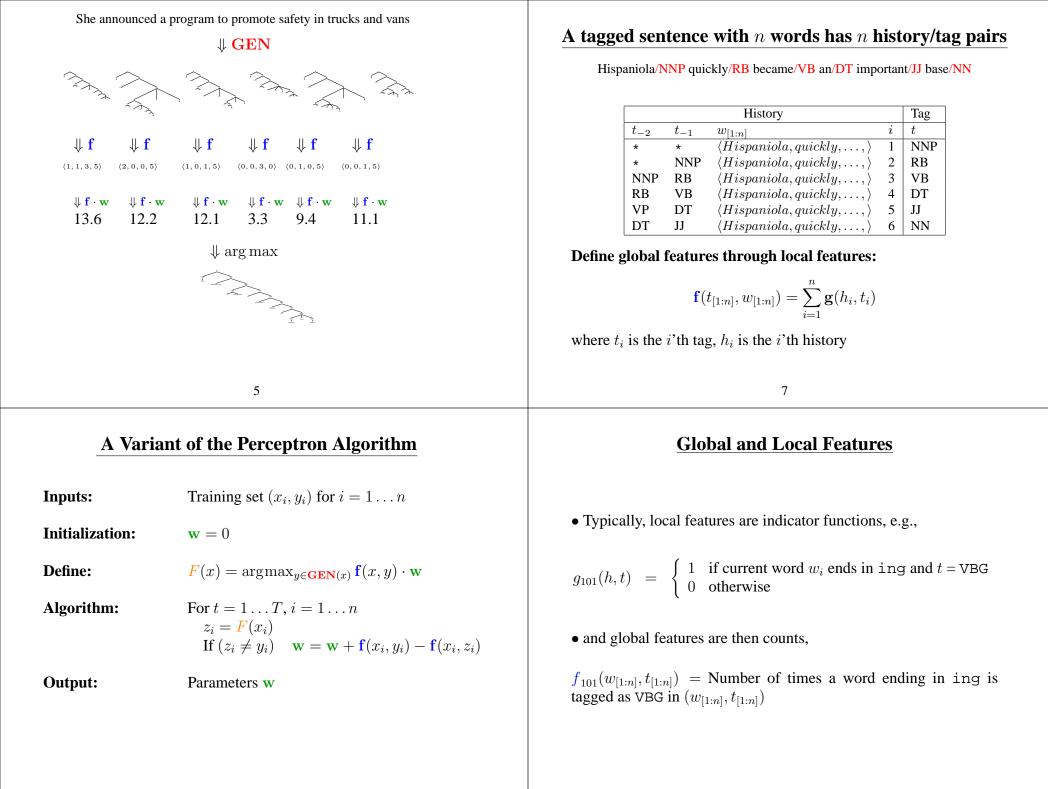
	Three Components of Global Linear Models
	• f is a function that maps a structure (x, y) to a feature vector $\mathbf{f}(x, y) \in \mathbb{R}^d$
6.864 (Fall 2007) Global Linear Models: Part III	 GEN is a function that maps an input x to a set of candidates GEN(x) w is a parameter vector (also a member of ℝ^d) Training data is used to set the value of w
1	3
Overview	Putting it all Together
• Recap: global linear models	• \mathcal{X} is set of sentences, \mathcal{Y} is set of possible outputs (e.g. trees)
• Dependency parsing	• Need to learn a function $F : \mathcal{X} \to \mathcal{Y}$
• GLMs for dependency parsing	• GEN, f, w define
• Eisner's parsing algorithm	$F(x) = rgmax_{y \in \mathbf{GEN}(x)} \mathbf{f}(x, y) \cdot \mathbf{w}$
• Results from McDonald (2005)	Choose the highest scoring candidate as the most plausible structure
	• Given examples (x_i, y_i) , how to set w?



Putting it all Together

- **GEN** $(w_{[1:n]})$ is the set of all tagged sequences of length n
- **GEN**, **f**, w define

$$\begin{aligned} \nabla(w_{[1:n]}) &= \arg \max_{t_{[1:n]} \in \mathbf{GEN}(w_{[1:n]})} \mathbf{w} \cdot \mathbf{f}(w_{[1:n]}, t_{[1:n]}) \\ &= \arg \max_{t_{[1:n]} \in \mathbf{GEN}(w_{[1:n]})} \mathbf{w} \cdot \sum_{i=1}^{n} \mathbf{g}(h_i, t_i) \\ &= \arg \max_{t_{[1:n]} \in \mathbf{GEN}(w_{[1:n]})} \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{g}(h_i, t_i) \end{aligned}$$

- Some notes:
 - Score for a tagged sequence is a sum of local scores
 - Dynamic programming can be used to find the argmax! (because history only considers the previous two tags)

9

Training a Tagger Using the Perceptron Algorithm

Inputs: Training set $(w_{[1:n_i]}^i, t_{[1:n_i]}^i)$ for i = 1 ... n.

Initialization: $\mathbf{w} = 0$

Algorithm: For $t = 1 \dots T$, $i = 1 \dots n$

$$z_{[1:n_i]} = \arg \max_{u_{[1:n_i]} \in \mathcal{T}^{n_i}} \mathbf{w} \cdot \mathbf{f}(w_{[1:n_i]}^i, u_{[1:n_i]})$$

 $z_{[1:n_i]}$ can be computed with the dynamic programming (Viterbi) algorithm

If $z_{[1:n_i]} \neq t^i_{[1:n_i]}$ then

$$\mathbf{w} = \mathbf{w} + \mathbf{f}(w_{[1:n_i]}^i, t_{[1:n_i]}^i) - \mathbf{f}(w_{[1:n_i]}^i, z_{[1:n_i]})$$

Output: Parameter vector w.

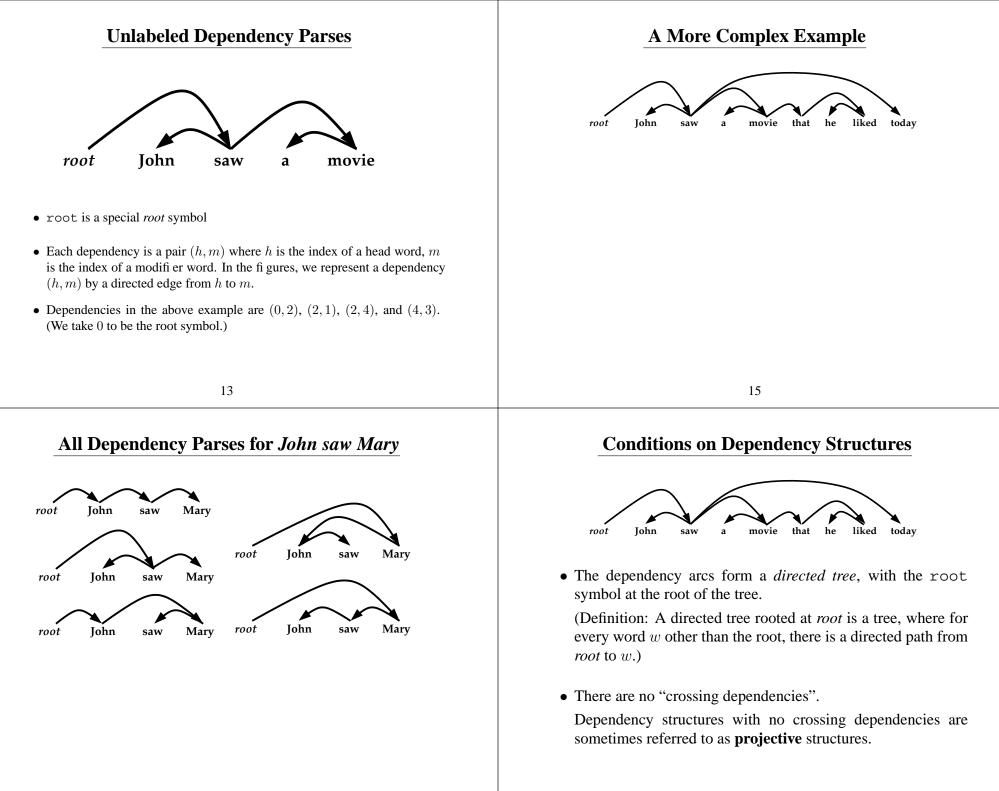
11

Overview

A Variant of the Perceptron Algorithm

Inputs:Training set (x_i, y_i) for $i = 1 \dots n$ Initialization: $\mathbf{w} = 0$ Define: $F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \mathbf{f}(x, y) \cdot \mathbf{w}$ Algorithm:For $t = 1 \dots T$, $i = 1 \dots n$ $z_i = F(x_i)$ $\mathbf{If} (z_i \neq y_i)$ $\mathbf{w} = \mathbf{w} + \mathbf{f}(x_i, y_i) - \mathbf{f}(x_i, z_i)$ Output:Parameters \mathbf{w}

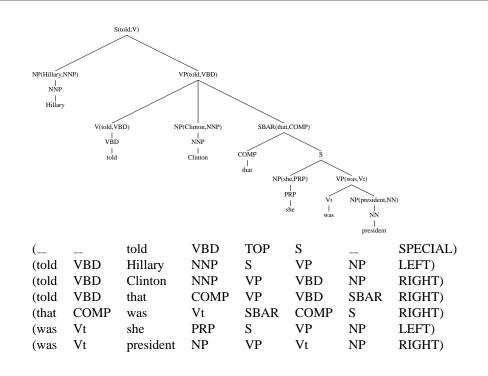
- Recap: global linear models
- Dependency parsing
- GLMs for dependency parsing
- Eisner's parsing algorithm
- Results from McDonald (2005)



Labeled Dependency Parses

• Similar to unlabeled structures, but each dependency is a triple (h, m, l) where h is the index of a head word, m is the index of a modifier word, and l is a label. In the fi gures, we represent a dependency (h, m, l) by a directed edge from h to m with a label l.

• For most of this lecture we'll stick to unlabeled dependency structures.

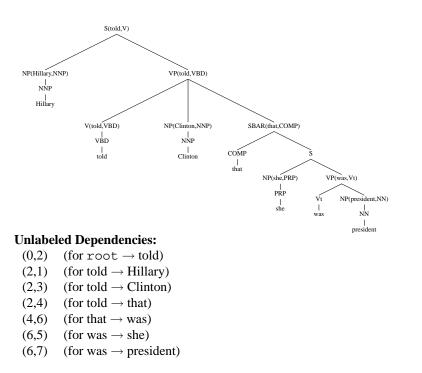


17

Extracting Dependency Parses from Treebanks

- There's recently been a lot of interest in dependency parsing. For example, the CoNLL 2006 conference had a "shared task" where 12 languages were involved (Arabic, Chinese, Czech, Danish, Dutch, German, Japanese, Portuguese, Slovene, Spanish, Swedish, Turkish). 19 different groups developed dependency parsing systems. CoNLL 2007 had a similar shared task. Google for "conll 2006 shared task" for more details. For a recent PhD thesis on the topic, see Ryan McDonald, *Discriminative Training and Spanning Tree Algorithms for Dependency Parsing*, University of Pennsylvania.
- For some languages, e.g., Czech, there are "dependency banks" available which contain training data in the form of sentences paired with dependency structures
- For other languages, we have treebanks from which we can extract dependency structures, using lexicalized grammars described earlier in the course (see *Parsing and Syntax 2*)

19



Effi ciency of Dependency Parsing	GLMs for Dependency parsing
 PCFG parsing is O(n³G³) where n is the length of the sentence, G is the number of non-terminals in the grammar Lexicalized PCFG parsing is O(n⁵G³) where n is the length of the sentence, G is the number of non-terminals in the grammar. (With the algorithms we've seen—it is possible to do a little better than this.) Unlabeled dependency parsing is O(n³). (See part 4 of these slides for the algorithm.) 	 <i>x</i> is a sentence GEN(<i>x</i>) is set of all dependency structures for <i>x</i> f(<i>x</i>, <i>y</i>) is a feature vector for a sentence <i>x</i> paired with a dependency parse <i>y</i>
21	23
Overview	GLMs for Dependency parsing
<u>over view</u>	GLIVIS IOI Dependency parsing
 Recap: global linear models Dependency parsing 	• To run the perceptron algorithm, we must be able to efficiently calculate $\arg \max_{y \in \mathbf{GEN}(x)} \mathbf{w} \cdot \mathbf{f}(x, y)$
• Recap: global linear models	• To run the perceptron algorithm, we must be able to efficiently calculate

$$\arg \max_{y \in \mathbf{GEN}(x)} \mathbf{w} \cdot \mathbf{f}(x, y) = \arg \max_{y \in \mathbf{GEN}(x)} \sum_{(h, m) \in y} \mathbf{w} \cdot \mathbf{g}(x, h, m)$$

Definition of Local Feature Vectors

- $\mathbf{g}(x,h,m)$ maps a sentence x and a dependency (h,m) to a local feature vector
- Features from McDonald et al. (2005):
 - Note: define u_i to be the *i*'th word in the sentence, t_i to be the partof-speech (POS) tag for the *i*'th word.
 - Unigram features: Identity of w_h . Identity of w_m . Identity of t_h . Identity of t_m .
 - *Bigram* features: Identity of the 4-tuple $\langle w_h, w_m, t_h, t_m \rangle$. Identity of sub-sets of this 4-tuple, e.g., identity of the pair $\langle w_h, w_m \rangle$.
 - Contextual features: Identity of the 4-tuple $\langle t_h, t_{h+1}, t_{m-1}, t_m \rangle$. Similar features which consider t_{h-1} and t_{m+1} , giving 4 possible feature types.
 - *In-between features:* Identity of triples $\langle t_h, t, t_m \rangle$ for any tag t seen between words h and m.

25

Overview

- Recap: global linear models
- Dependency parsing
- Global Linear Models (GLMs) for dependency parsing
- Eisner's parsing algorithm
- Results from McDonald (2005)

Eisner's Algorithm for Dependency Parsing

- Runs in $O(n^3)$ time for a sentence of length n
- Algorithm is similar to the dynamic programming algorithm for PCFGs, but represents constituents in a novel way
- The problem: find

$$\arg\max_{y\in \mathbf{GEN}(x)} \sum_{(h,m)\in y} \mathbf{S}(h,m)$$

where x is a sentence, $\mathbf{GEN}(x)$ is the set of all dependency trees for x, and $\mathbf{S}(h,m)$ is the score of dependency (h,m). In our case,

$$\mathbf{S}(h,m) = \mathbf{w} \cdot \mathbf{g}(x,h,m)$$

27

Complete Constituents

- A complete consituent with direction \rightarrow for words $w_s \dots w_t$ is a set of dependencies D such that:
 - Every word in $w_{s+1} \dots w_t$ is a modifier to some word in $w_s \dots w_t$.
 - The dependencies in D form a well formed dependency sub-parse: i.e., there are no crossing dependencies, or cycles. No dependencies in D involve words other than w_s...w_t.
 - w_s is the head of at least one dependency.
- Note: this means that the dependencies in D form a directed tree that spans all words $w_s \dots w_t$, with w_s at the root of the tree.

Complete Constituents

- A complete consituent with direction \leftarrow for words $w_s \dots w_t$ is a set of dependencies D such that:
 - Every word in $w_s \dots w_{t-1}$ is a modifier to some word in $w_s \dots w_t$.
 - The dependencies in D form a well formed dependency sub-parse: i.e., there are no crossing dependencies, or cycles. No dependencies in D involve words other than w_s...w_t.
 - w_t is the head of at least one dependency.
- Note: this means that the dependencies in D form a directed tree that spans all words $w_s \dots w_t$, with w_t at the root of the tree.

29

Incomplete Constituents

- An *incomplete consituent* with direction \rightarrow for words $w_s \dots w_t$ is a set of dependencies D such that:
 - Every word in $w_{s+1} \dots w_t$ is a modifier to some word in $w_s \dots w_t$.
 - The dependencies in D form a well formed dependency sub-parse: i.e., there are no crossing dependencies, or cycles. No dependencies in D involve words other than w_s...w_t.
 - w_s is the head of at least one dependency.
 - A new condition: there is a dependency (s, t) in D.
- Note: any incomplete constituent is also a complete constituent

Incomplete Constituents

- An *incomplete consituent* with direction \leftarrow for words $w_s \dots w_t$ is a set of dependencies D such that:
 - Every word in $w_s \dots w_{t-1}$ is a modifier to some word in $w_s \dots w_t$.
 - The dependencies in D form a well formed dependency sub-parse: i.e., there are no crossing dependencies, or cycles. No dependencies in D involve words other than w_s...w_t.
 - w_t is the head of at least one dependency.
 - A new condition: there is a dependency (t, s) in D.
- Note: any incomplete constituent is also a complete constituent

31

The Dynamic Programming Table

- C[s][t][d][c] is the highest score for any constituent that:
 - Spans words $w_s \dots w_t$
 - Has direction d(either \rightarrow or \leftarrow)
 - Has type c(c = 0 for incomplete constituents, c = 1 for complete constituents)
- Base case for the dynamic programming algorithm:

for s = 1...n, $C[s][s][\rightarrow][1] = C[s][s][\leftarrow][1] = 0.0$

Intuition: Creating Incomplete Constituents	Intuition: Creating Complete Constituents
• We can form an incomplete constituent spanning words $w_s \dots w_t$ by combining two complete constituents.	 We can form a complete constituent spanning words w_sw_t by combining an incomplete and a complete constituent.
33	35
Creating Incomplete Constituents	Creating Complete Constituents
• First case: for any s, t such that $1 \le s < t \le n$,	• First case: for any s, t such that $1 \le s < t \le n$,
$C[s][t][\leftarrow][0] = \max_{s \le r < t} \left(C[s][r][\rightarrow][1] + C[r+1][t][\leftarrow][1] + \mathbf{S}(t,s) \right)$	$C[s][t][\leftarrow][1] = \max_{s \leq r < t} \left(C[s][r][\leftarrow][1] + C[r][t][\leftarrow][0] \right)$
Intuition: combine two complete constituents to form an incomplete constituent	Intuition: combine one complete constituent, one incomplete constituent, to form a complete constituent

• Second case: for any s, t such that $1 \le s < t \le n$,

 $C[s][t][\rightarrow][0] = \max_{s \leq r < t} \left(C[s][r][\rightarrow][1] + C[r+1][t][\leftarrow][1] + \mathbf{S}(s,t) \right)$

• Second case: for any s, t such that $1 \le s < t \le n$,

 $C[s][t][\to][1] = \max_{s < r \le t} \left(C[s][r][\to][0] \ + \ C[r][t][\to][1] \right)$

The Full Algorithm

Initialization

Initialization: for $s = 0 \dots n$, $C[s][s][\rightarrow][1] = C[s][s][\leftarrow][1] = 0.0$ for $k = 1 \dots n + 1$ for $s = 0 \dots n$ t = s + k if $t > n$ then break % First: create incomplete items $C[s][t][\leftarrow][0] = \max_{s \le r < t} (C[s][r][\rightarrow][1] + C[r + 1][t][\leftarrow][1] + \mathbf{S}(t, s))$ $C[s][t][\rightarrow][0] = \max_{s \le r < t} (C[s][r][\rightarrow][1] + C[r + 1][t][\leftarrow][1] + \mathbf{S}(s, t))$ % Second: create incomplete items	Method Accuracy Collins (1997) 91.4% 1st order dependency 90.7% 2nd order dependency 91.5% • Accuracy is percentage of correct unlabeled dependencies • Collins (1997) is result from a lexicalized context-free parser, with dependencies extracted from the parser's output
$C[s][t][\leftarrow][1] = \max_{s \le r \le t} (C[s][r][\leftarrow][1] + C[r][t][\leftarrow][0])$ $C[s][t][\rightarrow][1] = \max_{s < r \le t} (C[s][r][\rightarrow][0] + C[r][t][\rightarrow][1])$	• 1st order dependency is the method just described. 2nd order dependency is a model that uses richer representations.
Return $C[0][n][\rightarrow][1]$ as the highest score for any parse	• Advantages of the dependency parsing approaches: simplicity, efficiency $(O(n^3)$ parsing time).
37	39
51	39
Overview	<u>Extensions</u>
Overview	Extensions
Overview • Recap: global linear models	<u>Extensions</u> • 2nd-order dependency parsing
Overview • Recap: global linear models • Dependency parsing	<u>Extensions</u> • 2nd-order dependency parsing
Overview • Recap: global linear models • Dependency parsing • Global Linear Models (GLMs) for dependency parsing	Extensions 2nd-order dependency parsing Non-projective dependency structures

38

Results from McDonald (2005)