
6.864 (Fall 2007)

Global Linear Models: Part II

1

Overview

• Recap: global linear models

• Log-linear models for parameter estimation

• Global and local features

– The perceptron revisited

– Log-linear models revisited

2

Three Components of Global Linear Models

• f is a function that maps a structure (x, y) to a feature vector
f(x, y) ∈ R

d

• GEN is a function that maps an input x to a set of candidates
GEN(x)

• w is a parameter vector (also a member of R
d)

• Training data is used to set the value of w

3

Putting it all Together

• X is set of sentences, Y is set of possible outputs (e.g. trees)

• Need to learn a function F : X → Y

• GEN, f , w define

F (x) = arg max
y∈GEN(x)

f(x, y) · w

Choose the highest scoring candidate as the most plausible
structure

• Given examples (xi, yi), how to set w?

4



She announced a program to promote safety in trucks and vans

⇓ GEN

S

NP

She

VP

announced NP

NP

a program

VP

to promote NP

safety PP

in NP

trucks and vans

S

NP

She

VP

announced NP

NP

NP

a program

VP

to promote NP

safety PP

in NP

trucks

and NP

vans

S

NP

She

VP

announced NP

NP

a program

VP

to promote NP

NP

safety PP

in NP

trucks

and NP

vans

S

NP

She

VP

announced NP

NP

a program

VP

to promote NP

safety

PP

in NP

trucks and vans

S

NP

She

VP

announced NP

NP

NP

a program

VP

to promote NP

safety

PP

in NP

trucks

and NP

vans

S

NP

She

VP

announced NP

NP

NP

a program

VP

to promote NP

safety

PP

in NP

trucks and vans

⇓ f ⇓ f ⇓ f ⇓ f ⇓ f ⇓ f

〈1, 1, 3, 5〉 〈2, 0, 0, 5〉 〈1, 0, 1, 5〉 〈0, 0, 3, 0〉 〈0, 1, 0, 5〉 〈0, 0, 1, 5〉

⇓ f · w ⇓ f · w ⇓ f · w ⇓ f · w ⇓ f · w ⇓ f · w

13.6 12.2 12.1 3.3 9.4 11.1

⇓ arg max
S

NP

She

VP

announced NP

NP

a program

VP

to VP

promote NP

safety PP

in NP

NP

trucks

and NP

vans

5

A Variant of the Perceptron Algorithm

Inputs: Training set (xi, yi) for i = 1 . . . n

Initialization: w = 0

Define: F (x) = argmaxy∈GEN(x) f(x, y) · w

Algorithm: For t = 1 . . . T , i = 1 . . . n

zi = F (xi)
If (zi 6= yi) w = w + f(xi, yi) − f(xi, zi)

Output: Parameters w

6

Overview

• Recap: global linear models

• Log-linear models for parameter estimation

• Global and local features

– The perceptron revisited

– Log-linear models revisited

7

Back to Maximum Likelihood Estimation
[Johnson et. al 1999]

• We can use the parameters to define a probability for each
parse:

P (y | x,w) =
ef(x,y)·w

∑

y′∈GEN(x) ef(x,y′)·w

• Log-likelihood is then

L(w) =
∑

i

log P (yi | xi,w)

• A first estimation method: take maximum likelihood
estimates, i.e.,

wML = argmaxwL(w)

8



Adding Gaussian Priors
[Johnson et. al 1999]

• A first estimation method: take maximum likelihood
estimates, i.e., wML = argmaxwL(w)

• Unfortunately, very likely to “overfit”

• A way of preventing overfitting: choose parameters as

wMAP = argmaxw

(

L(w) − C
∑

k

w2
k

)

for some constant C

• Intuition: adds a penalty for large parameter values

9

Summary

Choose parameters as:

wMAP = argmaxw

(

L(w) − C
∑

k

w2
k

)

where

L(w) =
∑

i

log P (yi | xi,w)

=
∑

i

log
ef(xi,yi)·w

∑

y′∈GEN(xi) ef(xi,y′)·w

Can use (conjugate) gradient ascent
(see previous lectures on log-linear models)

10

Overview

• Recap: global linear models

• Log-linear models for parameter estimation

• Global and local features

– The perceptron revisited

– Log-linear models revisited

11

Global and Local Features

• So far: algorithms have depended on size of GEN

• Strategies for keeping the size of GEN manageable:

– Reranking methods: use a baseline model to generate its
top N analyses

12



Global and Local Features

• Global linear models are “global” in a couple of ways:

– Feature vectors are defined over entire structures

– Parameter estimation methods explicitly related to errors
on entire structures

• Next topic: global training methods with local features

– Our “global” features will be defined through local features

– Parameter estimates will be global

– GEN will be large!

– Dynamic programming used for search and parameter estimation:
this is possible for some combinations of GEN and f

13

Tagging Problems

TAGGING: Strings to Tagged Sequences

a b e e a f h j ⇒ a/C b/D e/C e/C a/D f/C h/D j/C

Example 1: Part-of-speech tagging
Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V
forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N
Mulally/N announced/V first/ADJ quarter/N results/N ./.

Example 2: Named Entity Recognition
Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA
topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA
CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA
results/NA ./NA

14

Tagging

Going back to tagging:

• Inputs x are sentences w[1:n] = {w1 . . . wn}

• GEN(w[1:n]) = T n i.e. all tag sequences of length n

• Note: GEN has an exponential number of members

• How do we define f?

15

Representation: Histories

• A history is a 4-tuple 〈t−2, t−1, w[1:n], i〉

• t−2, t−1 are the previous two tags.

• w[1:n] are the n words in the input sentence.

• i is the index of the word being tagged

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

• t−2, t−1 = DT, JJ

• w[1:n] = 〈Hispaniola, quickly, became, . . . , Hemisphere, .〉

• i = 6

16



Local Feature-Vector Representations
• Take a history/tag pair (h, t).

• gs(h, t) for s = 1 . . . d are local features representing tagging
decision t in context h.

Example: POS Tagging

• Word/tag features

g100(h, t) =

{

1 if current word wi is base and t = VB
0 otherwise

g101(h, t) =

{

1 if current word wi ends in ing and t = VBG
0 otherwise

• Contextual Features

g103(h, t) =

{

1 if 〈t−2, t−1, t〉 = 〈DT, JJ, VB〉
0 otherwise

17

A tagged sentence with n words has n history/tag pairs

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/NN

History Tag
t
−2 t

−1 w[1:n] i t

* * 〈Hispaniola, quickly, . . . , 〉 1 NNP
* NNP 〈Hispaniola, quickly, . . . , 〉 2 RB
NNP RB 〈Hispaniola, quickly, . . . , 〉 3 VB
RB VB 〈Hispaniola, quickly, . . . , 〉 4 DT
VP DT 〈Hispaniola, quickly, . . . , 〉 5 JJ
DT JJ 〈Hispaniola, quickly, . . . , 〉 6 NN

18

A tagged sentence with n words has n history/tag pairs

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/NN

History Tag
t
−2 t

−1 w[1:n] i t

* * 〈Hispaniola, quickly, . . . , 〉 1 NNP
* NNP 〈Hispaniola, quickly, . . . , 〉 2 RB
NNP RB 〈Hispaniola, quickly, . . . , 〉 3 VB
RB VB 〈Hispaniola, quickly, . . . , 〉 4 DT
VP DT 〈Hispaniola, quickly, . . . , 〉 5 JJ
DT JJ 〈Hispaniola, quickly, . . . , 〉 6 NN

Define global features through local features:

f(t[1:n], w[1:n]) =
n∑

i=1

g(hi, ti)

where ti is the i’th tag, hi is the i’th history

19

Global and Local Features

• Typically, local features are indicator functions, e.g.,

g101(h, t) =

{

1 if current word wi ends in ing and t = VBG
0 otherwise

• and global features are then counts,

f 101(w[1:n], t[1:n]) = Number of times a word ending in ing is
tagged as VBG in (w[1:n], t[1:n])

20



Putting it all Together

• GEN(w[1:n]) is the set of all tagged sequences of length n

• GEN, f , w define

F (w[1:n]) = arg max
t[1:n]∈GEN(w[1:n])

w · f(w[1:n], t[1:n])

= arg max
t[1:n]∈GEN(w[1:n])

w ·
n∑

i=1

g(hi, ti)

= arg max
t[1:n]∈GEN(w[1:n])

n∑

i=1

w · g(hi, ti)

• Some notes:

– Score for a tagged sequence is a sum of local scores

– Dynamic programming can be used to find the argmax!
(because history only considers the previous two tags)

21

A Variant of the Perceptron Algorithm

Inputs: Training set (xi, yi) for i = 1 . . . n

Initialization: w = 0

Define: F (x) = argmaxy∈GEN(x) f(x, y) · w

Algorithm: For t = 1 . . . T , i = 1 . . . n

zi = F (xi)
If (zi 6= yi) w = w + f(xi, yi) − f(xi, zi)

Output: Parameters w

22

Training a Tagger Using the Perceptron Algorithm

Inputs: Training set (wi
[1:ni]

, ti[1:ni]
) for i = 1 . . . n.

Initialization: w = 0

Algorithm: For t = 1 . . . T, i = 1 . . . n

z[1:ni] = arg max
u[1:ni]

∈T ni

w · f(wi
[1:ni]

, u[1:ni])

z[1:ni] can be computed with the dynamic programming (Viterbi) algorithm

If z[1:ni] 6= ti[1:ni]
then

w = w + f(wi
[1:ni]

, ti[1:ni]
) − f(wi

[1:ni]
, z[1:ni])

Output: Parameter vector w.

23

An Example

Say the correct tags for i’th sentence are

the/DT man/NN bit/VBD the/DT dog/NN

Under current parameters, output is

the/DT man/NN bit/NN the/DT dog/NN

Assume also that features track: (1) all bigrams; (2) word/tag pairs

Parameters incremented:

〈NN, VBD〉, 〈VBD, DT〉, 〈VBD → bit〉

Parameters decremented:

〈NN, NN〉, 〈NN, DT〉, 〈NN → bit〉

24



Experiments

• Wall Street Journal part-of-speech tagging data

Perceptron = 2.89%, Max-ent = 3.28%
(11.9% relative error reduction)

• [Ramshaw and Marcus, 1995] NP chunking data

Perceptron = 93.63%, Max-ent = 93.29%
(5.1% relative error reduction)

25

How Does this Differ from Log-Linear Taggers?

• Log-linear taggers (in an earlier lecture) used very similar
local representations

• How does the perceptron model differ?

• Why might these differences be important?

26

Log-Linear Tagging Models

• Take a history/tag pair (h, t).

• gs(h, t) for s = 1 . . . d are features
ws for s = 1 . . . d are parameters

• Conditional distribution:

P (t|h) =
ew·g(h,t)

Z(h,w)

where Z(h,w) =
∑

t′∈T ew·g(h,t′)

• Parameters estimated using maximum-likelihood

27

Log-Linear Tagging Models

• Word sequence w[1:n] = [w1, w2 . . . wn]
• Tag sequence t[1:n] = [t1, t2 . . . tn]
• Histories hi = 〈ti−1, ti−2, w[1:n], i〉

log P (t[1:n] | w[1:n])

=
n∑

i=1

log P (ti | hi) =
n∑

i=1

w · g(hi, ti)

︸ ︷︷ ︸

Linear Score

−
n∑

i=1

log Z(hi,w)

︸ ︷︷ ︸

Local Normalization
Terms

• Compare this to the perceptron, where GEN, f , w define

F (w[1:n]) = arg max
t[1:n]∈GEN(w[1:n])

n∑

i=1

w · g(hi, ti)

︸ ︷︷ ︸

Linear score

28



Problems with Locally Normalized models

• “Label bias” problem [Lafferty, McCallum and Pereira 2001]
See also [Klein and Manning 2002]

• Example of a conditional distribution that locally normalized
models can’t capture (under bigram tag representation):

a b c ⇒
A — B — C
| | |
a b c

with P (A B C | a b c) = 1

a b e ⇒
A — D — E
| | |
a b e

with P (A D E | a b e) = 1

• Impossible to find parameters that satisfy

P (A | a) × P (B | b, A) × P (C | c, B) = 1

P (A | a) × P (D | b, A) × P (E | e, D) = 1

29

Overview

• Recap: global linear models, and boosting

• Log-linear models for parameter estimation

• An application: LFG parsing

• Global and local features

– The perceptron revisited

– Log-linear models revisited

30

Global Log-Linear Models

• We can use the parameters to define a probability for each
tagged sequence:

P (t[1:n] | w[1:n],w) =
e
∑

i
w·g(hi,ti)

Z(w[1:n],w)

where

Z(w[1:n],w) =
∑

t[1:n]∈GEN(w[1:n])

e
∑

i
w·g(hi,ti)

is a global normalization term

• This is a global log-linear model with

f(w[1:n], t[1:n]) =
∑

i

g(hi, ti)

31

Now we have:

log P (t[1:n] | w[1:n])

=
n∑

i=1

w · g(hi, ti)

︸ ︷︷ ︸

Linear Score

− log Z(w[1:n],w)
︸ ︷︷ ︸

Global Normalization
Term

When finding highest probability tag sequence, the global term
is irrelevant:

argmaxt[1:n]∈GEN(w[1:n])

n∑

i=1

(

w · g(hi, ti) − log Z(w[1:n],w)
)

= argmaxt[1:n]∈GEN(w[1:n])

n∑

i=1

w · g(hi, ti)

32



Parameter Estimation

• For parameter estimation, we must calculate the gradient of

log P (t[1:n] | w[1:n]) =
n∑

i=1

w·g(hi, ti)−log
∑

t′
[1:n]

∈GEN(w[1:n])

e
∑

i
w·g(h′

i
,t′

i
)

with respect to w

• Taking derivatives gives

dL

dw
=

n∑

i=1

g(hi, ti)−
∑

t′
[1:n]

∈GEN(w[1:n])

P (t′[1:n] | w[1:n],w)
n∑

i=1

g(h′

i, t
′

i)

• Can be calculated using dynamic programming!

33

Summary of Perceptron vs. Global Log-Linear Model

• Both are global linear models, where

GEN(w[1:n]) = the set of all possible tag sequences for w[1:n]

f(w[1:n], t[1:n]) =
∑

i

g(hi, ti)

• In both cases,

F (w[1:n]) = argmaxt[1:n]∈GEN(w[1:n])
w · f(w[1:n], t[1:n])

= argmaxt[1:n]∈GEN(w[1:n])

∑

i

w · g(hi, ti)

can be computed using dynamic programming

34

• Dynamic programming is also used in training:

– Perceptron requires highest-scoring tag sequence for each
training example

– Global log-linear model requires gradient, and therefore
“expected counts”

35

Results
From [Sha and Pereira, 2003]

• Task = shallow parsing (base noun-phrase recognition)

Model Accuracy
SVM combination 94.39%
Conditional random field 94.38%
(global log-linear model)
Generalized winnow 93.89%
Perceptron 94.09%
Local log-linear model 93.70%

36


