	Overview				
	• Learning phrases from alignments				
6.864 (Fall 2007)	• A phrase-based model				
Machine Translation Part III	• Decoding in phrase-based models				
	(Thanks to Philipp Koehn for giving me the slides from his EACL 2006 tutorial)				
1	3				
Roadmap for the Next Few Lectures	Phrase-Based Models				
• Lecture 1 (last time): IBM Models 1 and 2	• First stage in training a phrase-based model is extraction of a <i>phrase-based (PB) lexicon</i>				
• Lecture 2 (today): <i>phrase-based</i> models	• A DB levicen pairs strings in one language with strings in				
• Lecture 3: Syntax in statistical machine translation	• A PB textcon pairs strings in one language with strings in another language, e.g.,				
	nach Kanada \leftrightarrow in Canadazur Konferenz \leftrightarrow to the conferenceMorgen \leftrightarrow tomorrowfliege \leftrightarrow will fly				

An Example (from tutorial by Koehn and Knight)

• A training example (Spanish/English sentence pair):

Spanish: Maria no daba una bofetada a la bruja verde

English: Mary did not slap the green witch

• Some (not all) phrase pairs extracted from this example:

(Maria \leftrightarrow Mary), (bruja \leftrightarrow witch), (verde \leftrightarrow green), (no \leftrightarrow did not), (no daba una bofetada \leftrightarrow did not slap), (daba una bofetada a la \leftrightarrow slap the)

• We'll see how to do this using *alignments* from the IBM models (e.g., from IBM model 2)

Representation as Alignment Matrix

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	•								
did						•			
not		•							
slap			•	•	•				
the							•		
green									•
witch								•	

(Note: "bof" = "bofetada")

In IBM model 2, each foreign (Spanish) word is aligned to exactly one English word. The matrix shows these alignments.

7

Recap: IBM Model 2

5

• IBM model 2 defines a distribution

 $P(\mathbf{a}, \mathbf{f} | \mathbf{e})$

where f is foreign (French) sentence, e is an English sentence, a is an *alignment*

 \bullet A useful by-product: once we've trained the model, for any $({\bf f}, {\bf e})$ pair, we can calculate

 $\mathbf{a}^* = \arg \max_{\mathbf{a}} P(\mathbf{a} | \mathbf{f}, \mathbf{e}) = \arg \max_{\mathbf{a}} P(\mathbf{a}, \mathbf{f} | \mathbf{e})$

under the model. \mathbf{a}^* is the **most likely alignment**

Finding Alignment Matrices

- Step 1: train IBM model 2 for $P(\mathbf{f} \mid \mathbf{e})$, and come up with most likely alignment for each (\mathbf{e}, \mathbf{f}) pair
- Step 2: train IBM model 4 for $P(\mathbf{e} \mid \mathbf{f})$ and come up with most likely alignment for each (\mathbf{e}, \mathbf{f}) pair
- We now have two alignments: take intersection of the two alignments as a starting point

Alignment from $P(\mathbf{f} \mid \mathbf{e})$ model:

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	•								
did						•			
not		•							
slap			•	•	•				
the							•		
green									•
witch								•	

Alignment from $P(\mathbf{e} \mid \mathbf{f})$ model:

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	•								
did		•							
not		•							
slap					•				
the							•		
green									•
witch								•	

9

Intersection of the two alignments:

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	•								
did									
not		•							
slap					•				
the							•		
green									•
witch								•	

The intersection of the two alignments has been found to be a very reliable starting point

Heuristics for Growing Alignments

- Only explore alignment in **union** of $P(f \mid e)$ and $P(e \mid f)$ alignments
- Add one alignment point at a time
- Only add alignment points which align a word that currently has no alignment
- At first, restrict ourselves to alignment points that are "neighbors" (adjacent or diagonal) of current alignment points
- Later, consider other alignment points

11

The final alignment, created by taking the intersection of the two alignments, then adding new points using the growing heuristics:

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	•								
did		•							
not		•							
slap			•	•	•				
the						•	•		
green									•
witch								•	

Note that the alignment is no longer many-to-one: potentially multiple Spanish words can be aligned to a single English word, and vice versa.

Extracting Phrase Pairs from the Alignment Matrix

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	•								
did		•							
not		•							
slap			•	•	•				
the						•	•		
green									•
witch								•	

- A phrase-pair consists of a sequence of English words, e, paired with a sequence of foreign words, f
- A phrase-pair (e, f) is *consistent* if there are no words in f aligned to words outside e, and there are no words in e aligned to words outside f e.g., (Mary did not, Maria no) is consistent. (Mary did, Maria no) is not consistent: "ho" is aligned to "hot", which is not in the string "Mary did"
- We extract all consistent phrase pairs from the training example. See Koehn, EACL 2006 tutorial, **pages 103-108** for illustration.

13

Probabilities for Phrase Pairs

• For any phrase pair (f, e) extracted from the training data, we can calculate

$$P(f|e) = \frac{Count(f,e)}{Count(e)}$$

e.g.,

 $P(\text{daba una bofetada} \mid \text{slap}) = \frac{Count(\text{daba una bofetada}, \text{slap})}{Count(\text{slap})}$

An Example Phrase Translation Table

An example from Koehn, EACL 2006 tutorial. (Note that we have $P(e|f) \mbox{ not } P(f|e)$ in this example.)

• Phrase Translations for den Vorschlag

English	$P(\mathbf{e} \mathbf{f})$	English	$P(\mathbf{e} \mathbf{f})$
the proposal	0.6227	the suggestions	0.0114
's proposal	0.1068	the proposed	0.0114
a proposal	0.0341	the motion	0.0091
the idea	0.0250	the idea of	0.0091
this proposal	0.0227	the proposal,	0.0068
proposal	0.0205	its proposal	0.0068
of the proposal	0.0159	it	0.0068
the proposals	0.0159		

15

Overview

- Learning phrases from alignments
- A phrase-based model
- Decoding in phrase-based models

Phrase-Based Systems: A Sketch	Phrase-Based Systems: A Sketch
Translate using a greedy, left-to-right decoding method Today Heute werden wir uber die Wiedereroffnung des Mont-Blanc- Tunnels diskutieren Score = $\log P(\text{Today} \text{START})$ Language model + $\log P(\text{Heute} \text{Today})$	Translate using a greedy, left-to-right decoding method Today we shall be debating Heute werden wir uber die Wiedereroffnung des Mont-Blanc-Tunnels diskutieren
Phrase model + $\log P(1-1 1-1)$ Distortion model 17	19
Phrase-Based Systems: A Sketch	Phrase-Based Systems: A Sketch
Translate using a greedy, left-to-right decoding method Today we shall be Heute werden wir uber die Wiedereroffnung des Mont-Blanc- Tunnels diskutieren Score = $\log P(\text{we shall be } \text{ today})$ Language model + $\log P(\text{werden wir } \text{ we will be})$ Phrase model + $\log P(2-3 2-4)$	Translate using a greedy, left-to-right decoding method Today we shall be debating the reopening Heute werden wir uber die Wiedereroffnung des Mont-Blanc- Tunnels diskutieren

Phrase-Based Systems: A Sketch

Translate using a greedy, left-to-right decoding method Today we shall be debating the reopening of the Mont Blanc tunnel Heute werden wir uber die Wiedereroffnung des Mont-Blanc-Tunnels diskutieren

Phrase-Based Systems: Formal Definitions

• We then have

$$Cost(E, F) = P(E) \prod_{i=1}^{l} P(f_i | e_i) d(a_i - b_{i-1})$$

- P(E) is the language model score for the string defined by E
- $P(f_i|e_i)$ is the phrase-table probability for the *i*'th phrase pair
- $d(a_i b_{i-1})$ is some probability/penalty for the distance between the *i*'th phrase and the (i 1)'th phrase. Usually, we define

$$d(a_i - b_{i-1}) = \alpha^{|a_i - b_{i-1} - 1|}$$

for some $\alpha < 1$.

• Note that this is *not* a coherent probability model

23

An Example

Position	1	2	3	4	5
English	Mary	did not	slap	the	green witch
Spanish	Maria	no	dio una bofetada	a la	bruja verde

In this case,

$$Cost(E, F) = P_L(\text{Mary did not slap the green witch}) \times P(\text{Maria}|\text{Mary}) \times d(1) \times P(\text{no}|\text{did not}) \times d(1) \times P(\text{dio una bofetada}|\text{slap}) \times d(1) \times P(\text{a la}|\text{the}) \times d(1) \times P(\text{bruja verde}|\text{green witch}) \times d(1)$$

 P_L is the score from a language model

Phrase-Based Systems: Formal Definitions

21

(following notation in Jurafsky and Martin, chapter 25)

- We'd like to translate a French string **f**
- E is a sequence of l English phrases, e_1, e_2, \ldots, e_l . For example,
 - $e_1 = Mary, e_2 = did not, e_3 = slap, e_4 = the, e_5 = green witch$

E defines a possible translation, in this case $e_1e_2 \dots e_5 = Mary$ *did not slap the green witch*.

• F is a sequence of l foreign phrases, f_1, f_2, \ldots, f_l . For example,

 $f_1 = \operatorname{Maria}, f_2 = \operatorname{no}, f_3 = \operatorname{dio}$ una bofetada, $f_4 = \operatorname{a}$ la, $f_5 = \operatorname{bruja}$ verde

• a_i for $i = 1 \dots l$ is the position of the first word of f_i in **f**. b_i for $i = 1 \dots l$ is the position of the last word of f_i in **f**.

Another Example

Position	1	2	3	4	5	6
English	Mary	did not	slap	the	green	witch
Spanish	Maria	no	dio una bofetada	a la	verde	bruje

The original Spanish string was *Maria no dio una bofetada a la bruje verde*, so notice that the last two phrase pairs involve reordering

In this case,

 $\begin{array}{lll} Cost(E,F) &=& P_L(\text{Mary did not slap the green witch}) \times \\ && P(\text{Maria}|\text{Mary}) \times d(1) \times P(\text{no}|\text{did not}) \times d(1) \times \\ && P(\text{dio una bofetada}|\text{slap}) \times d(1) \times P(\text{a la}|\text{the}) \times d(1) \times \\ && P(\text{verde}|\text{green}) \times d(2) \times P(\text{bruja}|\text{witch}) \times d(1) \end{array}$

The Decoding Problem

• For a given foreign string **f**, the decoding problem is to find

 $\arg\max_{(E,F)}Cost(E,F)$

where the $\arg\max$ is over all (E,F) pairs that are consistent with ${\bf f}$

- See Koehn tutorial, EACL 2006, slides 29–57
- See Jurafsky and Martin, Chapter 25, Figure 25.30
- See Jurafsky and Martin, Chapter 25, section 25.8

27

Overview

25

- Learning phrases from alignments
- A phrase-based model
- Decoding in phrase-based models