the green witch \() \times\) \(P(\) Maria \(\mid\) Mary \() \times d(1) \times P(\) no \(\mid\) did not \() \times d(1) \times\) \(P(\) dio una bofetada|slap \() \times d(1) \times P(\) a la \(\mid\) the \() \times d(1) \times\) \(P(\) verde \(\mid\) green \() \times d(2) \times P(\) bruja \(\mid\) witch \() \times d(1)\)

\section*{The Decoding Problem}
- For a given foreign string \(\mathbf{f}\), the decoding problem is to find
\[
\arg \max _{(E, F)} \operatorname{Cost}(E, F)
\]
where the \(\arg \max\) is over all \((E, F)\) pairs that are consistent with \(f\)
- See Koehn tutorial, EACL 2006, slides 29-57
- See Jurafsky and Martin, Chapter 25, Figure 25.30
- See Jurafsky and Martin, Chapter 25, section 25.8```

