6.864 (Fall 2007): Lecture 6

Log-Linear Models

Michael Collins, MIT

Trigram Models

• Estimate a distribution $P(w_i|w_1, w_2, \dots, w_{i-1})$ given previous "history" $w_1, \dots, w_{i-1} =$

Third, the notion "grammatical in English" cannot be identified in any way with the notion 'high order of statistical approximation to English". It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in an English discourse. Hence, in any statistical

• Trigram estimates:

 $\begin{array}{ll} P(\mathsf{model}|w_1, \dots w_{i-1}) &=& \lambda_1 P_{ML}(\mathsf{model}|w_{i-2} = \mathsf{any}, w_{i-1} = \mathsf{statistical}) + \\ && \lambda_2 P_{ML}(\mathsf{model}|w_{i-1} = \mathsf{statistical}) + \\ && \lambda_3 P_{ML}(\mathsf{model}) \end{array}$

where $\lambda_i \ge 0$, $\sum_i \lambda_i = 1$, $P_{ML}(y|x) = \frac{Count(x,y)}{Count(x)}$

3

The Language Modeling Problem

1

- w_i is the *i*'th word in a document
- Estimate a distribution $P(w_i|w_1, w_2, \dots, w_{i-1})$ given previous "history" w_1, \dots, w_{i-1} .
- E.g., $w_1, \ldots, w_{i-1} =$

Third, the notion "grammatical in English" cannot be identified in any way with the notion "high order of statistical approximation to English". It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in an English discourse. Hence, in any statistical

Trigram Models

 $P(\text{model}|w_1, \dots w_{i-1}) = \lambda_1 P_{ML}(\text{model}|w_{i-2} = \text{any}, w_{i-1} = \text{statistical}) + \lambda_2 P_{ML}(\text{model}|w_{i-1} = \text{statistical}) + \lambda_3 P_{ML}(\text{model})$

- Makes use of only bigram, trigram, unigram estimates
- Many other "features" of w_1, \ldots, w_{i-1} may be useful, e.g.,:

$P_{ML}(model \mid$	$w_{i-2} = any)$
$P_{ML}(model \mid$	w_{i-1} is an adjective)
$P_{ML}(model \mid$	w_{i-1} ends in "ical")
$P_{ML}(model \mid$	author = Chomsky)
$P_{ML}(model \mid$	"model" does not occur somewhere in $w_1, \ldots w_{i-1}$)
$P_{ML}(model \mid$	"grammatical" occurs somewhere in $w_1, \ldots w_{i-1}$)

A Naive Approach

$$\begin{split} P(\text{model}|w_1,\ldots w_{i-1}) &= \\ \lambda_1 P_{ML}(\text{model}|w_{i-2} = \text{any}, w_{i-1} = \text{statistical}) + \\ \lambda_2 P_{ML}(\text{model}|w_{i-1} = \text{statistical}) + \\ \lambda_3 P_{ML}(\text{model}) + \\ \lambda_4 P_{ML}(\text{model}|w_{i-2} = \text{any}) + \\ \lambda_5 P_{ML}(\text{model}|w_{i-1} \text{ is an adjective}) + \\ \lambda_6 P_{ML}(\text{model}|w_{i-1} \text{ ends in "ical"}) + \\ \lambda_7 P_{ML}(\text{model}|author = \text{Chomsky}) + \\ \lambda_8 P_{ML}(\text{model}|\text{"model" does not occur somewhere in } w_1, \ldots w_{i-1}) + \\ \lambda_9 P_{ML}(\text{model}|\text{"grammatical" occurs somewhere in } w_1, \ldots w_{i-1}) \end{split}$$

This quickly becomes very unwieldy...

5

A Second Example: Part-of-Speech Tagging

INPUT:

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.

N = Noun V = Verb P = Preposition Adv = Adverb Adj = Adjective

A Second Example: Part-of-Speech Tagging

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/?? from which Spain expanded its empire into the rest of the Western Hemisphere .

• There are many possible tags in the position ?? {NN, NNS, Vt, Vi, IN, DT, ...}

• The task: model the distribution

$$P(t_i|t_1,\ldots,t_{i-1},w_1\ldots,w_n)$$

where t_i is the *i*'th tag in the sequence, w_i is the *i*'th word

7

A Second Example: Part-of-Speech Tagging

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/?? from which Spain expanded its empire into the rest of the Western Hemisphere .

• The task: model the distribution

 $P(t_i|t_1,\ldots,t_{i-1},w_1\ldots,w_n)$

where t_i is the *i*'th tag in the sequence, w_i is the *i*'th word

• Again: many "features" of $t_1, \ldots, t_{i-1}, w_1 \ldots w_n$ may be relevant

$$\begin{array}{lcl} P_{ML}(\mathbf{NN} & \mid & w_i = \mathrm{base}) \\ P_{ML}(\mathbf{NN} & \mid & t_{i-1} \mathrm{~is~JJ}) \\ P_{ML}(\mathbf{NN} & \mid & w_i \mathrm{~ends~in~"e"}) \\ P_{ML}(\mathbf{NN} & \mid & w_i \mathrm{~ends~in~"se"}) \\ P_{ML}(\mathbf{NN} & \mid & w_{i-1} \mathrm{~is~"important"}) \\ P_{ML}(\mathbf{NN} & \mid & w_{i+1} \mathrm{~is~"from"}) \end{array}$$

Overview Language Modeling • x is a "history" $w_1, w_2, \ldots, w_{i-1}$, e.g., • Log-linear models Third, the notion 'grammatical in English' cannot be identified in any way with the notion 'high order of statistical approximation to English''. It • The maximum-entropy property is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in an English discourse. Hence, in any • Smoothing, feature selection etc. in log-linear models statistical • y is an "outcome" w_i 9 11 **The General Problem Feature Vector Representations** • We have some input domain \mathcal{X} • Aim is to provide a conditional probability $P(y \mid$ x) for "decision" y given "history" x• Have a finite label set \mathcal{Y} • A feature is a function $f(x, y) \in \mathbb{R}$ (Often binary features or indicator functions $f(x, y) \in \{0, 1\}$). • Aim is to provide a conditional probability $P(y \mid x)$ for any x, y where $x \in \mathcal{X}, y \in \mathcal{Y}$ • Say we have m features f_k for $k = 1 \dots m$ \Rightarrow A feature vector $\mathbf{f}(x, y) \in \mathbb{R}^m$ for any x, y

Language Modeling

• x is a "history" w_1, w_2, \dots, w_{i-1} , e.g.,

Third, the notion "grammatical in English" cannot be identified in any way with the notion "high order of statistical approximation to English". It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in an English discourse. Hence, in any statistical

• y is an "outcome" w_i

$$f_7(x,y) = \begin{cases} 1 & \text{if } y = \text{model, author} = \text{Chomsky} \\ 0 & \text{otherwise} \end{cases}$$

$$f_8(x,y) = \begin{cases} 1 & \text{if } y = \text{model, "model" is not in } w_1, \dots, w_{i-1} \\ 0 & \text{otherwise} \end{cases}$$

$$f_9(x,y) = \begin{cases} 1 & \text{if } y = \text{model, "grammatical" is in } w_1, \dots, w_{i-1} \\ 0 & \text{otherwise} \end{cases}$$

15

Defining Features in Practice

• We had the following "trigram" feature:

$$f_3(x,y) = \begin{cases} 1 & \text{if } y = \text{model}, w_{i-2} = \text{any}, w_{i-1} = \text{statistical} \\ 0 & \text{otherwise} \end{cases}$$

• In practice, we would probably introduce one trigram feature for every trigram seen in the training data: i.e., for all trigrams (u, v, w) seen in training data, create a feature

$$f_{N(u,v,w)}(x,y) = \begin{cases} 1 & \text{if } y = w, w_{i-2} = u, w_{i-1} = v \\ 0 & \text{otherwise} \end{cases}$$

where N(u,v,w) is a function that maps each (u,v,w) trigram to a different integer

• Example features:

13

The POS-Tagging Example

- Each x is a "history" of the form $\langle t_1, t_2, \ldots, t_{i-1}, w_1 \ldots w_n, i \rangle$
- Each y is a POS tag, such as $NN, NNS, Vt, Vi, IN, DT, \dots$
- We have m features $f_k(x, y)$ for $k = 1 \dots m$

For example:

$f_1(x, y) = \cdot$	$ \left\{\begin{array}{c} 1\\ 0 \end{array}\right. $	if current word w_i is base and $y = Vt$ otherwise
$f_2(x, y) = \cdots$	$ \left\{\begin{array}{c} 1\\ 0 \end{array}\right. $	if current word w_i ends in ing and $y = VBG$ otherwise

17

The Full Set of Features in [Ratnaparkhi 96]

• Word/tag features for all word/tag pairs, e.g.,

 $f_{100}(x,y) = \begin{cases} 1 & \text{if current word } w_i \text{ is base and } y = \text{Vt} \\ 0 & \text{otherwise} \end{cases}$

• Spelling features for all prefixes/suffixes of length \leq 4, e.g.,

$f_{101}(x,y)$	=	$\left\{\begin{array}{c}1\\0\end{array}\right.$	if current word w_i ends in ing and $y = VBG$ otherwise
$f_{102}(h,t)$	=	$\left\{\begin{array}{c}1\\0\end{array}\right.$	if current word w_i starts with pre and $y = NN$ otherwise

The Full Set of Features in [Ratnaparkhi 96]

• Contextual Features, e.g.,

$$f_{103}(x, y) = \begin{cases} 1 & \text{if } \langle t_{i-2}, t_{i-1}, y \rangle = \langle \text{DT, JJ, Vt} \rangle \\ 0 & \text{otherwise} \end{cases}$$

$$f_{104}(x, y) = \begin{cases} 1 & \text{if } \langle t_{i-1}, y \rangle = \langle \text{JJ, Vt} \rangle \\ 0 & \text{otherwise} \end{cases}$$

$$f_{105}(x, y) = \begin{cases} 1 & \text{if } \langle y \rangle = \langle \text{Vt} \rangle \\ 0 & \text{otherwise} \end{cases}$$

$$f_{106}(x, y) = \begin{cases} 1 & \text{if previous word } w_{i-1} = the \text{ and } y = \text{Vt} \\ 0 & \text{otherwise} \end{cases}$$

$$f_{107}(x, y) = \begin{cases} 1 & \text{if next word } w_{i+1} = the \text{ and } y = \text{Vt} \\ 0 & \text{otherwise} \end{cases}$$

19

The Final Result

- We can come up with practically any questions (*features*) regarding history/tag pairs.
- For a given history $x \in \mathcal{X}$, each label in \mathcal{Y} is mapped to a different feature vector

$\mathbf{f}(\langle JJ, DT, \langle Hispaniola, \dots \rangle, 6 \rangle, \mathbf{Vt})$	=	1001011001001100110
$\mathbf{f}(\langle \mathbf{JJ}, \mathbf{DT}, \langle \text{ Hispaniola}, \dots \rangle, 6 \rangle, \mathbf{JJ})$	=	0110010101011110010
$\mathbf{f}(\langle JJ, DT, \langle Hispaniola, \dots \rangle, 6 \rangle, NN)$	=	0001111101001100100
$\mathbf{f}(\langle JJ, DT, \langle Hispaniola, \dots \rangle, 6 \rangle, IN)$	=	0001011011000000010

. . .

Parameter Vectors

- Given features f_k(x, y) for k = 1...m, also define a parameter vector v ∈ ℝ^m
- Each (x, y) pair is then mapped to a "score"

$$\mathbf{v} \cdot \mathbf{f}(x, y) = \sum_{k} v_k f_k(x, y)$$

Log-Linear Models

- We have some input domain X, and a finite label set Y. Aim is to provide a conditional probability P(y | x) for any x ∈ X and y ∈ Y.
- A feature is a function f : X × Y → ℝ
 (Often binary features or indicator functions f : X × Y → {0,1}).
- Say we have m features fk for k = 1...m
 ⇒ A feature vector f(x, y) ∈ ℝ^m for any x ∈ X and y ∈ Y.

23

• We also have a **parameter vector** $\mathbf{v} \in \mathbb{R}^m$

21

Language Modeling

• x is a "history" $w_1, w_2, \ldots, w_{i-1}$, e.g.,

Third, the notion "grammatical in English" cannot be identified in any way with the notion "high order of statistical approximation to English". It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in an English discourse. Hence, in any statistical

• Each possible y gets a different score:

$$\begin{aligned} \mathbf{v} \cdot \mathbf{f}(x, model) &= 5.6 & \mathbf{v} \cdot \mathbf{f}(x, the) &= -3.2 \\ \mathbf{v} \cdot \mathbf{f}(x, is) &= 1.5 & \mathbf{v} \cdot \mathbf{f}(x, of) &= 1.3 \\ \mathbf{v} \cdot \mathbf{f}(x, models) &= 4.5 & \dots \end{aligned}$$

• We define

$$P(y \mid x, \mathbf{v}) = \frac{e^{\mathbf{v} \cdot \mathbf{f}(x, y)}}{\sum_{y' \in \mathcal{Y}} e^{\mathbf{v} \cdot \mathbf{f}(x, y')}}$$

More About Log-Linear Models

• Why the name?

$$\log P(y \mid x, \mathbf{v}) = \underbrace{\mathbf{v} \cdot \mathbf{f}(x, y)}_{\text{Linear term}} - \underbrace{\log \sum_{y' \in \mathcal{Y}} e^{\mathbf{v} \cdot \mathbf{f}(x, y')}}_{\text{Normalization term}}$$

• Maximum-likelihood estimates given training sample (x_i, y_i) for $i = 1 \dots n$, each $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$:

$$\mathbf{v}_{ML} = \operatorname{argmax}_{\mathbf{v} \in \mathbb{R}^m} L(\mathbf{v})$$

where

$$L(\mathbf{v}) = \sum_{i=1}^{n} \log P(y_i \mid x_i)$$

=
$$\sum_{i=1}^{n} \mathbf{v} \cdot \mathbf{f}(x_i, y_i) - \sum_{i=1}^{n} \log \sum_{y' \in \mathcal{Y}} e^{\mathbf{v} \cdot \mathbf{f}(x_i, y')}$$

25

Calculating the Maximum-Likelihood Estimates

• Need to maximize:

$$L(\mathbf{v}) = \sum_{i=1}^{n} \mathbf{v} \cdot \mathbf{f}(x_i, y_i) - \sum_{i=1}^{n} \log \sum_{y' \in \mathcal{Y}} e^{\mathbf{v} \cdot \mathbf{f}(x_i, y')}$$

• Calculating gradients:

$$\frac{dL(\mathbf{v})}{d\mathbf{v}} = \sum_{i=1}^{n} \mathbf{f}(x_i, y_i) - \sum_{i=1}^{n} \frac{\sum_{y' \in \mathcal{Y}} \mathbf{f}(x_i, y') e^{\mathbf{v} \cdot \mathbf{f}(x_i, y')}}{\sum_{z' \in \mathcal{Y}} e^{\mathbf{v} \cdot \mathbf{f}(x_i, z')}}$$
$$= \sum_{i=1}^{n} \mathbf{f}(x_i, y_i) - \sum_{i=1}^{n} \sum_{y' \in \mathcal{Y}} \mathbf{f}(x_i, y') \frac{e^{\mathbf{v} \cdot \mathbf{f}(x_i, y')}}{\sum_{z' \in \mathcal{Y}} e^{\mathbf{v} \cdot \mathbf{f}(x_i, z')}}$$
$$= \sum_{i=1}^{n} \mathbf{f}(x_i, y_i) - \sum_{i=1}^{n} \sum_{y' \in \mathcal{Y}} \mathbf{f}(x_i, y') P(y' \mid x_i, \mathbf{v})$$
Empirical counts Expected counts

Gradient Ascent Methods

• Need to maximize $L(\mathbf{v})$ where

$$\frac{dL(\mathbf{v})}{d\mathbf{v}} = \sum_{i=1}^{n} \mathbf{f}(x_i, y_i) - \sum_{i=1}^{n} \sum_{y' \in \mathcal{Y}} \mathbf{f}(x_i, y') P(y' \mid x_i, \mathbf{v})$$

Initialization: $\mathbf{v} = 0$

Iterate until convergence:

- Calculate $\Delta = \frac{dL(\mathbf{v})}{d\mathbf{v}}$
- Calculate $\beta_* = \operatorname{argmax}_{\beta} L(\mathbf{v} + \beta \Delta)$ (Line Search)
- Set $\mathbf{v} \leftarrow \mathbf{v} + \beta_* \Delta$

27

Conjugate Gradient Methods

- (Vanilla) gradient ascent can be very slow
- Conjugate gradient methods require calculation of gradient at each iteration, but do a line search in a direction which is a function of the current gradient, and the previous step taken.
- Conjugate gradient packages are widely available In general: they require a function

$$calc_gradient(\mathbf{v}) \rightarrow \left(L(\mathbf{v}), \frac{dL(\mathbf{v})}{d\mathbf{v}}\right)$$

and that's about it!

Overview

- Log-linear models
- The maximum-entropy property
- Smoothing, feature selection etc. in log-linear models

Maximum-Entropy Properties of Log-Linear Models

• The entropy of any distribution is:

$$H(p) = -\left(\frac{1}{n}\sum_{i}\sum_{y\in\mathcal{Y}}p(y\mid x_i)\log p(y\mid x_i)\right)$$

- Entropy is a measure of "smoothness" of a distribution
- In this case, entropy is maximized by uniform distribution,

$$p(y \mid x_i) = \frac{1}{|\mathcal{Y}|} \text{ for all } y, x_i$$

31

Maximum-Entropy Properties of Log-Linear Models

29

• We define the set of distributions which satisfy linear constraints implied by the data:

$$\mathcal{P} = \{p : \underbrace{\sum_{i} \mathbf{f}(x_i, y_i)}_{\text{Empirical counts}} = \underbrace{\sum_{i} \sum_{y \in \mathcal{Y}} p(y \mid x_i) \mathbf{f}(x_i, y)}_{\text{Expected counts}} \}$$

```
here, p is an n \times |\mathcal{Y}| vector defining P(y \mid x_i) for all i, y.
```

• Note that at least one distribution satisfies these constraints, i.e.,

$$p(y \mid x_i) = \begin{cases} 1 & \text{if } y = y_i \\ 0 & \text{otherwise} \end{cases}$$

The Maximum-Entropy Solution

• The maximum entropy model is

 $p_* = \operatorname{argmax}_{p \in \mathcal{P}} H(p)$

- Intuition: find a distribution which
 - 1. satisfies the constraints
 - 2. is as smooth as possible

Maximum-Entropy Properties of Log-Linear Models	Overview		
 Consider the distribution P(y x, v*) defined by the maximum-likelhood estimates v* = arg max L(v) Then P(y x, v*) is the maximum-entropy distribution 	 Log-linear models The maximum-entropy property Smoothing, feature selection etc. in log-linear models 		
33 Is the Maximum-Entropy Property Useful?	35 Smoothing in Maximum Entropy Models		
 Intuition: find a distribution which satisfies the constraints is as smooth as possible One problem: the constraints are define by <i>empirical counts</i> from the data. Another problem: no formal relationship between maximumentropy property and generalization(?) (at least none is given in the NLP literature) 	• Say we have a feature: $f_{100}(h,t) = \begin{cases} 1 & \text{if current word } w_i \text{ is base and } t = \forall t \\ 0 & \text{otherwise} \end{cases}$ • In training data, base is seen 3 times, with $\forall t$ every time • Maximum likelihood solution satisfies $\sum_i f_{100}(x_i, y_i) = \sum_i \sum_y p(y \mid x_i, \mathbf{v}) f_{100}(x_i, y)$ $\Rightarrow p(\forall t \mid x_i, \mathbf{v}) = 1 \text{ for any history } x_i \text{ where } w_i = \text{base}$ $\Rightarrow \mathbf{v}_{100} \to \infty \text{ at maximum-likelihood solution (most likely)}$ $\Rightarrow p(\forall t \mid x, \mathbf{v}) = 1 \text{ for any test data history } x \text{ where } w = \text{base}$		

A Simple Approach: Count Cut-Offs

• [Ratnaparkhi 1998] (PhD thesis): include all features that occur 5 times or more in training data. i.e.,

$$\sum_{i} f_k(x_i, y_i) \ge 5$$

for all features f_k .

The Bayesian Justification for Gaussian Priors

• In *Bayesian* methods, combine the log-likelihood $P(data | \mathbf{v})$ with a prior over parameters, $P(\mathbf{v})$

$$P(\mathbf{v} \mid data) = \frac{P(data \mid \mathbf{v})P(\mathbf{v})}{\int_{\mathbf{v}} P(data \mid \mathbf{v})P(\mathbf{v})d\mathbf{v}}$$

• The MAP (Maximum A-Posteriori) estimates are

$$\mathbf{v}_{MAP} = \operatorname{argmax}_{\mathbf{v}} P(\mathbf{v} \mid data)$$
$$= \operatorname{argmax}_{\mathbf{v}} \left(\underbrace{\log P(data \mid \mathbf{v})}_{\text{Log-Likelihood}} + \underbrace{\log P(\mathbf{v})}_{\text{Prior}} \right)$$

• Gaussian prior:
$$P(\mathbf{v}) \propto e^{-\sum_k v_k^2/2\sigma^2}$$

 $\Rightarrow \log P(\mathbf{v}) = -\sum_k v_k^2/2\sigma^2 + C$

39

Gaussian Priors

37

• Modified loss function

$$L(\mathbf{v}) = \sum_{i=1}^{n} \mathbf{v} \cdot \mathbf{f}(x_i, y_i) - \sum_{i=1}^{n} \log \sum_{y' \in \mathcal{Y}} e^{\mathbf{v} \cdot \mathbf{f}(x_i, y')} - \sum_{k=1}^{m} \frac{v_k^2}{2\sigma^2}$$

• Calculating gradients:

$$\frac{dL(\mathbf{v})}{d\mathbf{v}} = \sum_{\substack{i=1\\\text{Empirical counts}}}^{n} - \sum_{\substack{i=1\\y'\in\mathcal{Y}}}^{n} \mathbf{f}(x_i, y') P(y' \mid x_i, \mathbf{v}) - \frac{1}{\sigma^2} \mathbf{v}$$

- Can run conjugate gradient methods as before
- Adds a penalty for large weights

Experiments with Gaussian Priors

- [Chen and Rosenfeld, 1998]: apply maximum entropy models to language modeling: Estimate $P(w_i | w_{i-2}, w_{i-1})$
- Unigram, bigram, trigram features, e.g.,

$$f_1(w_{i-2}, w_{i-1}, w_i) = \begin{cases} 1 & \text{if trigram is (the, dog, laughs)} \\ 0 & \text{otherwise} \end{cases}$$

$$f_2(w_{i-2}, w_{i-1}, w_i) = \begin{cases} 1 & \text{if bigram is (dog, laughs)} \\ 0 & \text{otherwise} \end{cases}$$

$$f_3(w_{i-2}, w_{i-1}, w_i) = \begin{cases} 1 & \text{if unigram is (laughs)} \\ 0 & \text{otherwise} \end{cases}$$

$$P(w_i \mid w_{i-2}, w_{i-1}) = \frac{e^{\mathbf{f}(w_{i-2}, w_{i-1}, w_i) \cdot \mathbf{v}}}{\sum_{w} e^{\mathbf{f}(w_{i-2}, w_{i-1}, w) \cdot \mathbf{v}}}$$

Experiments with Gaussian Priors

• In regular (unsmoothed) maxent, if all n-gram features are included, then it's equivalent to maximum-likelihood estimates!

$$P(w_i \mid w_{i-2}, w_{i-1}) = \frac{Count(w_{i-2}, w_{i-1}, w_i)}{Count(w_{i-2}, w_{i-1})}$$

- [Chen and Rosenfeld, 1998]: with gaussian priors, get very good results. Performs as well as or better than standardly used "discounting methods" (see lecture 2).
- Note: their method uses development set to optimize σ parameters
- Downside: computing $\sum_{w} e^{\mathbf{f}(w_{i-2}, w_{i-1}, w) \cdot \mathbf{v}}$ is **SLOW**.

Figures from [Ratnaparkhi 1998] (PhD thesis)

- The task: PP attachment ambiguity
- **ME Default:** Count cut-off of 5
- **ME Tuned:** Count cut-offs vary for 4-tuples, 3-tuples, 2-tuples, unigram features
- ME IFS: feature selection method

43

Experiment	Accuracy	Training Time	# of Features
ME Default	82.0%	$10 \min$	4028
ME Tuned	83.7%	$10 \min$	83875
ME IFS	80.5%	30 hours	387
DT Default	72.2%	$1 \min$	
DT Tuned	80.4%	$10 \min$	
DT Binary	-	1 week +	
Baseline	70.4%		

Table 8.2: Maximum Entropy (ME) and Decision Tree (DT) Experiments on PP attachment

41

Feature Selection Methods

- Goal: find *a small number of features* which make good progress in optimizing log-likelihood
- A greedy method:
- Step 1 Throughout the algorithm, maintain a set of active features. Initialize this set to be empty.
- Step 2 Choose a feature from outside of the set of active features which has largest estimated impact in terms of increasing the log-likelihood and add this to the active feature set.
- **Step 3** Minimize $L(\mathbf{v})$ with respect to the set of active features. Return to **Step 2**.

Figures from [Ratnaparkhi 1998] (PhD thesis)

• A second task: text classification, identifying articles about acquisitions

Summary

- Introduced log-linear models as general approach for modeling conditional probabilities $P(y \mid x)$.
- Optimization methods:
 - Iterative scaling
 - Gradient ascent
 - Conjugate gradient ascent
- Maximum-entropy properties of log-linear models
- Smoothing methods using Gaussian prior, and feature selection methods

45

Experiment	Accuracy	Training Time	# of Features
ME Default	95.5%	$15 \min$	2350
ME IFS	95.8%	15 hours	356
DT Default	91.6%%	18 hours	
DT Tuned	92.1%	10 hours	

Table 8.4: Text Categorization Performance on the acq category

47

References

[Ratnaparkhi 96] A maximum entropy part-of-speech tagger. In Proceedings of the empirical methods in natural language processing conference.