# So far: Snoothed estimation Probabilistic context-free grammars Log-linear models Hidden markov models The EM Algorithm History-based models I Today: Global linear models

# **Overview**

- A brief review of history-based methods
- A new framework: Global linear models
- Parsing problems in this framework: Reranking problems
- Parameter estimation method 1: A variant of the perceptron algorithm

# Supervised Learning in Natural Language

**Techniques** 

• General task: induce a function F from members of a set  $\mathcal{X}$  to members of a set  $\mathcal{Y}$ . e.g.,

| Problem             | $x \in \mathcal{X}$ | $y \in \mathcal{Y}$ |
|---------------------|---------------------|---------------------|
| Parsing             | sentence            | parse tree          |
| Machine translation | French sentence     | English sentence    |
| POS tagging         | sentence            | sequence of tags    |

• Supervised learning: we have a *training set*  $(x_i, y_i)$  for  $i = 1 \dots n$ 

#### The Models so far

- Most of the models we've seen so far are **history-based models**:
  - We break structures down into a derivation, or sequence of decisions
  - Each decision has an associated conditional probability
  - Probability of a structure is a product of decision probabilities
  - Parameter values are estimated using variants of maximumlikelihood estimation
  - Function  $F: \mathcal{X} \to \mathcal{Y}$  is defined as

$$F(x) = \operatorname{argmax}_{y} P(y, x \mid \Theta)$$
 or  $F(x) = \operatorname{argmax}_{y} P(y \mid x, \Theta)$ 

• Function  $F : \mathcal{X} \to \mathcal{Y}$  is defined as

 $F(x) = \operatorname{argmax}_{y} P(y, x \mid \Theta)$ 

Can be computed using dynamic programming

7

#### **Example 1: PCFGs**

5

- We break structures down into a derivation, or sequence of decisions
   We have a top-down derivation, where each decision is to expand some non-terminal α with a rule α → β
- Each decision has an associated conditional probability  $\alpha \rightarrow \beta$  has probability  $P(\alpha \rightarrow \beta \mid \alpha)$
- Probability of a structure is a product of decision probabilities

$$P(T,S) = \prod_{i=1}^{n} P(\alpha_i \to \beta_i \mid \alpha_i)$$

where  $\alpha_i \rightarrow \beta_i$  for  $i = 1 \dots n$  are the *n* rules in the tree

• Parameter values are estimated using variants of maximum-likelihood estimation

$$P(\alpha \to \beta \mid \alpha) = \frac{Count(\alpha \to \beta)}{Count(\alpha)}$$

#### **Example 2: Log-linear Taggers**

- We break structures down into a derivation, or sequence of decisions For a sentence of length n we have n tagging decisions, in left-to-right order
- · Each decision has an associated conditional probability

$$P(t_i \mid t_{i-1}, t_{i-2}, w_1 \dots w_n)$$

where  $t_i$  is the *i*'th tagging decision,  $w_i$  is the *i*'th word

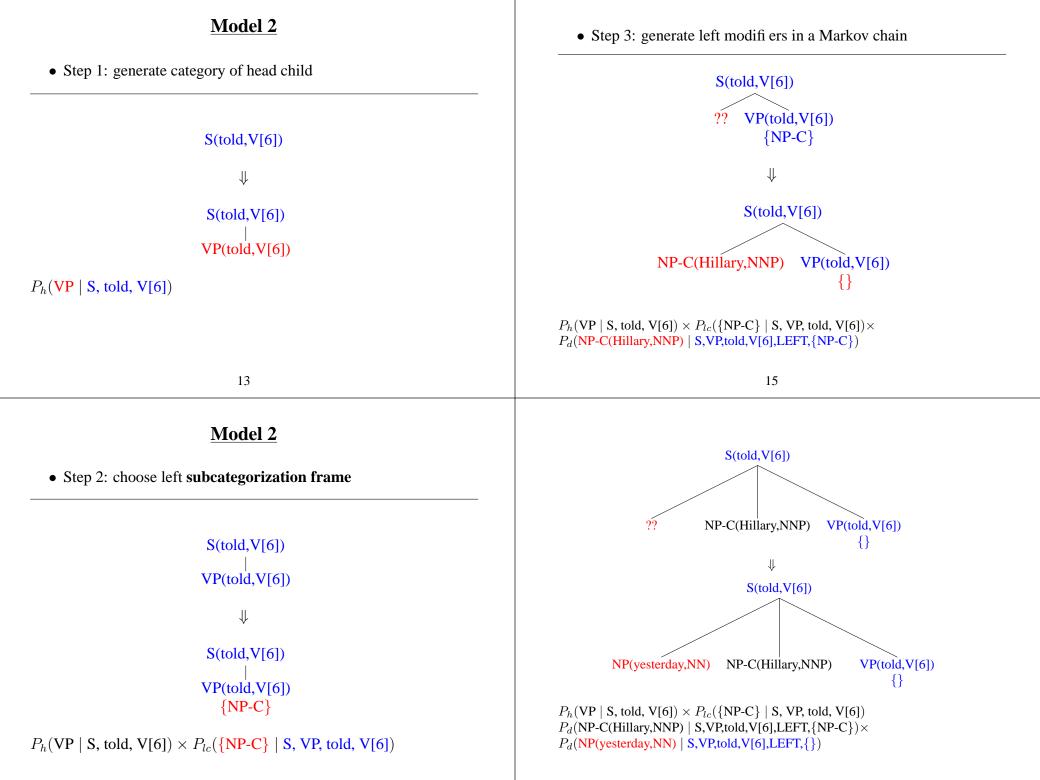
• Probability of a structure is a product of decision probabilities

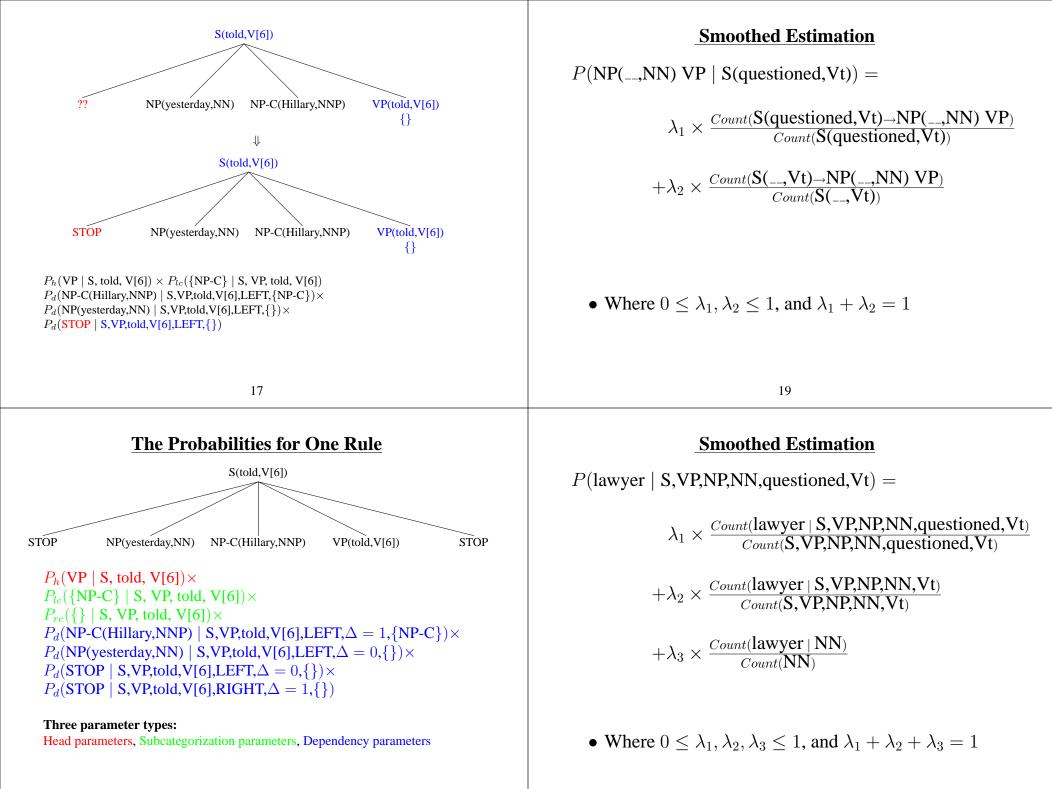
$$P(t_1 \dots t_n \mid w_1 \dots w_n) = \prod_{i=1}^n P(t_i \mid t_{i-1}, t_{i-2}, w_1 \dots w_n)$$

• Parameter values are estimated using variants of maximum-likelihood estimation

 $P(t_i | t_{i-1}, t_{i-2}, w_1 \dots w_n)$  is estimated using a log-linear model

| <ul> <li>Global Linear Models as a Framework</li> <li>We'll move away from history-based models<br/>No idea of a "derivation", or attaching probabilities to "decisions"</li> <li>Instead, we'll have feature vectors over entire structures<br/>'Global features"</li> <li>First piece of motivation:<br/>Freedom in defining features</li> </ul> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11                                                                                                                                                                                                                                                                                                                                                 |
| An Example: Parsing                                                                                                                                                                                                                                                                                                                                |
| • In lecture 4, we described lexicalized models for parsing                                                                                                                                                                                                                                                                                        |
| • Showed how a rule can be generated in a number of steps                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                    |





# An Example: Parsing

- In lecture 4, we described lexicalized models for parsing
- Showed how a rule can be generated in a number of steps
- The end result:
  - We have head, dependency, and subcategorization parameters
  - Smoothed estimation means "probability" of a tree depends on counts of many different types of events
- What if we want to add new features? Can be very awkward to incorporate some features in history-based models

#### **Example 2** Semantic features

# We might have an ontology giving properties of various nouns/verbs

- $\Rightarrow$  how do we allow the parser to use this information?
- pour the **cappucino** vs. pour the **book**

Ontology states that **cappucino** has the +liquid feature, **book** does not.

23

#### Three Components of Global Linear Models

- **f** is a function that maps a structure (x, y) to a **feature vector**  $\mathbf{f}(x, y) \in \mathbb{R}^d$
- GEN is a function that maps an input x to a set of candidates GEN(x)
- W is a parameter vector (also a member of  $\mathbb{R}^d$ )
- Training data is used to set the value of W

#### \_\_\_\_\_

21

# **<u>A Need for Flexible Features</u>**

Example 1 Parallelism in coordination [Johnson et. al 1999]

# Constituents with similar structure tend to be coordinated

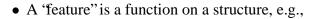
 $\Rightarrow$  how do we allow the parser to learn this preference?

Bars in New York and pubs in London vs. Bars in New York and pubs

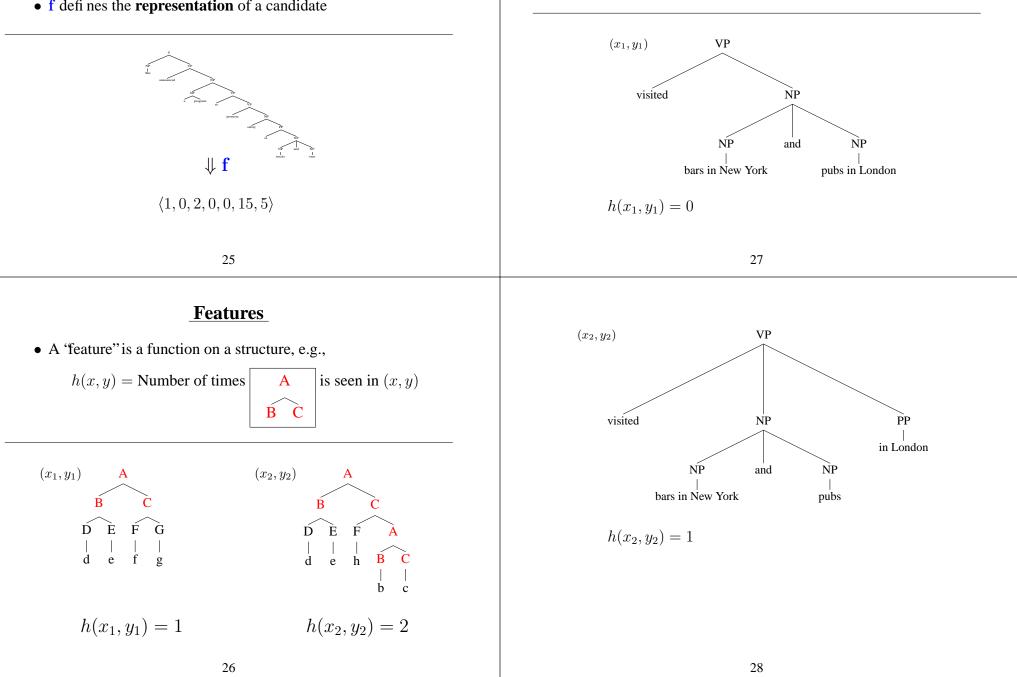


- **f** maps a candidate to a **feature vector**  $\in \mathbb{R}^d$
- **f** defines the **representation** of a candidate

#### **Another Example**



 $h(x,y) = \begin{cases} 1 & \text{if } (x,y) \text{ has an instance of non-parallel coordination} \\ 0 & \text{otherwise} \end{cases}$ 



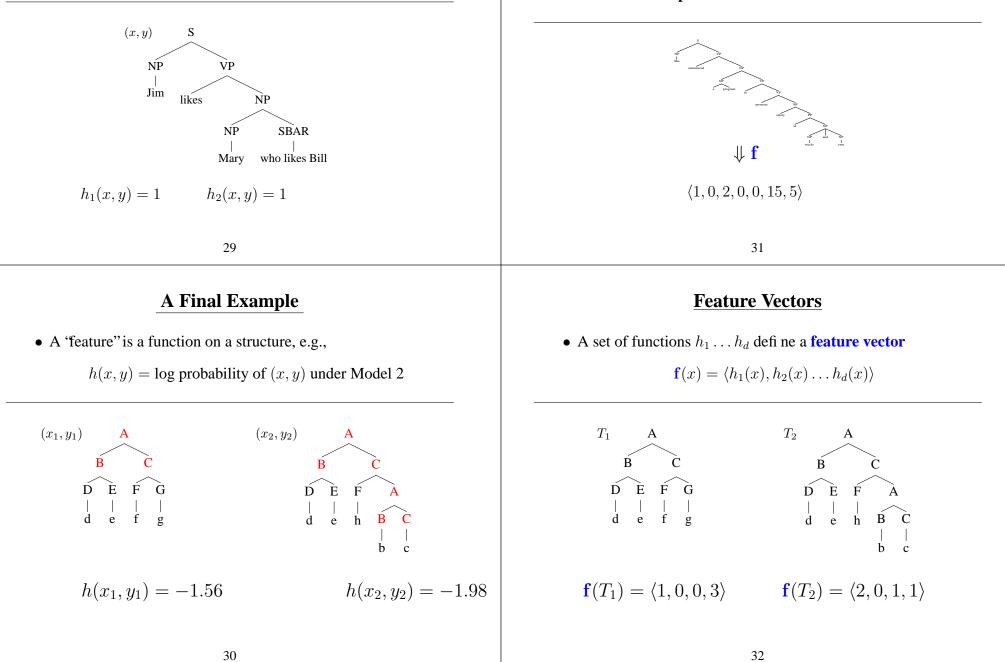
# A Third Example

• A 'feature' is a function on a structure, e.g.,

$$h_1(x, y) =$$
 number of times *Mary* is subject of *likes*  
 $h_2(x, y) =$  number of times *Mary* is object of *likes*

#### Component 1: f

- **f** maps a candidate to a **feature vector**  $\in \mathbb{R}^d$
- **f** defines the **representation** of a candidate



#### **Feature Vectors**

- Our goal is to come up with learning methods which allow us to defi ne any features over parse trees
- Avoids the intermediate steps of a history-based model: defining a **derivation** which takes the features into account, and then attaching probabilities to **decisions** Our claim is that this can be an unwieldy, indirect way of getting desired features into a model
- Problem of **representation** now boils down to the choice of the function f(x, y)

33

**Component 2: GEN** 

• GEN enumerates a set of candidates for a sentence

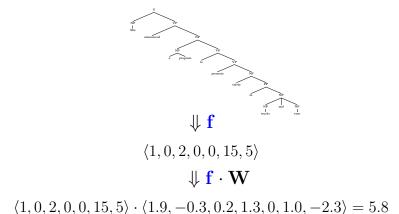
She announced a program to promote safety in trucks and vans

**↓** GEN

 $\widehat{\phantom{a}}$ 

# Component 2: GEN

• **GEN** enumerates a set of **candidates** for an input x • Some examples of how GEN(x) can be defined: - Parsing: **GEN**(x) is the set of parses for x under a grammar - Any task: **GEN**(x) is the top N most probable parses under a history-based model - Tagging: **GEN**(x) is the set of all possible tag sequences with the same length as x- Translation: **GEN**(x) is the set of all possible English translations for the French sentence x35 **Component 3: W** • W is a parameter vector  $\in \mathbb{R}^d$ • f and W together map a candidate to a real-valued score



36

#### **Putting it all Together**

- $\mathcal{X}$  is set of sentences,  $\mathcal{Y}$  is set of possible outputs (e.g. trees)
- Need to learn a function  $F : \mathcal{X} \to \mathcal{Y}$
- GEN, f, W defi ne

II **C** 

$$F(x) = \underset{y \in \mathbf{GEN}(x)}{\operatorname{arg max}} \mathbf{f}(x, y) \cdot \mathbf{W}$$

Choose the highest scoring candidate as the most plausible structure

• Given examples  $(x_i, y_i)$ , how to set W?

37

She announced a program to promote safety in trucks and vans

 $\Downarrow$  GEN

II **C** 

11 0

II C



| <b>↓ I</b>               | ↓ I                      | ↓ I                          | ↓ I                      | ↓ I                      | ↓ I                         |  |
|--------------------------|--------------------------|------------------------------|--------------------------|--------------------------|-----------------------------|--|
| $\langle 1,1,3,5\rangle$ | $\langle 2,0,0,5\rangle$ | $\langle 1, 0, 1, 5 \rangle$ | $\langle 0,0,3,0  angle$ | $\langle 0,1,0,5\rangle$ | $\langle 0, 0, 1, 5  angle$ |  |

| $\Downarrow  \mathbf{f} \cdot \mathbf{W}$ | $\Downarrow \mathbf{f} \cdot \mathbf{W}$ | $\Downarrow \mathbf{f} \cdot \mathbf{W}$ | $\Downarrow \mathbf{f} \cdot \mathbf{W}$ | $\Downarrow \mathbf{f} \cdot \mathbf{W}$ | $\Downarrow \mathbf{f} \cdot \mathbf{W}$ |
|-------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| 13.6                                      | 12.2                                     | 12.1                                     | 3.3                                      | 9.4                                      | 11.1                                     |





#### **Overview**

- A brief review of history-based methods
- A new framework: Global linear models
- Parsing problems in this framework: Reranking problems
- Parameter estimation method 1: A variant of the perceptron algorithm

39

# **Reranking Approaches to Parsing**

- Use a baseline parser to produce top N parses for each sentence in training and test data
   GEN(x) is the top N parses for x under the baseline model
- One method: use Model 2 to generate a number of parses (in our experiments, around 25 parses on average for 40,000 training sentences, giving ≈ 1 million training parses)
- Supervision: for each  $x_i$  take  $y_i$  to be the parse that is "closest" to the treebank parse in **GEN** $(x_i)$

#### The Representation **f**

- Each component of **f** could be essentially *any* feature over parse trees
- For example:

 $f_1(x,y) = \log \text{ probability of } (x,y) \text{ under the baseline model}$ 

 $f_2(x,y) = \left\{ \begin{array}{ll} 1 & \text{if } (x,y) \text{ includes the rule VP } \rightarrow \text{ PP VBD NP} \\ 0 & \text{otherwise} \end{array} \right.$ 

41

# Practical Issues in Creating f

• Step 1: map a tree to a number of 'strings' representing features

A B C D E F G | | | | d e f g

 $\Rightarrow$ 

HASRULE:A->B;C HASRULE:B->D;E HASRULE:C->F;G HASRULE:D->d HASRULE:E->e HASRULE:F->f HASRULE:G->g

# **Practical Issues in Creating f**

• Step 2: hash the strings to integers

| А             | $\Rightarrow$ | HASRULE:A->B;C | 54    |
|---------------|---------------|----------------|-------|
|               |               | HASRULE:B->D;E | 118   |
| B C           |               | HASRULE:C->F;G | 14    |
| $\sim$ $\sim$ |               | HASRULE:D->d   | 10078 |
| DEFG          |               | HASRULE:E->e   | 9000  |
|               |               | HASRULE:F->f   | 1078  |
| d e f g       |               | HASRULE:G->g   | 101   |

• In our experiments, tree is then represented as log probability under the baseline model, plus a sparse feature array:

 $\begin{aligned} f_1(x,y) &= \text{log probability of } (x,y) \text{ under the baseline model} \\ f_i(x,y) &= 1 \text{ for } i = \{54,118,14,10078,9000,1078,101\} \\ f_i(x,y) &= 0 \text{ for all other } i \end{aligned}$ 

43

# **The Score for Each Parse**

• In our experiments, tree is then represented as log probability under the baseline model, plus a sparse feature array:

 $f_1(x, y) = \log \text{ probability of } (x, y) \text{ under the baseline model}$ 

$$\begin{split} f_i(x,y) &= 1 \text{ for } i = \{54, 118, 14, 10078, 9000, 1078, 101\} \\ f_i(x,y) &= 0 \text{ for all other } i \end{split}$$

• Score for the tree (x, y):

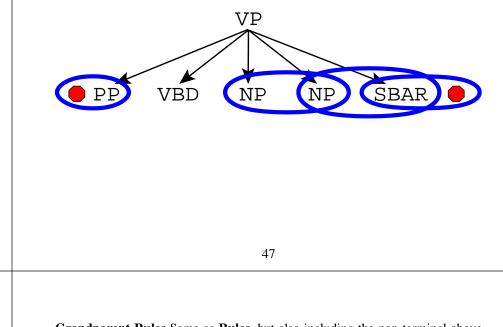
$$\begin{aligned} & \mathbf{f}(x,y) \cdot \mathbf{W} \\ &= \sum_{i} f_{i}(x,y) \mathbf{W}_{i} \\ &= \mathbf{W}_{1} \mathbf{f}_{1}(x,y) + \mathbf{W}_{54} + \mathbf{W}_{118} + \mathbf{W}_{14} + \mathbf{W}_{10078} + \mathbf{W}_{9000} + \mathbf{W}_{1078} + \mathbf{W}_{101} \end{aligned}$$

42

#### From [Collins and Koo, 2005]:

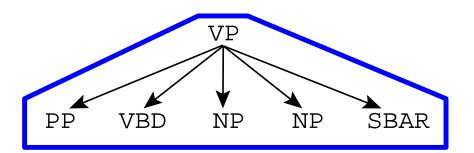
The following types of features were included in the model. We will use the rule  $VP \rightarrow PP VBD NP NP SBAR$  with head VBD as an example. Note that the output of our baseline parser produces syntactic trees with headword annotations.

**Bigrams** These are adjacent pairs of non-terminals to the left and right of the head. As shown, the example rule would contribute the bigrams (Right,VP,NP,NP), (Right,VP,NP,SBAR), (Right,VP,SBAR,STOP), and (Left,VP,PP,STOP) to the left of the head.

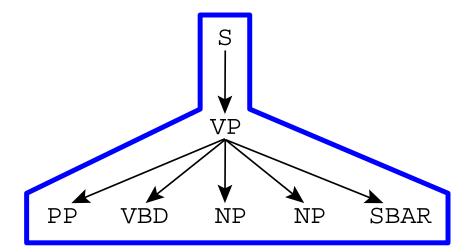


**Rules** These include all context-free rules in the tree, for example  $VP \rightarrow PP$  VBD NP NP SBAR.

45



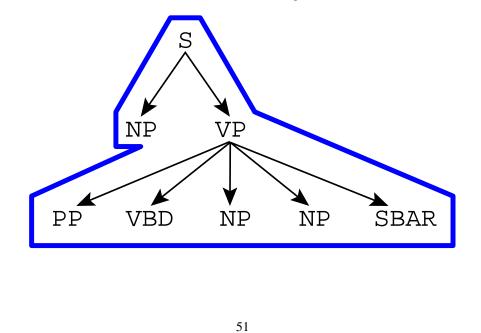
Grandparent Rules Same as Rules, but also including the non-terminal above the rule.



**Lexical Bigrams** Same as **Bigrams**, but with the lexical heads of the two non-terminals also included.

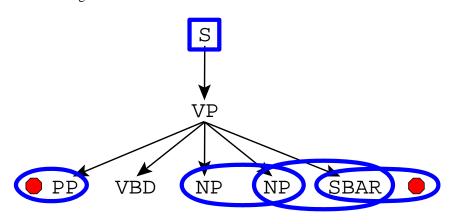
VP PP(in) VBD(gave) (NP(boy) SBAR(because) NP(treat)

Two-level Rules Same as Rules, but also including the entire rule above the rule.

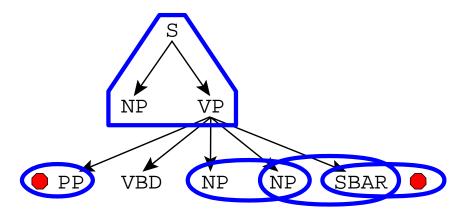


**Grandparent Bigrams** Same as **Bigrams**, but also including the non-terminal above the bigrams.

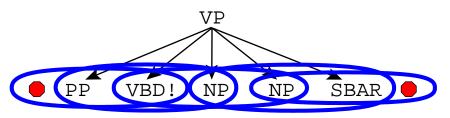
49

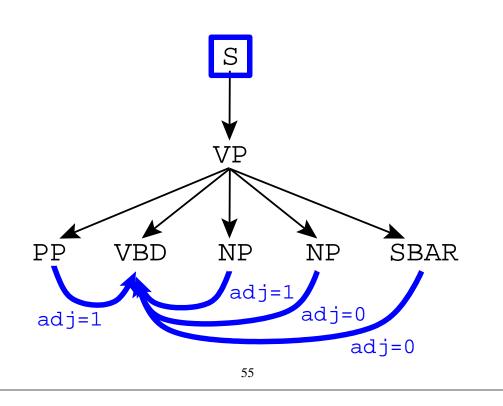


**Two-level Bigrams** Same as **Bigrams**, but also including the entire rule above the rule.



**Trigrams** All trigrams within the rule. The example rule would contribute the trigrams (VP,STOP,PP,VBD!), (VP,PP,VBD!,NP), (VP,VBD!,NP,NP), (VP,NP,NP,SBAR) and (VP,NP, SBAR,STOP) (! is used to mark the head of the rule)

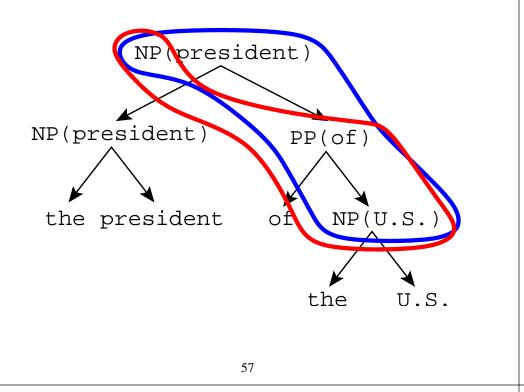




53

**Head-Modifiers** All head-modifier pairs, with the grandparent non-terminal also included. An adj flag is also included, which is 1 if the modifier is adjacent to the head, 0 otherwise. As an example, say the non-terminal dominating the example rule is S. The example rule would contribute (Left,S,VP,VBD,PP,adj=1), (Right,S,VP,VBD,NP,adj=1), (Right,S,VP,VBD,SBAR, adj=0).

**PPs** Lexical trigrams involving the heads of arguments of prepositional phrases. The example shown at right would contribute the trigram (NP,NP,PP,NP,president,of,U.S.), in addition to the more general trigram relation (NP,NP,PP,NP,of,U.S.).



#### **Overview**

- A brief review of history-based methods
- A new framework: Global linear models
- Parsing problems in this framework: Reranking problems
- Parameter estimation method 1: A variant of the perceptron algorithm

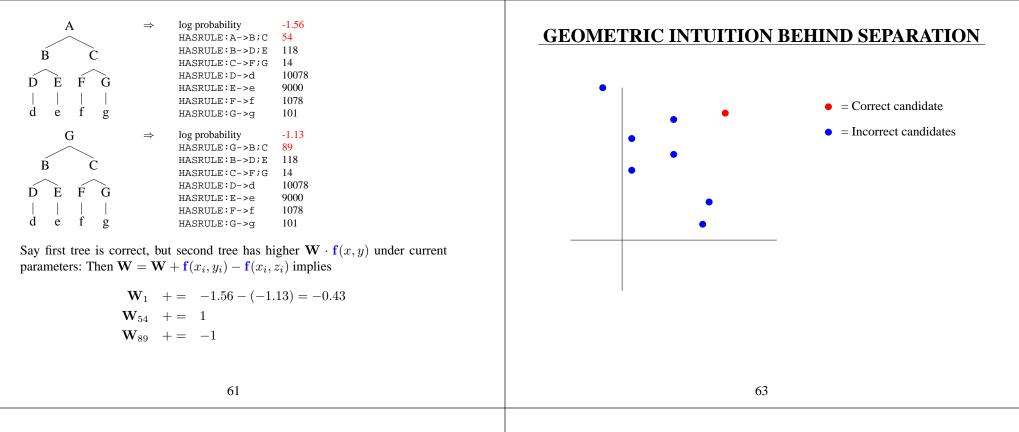
59

#### A Variant of the Perceptron Algorithm

| Inputs:         | Training set $(x_i, y_i)$ for $i = 1 \dots n$                                                                                                          |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initialization: | $\mathbf{W} = 0$                                                                                                                                       |
| Define:         | $F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \mathbf{f}(x, y) \cdot \mathbf{W}$                                                               |
| Algorithm:      | For $t = 1 \dots T$ , $i = 1 \dots n$<br>$z_i = F(x_i)$<br>If $(z_i \neq y_i)$ $\mathbf{W} = \mathbf{W} + \mathbf{f}(x_i, y_i) - \mathbf{f}(x_i, z_i)$ |
| Output:         | Parameters W                                                                                                                                           |

**Distance Head-Modifiers** Features involving the distance between head words. For example, assume *dist* is the number of words between the head words of the VBD and SBAR in the (VP, VBD, SBAR) head-modifier relation in the above rule. This relation would then generate features (VP, VBD, SBAR, = *dist*), and (VP, VBD, SBAR,  $\leq x$ ) for all *dist*  $\leq x \leq 9$  and (VP, VBD, SBAR,  $\geq x$ ) for all  $1 \leq x \leq dist$ .

**Further Lexicalization** In order to generate more features, a second pass was made where all non-terminals were augmented with their lexical heads when these headwords were closed-class words. All features apart from **Head-Modifiers**, **PPs** and **Distance Head-Modifiers** were then generated with these augmented non-terminals.

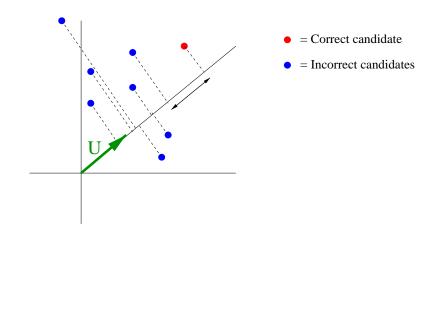


#### Theory Underlying the Algorithm

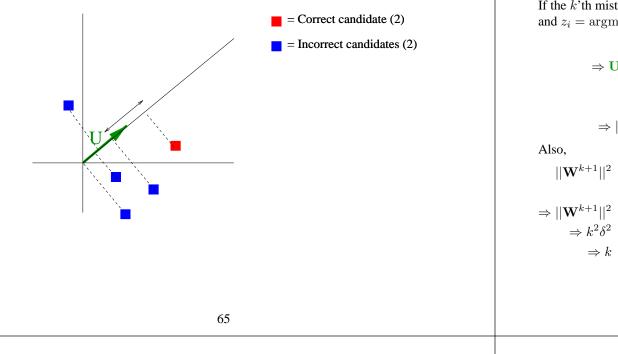
- **Definition:**  $\overline{\mathbf{GEN}}(x_i) = \mathbf{GEN}(x_i) \{y_i\}$
- Definition: The training set is separable with margin  $\delta$ , if there is a vector  $\mathbf{U} \in \mathbb{R}^d$  with  $||\mathbf{U}|| = 1$  such that

$$\forall i, \forall z \in \overline{\mathbf{GEN}}(x_i) \quad \mathbf{U} \cdot \mathbf{f}(x_i, y_i) - \mathbf{U} \cdot \mathbf{f}(x_i, z) \ge \delta$$

#### **GEOMETRIC INTUITION BEHIND SEPARATION**



## **ALL EXAMPLES ARE SEPARATED**



# THEORY UNDERLYING THE ALGORITHM

**Theorem:** For any training sequence  $(x_i, y_i)$  which is separable with margin  $\delta$ , then for the perceptron algorithm

Number of mistakes  $\leq \frac{R^2}{\delta^2}$ 

where R is a constant such that  $\forall i, \forall z \in \overline{\mathbf{GEN}}(x_i)$  $||\mathbf{f}(x_i, y_i) - \mathbf{f}(x_i, z)|| \le R$ 

**Proof:** Direct modification of the proof for the classification case.

#### **Proof:**

Let  $\mathbf{W}^k$  be the weights before the k'th mistake.  $\mathbf{W}^1 = 0$ If the k'th mistake is made at i'th example, and  $z_i = \operatorname{argmax}_{y \in \mathbf{GEN}(x_i)} \mathbf{f}(x_i, y) \cdot \mathbf{W}^k$ , then  $\mathbf{W}^{k+1} = \mathbf{W}^k + \mathbf{f}(x_i, y_i) - \mathbf{f}(x_i, z_i)$   $\Rightarrow \mathbf{U} \cdot \mathbf{W}^{k+1} = \mathbf{U} \cdot \mathbf{W}^k + \mathbf{U} \cdot \mathbf{f}(x_i, y_i) - \mathbf{U} \cdot \mathbf{f}(x_i, z_i)$   $\geq \mathbf{U} \cdot \mathbf{W}^k + \delta$   $\geq k\delta$   $\Rightarrow ||\mathbf{W}^{k+1}|| \geq k\delta$ Also,  $||\mathbf{W}^{k+1}||^2 = ||\mathbf{W}^k||^2 + ||\mathbf{f}(x_i, y_i) - \mathbf{f}(x_i, z_i)||^2 + 2\mathbf{W}^k \cdot (\mathbf{f}(x_i, y_i) - \mathbf{f}(x_i, z_i))$   $\leq ||\mathbf{W}^k||^2 + R^2$   $\Rightarrow ||\mathbf{W}^{k+1}||^2 \leq kR^2$   $\Rightarrow k^2\delta^2 \leq ||\mathbf{W}^{k+1}||^2 \leq kR^2$  $\Rightarrow k \leq R^2/\delta^2$ 

67

# **Perceptron Experiments: Parse Reranking**

#### Parsing the Wall Street Journal Treebank

Training set = 40,000 sentences, test = 2,416 sentences Generative model (Collins 1999): 88.2% F-measure Reranked model: 89.5% F-measure (11% relative error reduction) Boosting: 89.7% F-measure (13% relative error reduction)

- Results from Charniak and Johnson, 2005:
  - Improvement from 89.7% (baseline generative model) to 91.0% accuracy
  - Uses a log-linear model
  - Gains from improved n-best lists, better features

#### Summary

- A new framework: global linear models GEN, f, W
- There are several ways to train the parameters W:
  - Perceptron
  - Boosting
  - Log-linear models (maximum-likelihood)
- Applications:
  - Reranking models
  - LFG parsing
  - Generation
  - Machine translation
  - Tagging problems
  - Speech recognition

69