So far: Snoothed estimation Probabilistic context-free grammars Log-linear models Hidden markov models The EM Algorithm History-based models I Today: Global linear models

Overview

- A brief review of history-based methods
- A new framework: Global linear models
- Parsing problems in this framework: Reranking problems
- Parameter estimation method 1: A variant of the perceptron algorithm

Supervised Learning in Natural Language

Techniques

• General task: induce a function F from members of a set \mathcal{X} to members of a set \mathcal{Y} . e.g.,

Problem	$x \in \mathcal{X}$	$y \in \mathcal{Y}$
Parsing	sentence	parse tree
Machine translation	French sentence	English sentence
POS tagging	sentence	sequence of tags

• Supervised learning: we have a *training set* (x_i, y_i) for $i = 1 \dots n$

The Models so far

- Most of the models we've seen so far are **history-based models**:
 - We break structures down into a derivation, or sequence of decisions
 - Each decision has an associated conditional probability
 - Probability of a structure is a product of decision probabilities
 - Parameter values are estimated using variants of maximumlikelihood estimation
 - Function $F: \mathcal{X} \to \mathcal{Y}$ is defined as

$$F(x) = \operatorname{argmax}_{y} P(y, x \mid \Theta)$$
 or $F(x) = \operatorname{argmax}_{y} P(y \mid x, \Theta)$

• Function $F : \mathcal{X} \to \mathcal{Y}$ is defined as

 $F(x) = \operatorname{argmax}_{y} P(y, x \mid \Theta)$

Can be computed using dynamic programming

7

Example 1: PCFGs

5

- We break structures down into a derivation, or sequence of decisions
 We have a top-down derivation, where each decision is to expand some non-terminal α with a rule α → β
- Each decision has an associated conditional probability $\alpha \rightarrow \beta$ has probability $P(\alpha \rightarrow \beta \mid \alpha)$
- Probability of a structure is a product of decision probabilities

$$P(T,S) = \prod_{i=1}^{n} P(\alpha_i \to \beta_i \mid \alpha_i)$$

where $\alpha_i \rightarrow \beta_i$ for $i = 1 \dots n$ are the *n* rules in the tree

• Parameter values are estimated using variants of maximum-likelihood estimation

$$P(\alpha \to \beta \mid \alpha) = \frac{Count(\alpha \to \beta)}{Count(\alpha)}$$

Example 2: Log-linear Taggers

- We break structures down into a derivation, or sequence of decisions For a sentence of length n we have n tagging decisions, in left-to-right order
- · Each decision has an associated conditional probability

$$P(t_i \mid t_{i-1}, t_{i-2}, w_1 \dots w_n)$$

where t_i is the *i*'th tagging decision, w_i is the *i*'th word

• Probability of a structure is a product of decision probabilities

$$P(t_1 \dots t_n \mid w_1 \dots w_n) = \prod_{i=1}^n P(t_i \mid t_{i-1}, t_{i-2}, w_1 \dots w_n)$$

• Parameter values are estimated using variants of maximum-likelihood estimation

 $P(t_i | t_{i-1}, t_{i-2}, w_1 \dots w_n)$ is estimated using a log-linear model

 Global Linear Models as a Framework We'll move away from history-based models No idea of a "derivation", or attaching probabilities to "decisions" Instead, we'll have feature vectors over entire structures 'Global features" First piece of motivation: Freedom in defining features
11
An Example: Parsing
• In lecture 4, we described lexicalized models for parsing
• Showed how a rule can be generated in a number of steps

An Example: Parsing

- In lecture 4, we described lexicalized models for parsing
- Showed how a rule can be generated in a number of steps
- The end result:
 - We have head, dependency, and subcategorization parameters
 - Smoothed estimation means "probability" of a tree depends on counts of many different types of events
- What if we want to add new features? Can be very awkward to incorporate some features in history-based models

Example 2 Semantic features

We might have an ontology giving properties of various nouns/verbs

- \Rightarrow how do we allow the parser to use this information?
- pour the **cappucino** vs. pour the **book**

Ontology states that **cappucino** has the +liquid feature, **book** does not.

23

Three Components of Global Linear Models

- **f** is a function that maps a structure (x, y) to a **feature vector** $\mathbf{f}(x, y) \in \mathbb{R}^d$
- GEN is a function that maps an input x to a set of candidates GEN(x)
- W is a parameter vector (also a member of \mathbb{R}^d)
- Training data is used to set the value of W

21

<u>A Need for Flexible Features</u>

Example 1 Parallelism in coordination [Johnson et. al 1999]

Constituents with similar structure tend to be coordinated

 \Rightarrow how do we allow the parser to learn this preference?

Bars in New York and pubs in London vs. Bars in New York and pubs

- **f** maps a candidate to a **feature vector** $\in \mathbb{R}^d$
- **f** defines the **representation** of a candidate

Another Example

 $h(x,y) = \begin{cases} 1 & \text{if } (x,y) \text{ has an instance of non-parallel coordination} \\ 0 & \text{otherwise} \end{cases}$

A Third Example

• A 'feature' is a function on a structure, e.g.,

$$h_1(x, y) =$$
 number of times *Mary* is subject of *likes*
 $h_2(x, y) =$ number of times *Mary* is object of *likes*

Component 1: f

- **f** maps a candidate to a **feature vector** $\in \mathbb{R}^d$
- **f** defines the **representation** of a candidate

Feature Vectors

- Our goal is to come up with learning methods which allow us to defi ne any features over parse trees
- Avoids the intermediate steps of a history-based model: defining a **derivation** which takes the features into account, and then attaching probabilities to **decisions** Our claim is that this can be an unwieldy, indirect way of getting desired features into a model
- Problem of **representation** now boils down to the choice of the function f(x, y)

33

Component 2: GEN

• GEN enumerates a set of candidates for a sentence

She announced a program to promote safety in trucks and vans

↓ GEN

 $\widehat{}$

Component 2: GEN

• **GEN** enumerates a set of **candidates** for an input x • Some examples of how GEN(x) can be defined: - Parsing: **GEN**(x) is the set of parses for x under a grammar - Any task: **GEN**(x) is the top N most probable parses under a history-based model - Tagging: **GEN**(x) is the set of all possible tag sequences with the same length as x- Translation: **GEN**(x) is the set of all possible English translations for the French sentence x35 **Component 3: W** • W is a parameter vector $\in \mathbb{R}^d$ • f and W together map a candidate to a real-valued score

36

Putting it all Together

- \mathcal{X} is set of sentences, \mathcal{Y} is set of possible outputs (e.g. trees)
- Need to learn a function $F : \mathcal{X} \to \mathcal{Y}$
- GEN, f, W defi ne

II **C**

$$F(x) = \underset{y \in \mathbf{GEN}(x)}{\operatorname{arg max}} \mathbf{f}(x, y) \cdot \mathbf{W}$$

Choose the highest scoring candidate as the most plausible structure

• Given examples (x_i, y_i) , how to set W?

37

She announced a program to promote safety in trucks and vans

 \Downarrow GEN

II **C**

11 0

II C

↓ I	↓ I	↓ I	↓ I	↓ I	↓ I	
$\langle 1,1,3,5\rangle$	$\langle 2,0,0,5\rangle$	$\langle 1, 0, 1, 5 \rangle$	$\langle 0,0,3,0 angle$	$\langle 0,1,0,5\rangle$	$\langle 0, 0, 1, 5 angle$	

$\Downarrow \mathbf{f} \cdot \mathbf{W}$	$\Downarrow \mathbf{f} \cdot \mathbf{W}$	$\Downarrow \mathbf{f} \cdot \mathbf{W}$	$\Downarrow \mathbf{f} \cdot \mathbf{W}$	$\Downarrow \mathbf{f} \cdot \mathbf{W}$	$\Downarrow \mathbf{f} \cdot \mathbf{W}$
13.6	12.2	12.1	3.3	9.4	11.1

Overview

- A brief review of history-based methods
- A new framework: Global linear models
- Parsing problems in this framework: Reranking problems
- Parameter estimation method 1: A variant of the perceptron algorithm

39

Reranking Approaches to Parsing

- Use a baseline parser to produce top N parses for each sentence in training and test data
 GEN(x) is the top N parses for x under the baseline model
- One method: use Model 2 to generate a number of parses (in our experiments, around 25 parses on average for 40,000 training sentences, giving ≈ 1 million training parses)
- Supervision: for each x_i take y_i to be the parse that is "closest" to the treebank parse in **GEN** (x_i)

The Representation **f**

- Each component of **f** could be essentially *any* feature over parse trees
- For example:

 $f_1(x,y) = \log \text{ probability of } (x,y) \text{ under the baseline model}$

 $f_2(x,y) = \left\{ \begin{array}{ll} 1 & \text{if } (x,y) \text{ includes the rule VP } \rightarrow \text{ PP VBD NP} \\ 0 & \text{otherwise} \end{array} \right.$

41

Practical Issues in Creating f

• Step 1: map a tree to a number of 'strings' representing features

A B C D E F G | | | | d e f g

 \Rightarrow

HASRULE:A->B;C HASRULE:B->D;E HASRULE:C->F;G HASRULE:D->d HASRULE:E->e HASRULE:F->f HASRULE:G->g

Practical Issues in Creating f

• Step 2: hash the strings to integers

А	\Rightarrow	HASRULE:A->B;C	54
		HASRULE:B->D;E	118
B C		HASRULE:C->F;G	14
\sim \sim		HASRULE:D->d	10078
DEFG		HASRULE:E->e	9000
		HASRULE:F->f	1078
d e f g		HASRULE:G->g	101

• In our experiments, tree is then represented as log probability under the baseline model, plus a sparse feature array:

 $\begin{aligned} f_1(x,y) &= \text{log probability of } (x,y) \text{ under the baseline model} \\ f_i(x,y) &= 1 \text{ for } i = \{54,118,14,10078,9000,1078,101\} \\ f_i(x,y) &= 0 \text{ for all other } i \end{aligned}$

43

The Score for Each Parse

• In our experiments, tree is then represented as log probability under the baseline model, plus a sparse feature array:

 $f_1(x, y) = \log \text{ probability of } (x, y) \text{ under the baseline model}$

$$\begin{split} f_i(x,y) &= 1 \text{ for } i = \{54, 118, 14, 10078, 9000, 1078, 101\} \\ f_i(x,y) &= 0 \text{ for all other } i \end{split}$$

• Score for the tree (x, y):

$$\begin{aligned} & \mathbf{f}(x,y) \cdot \mathbf{W} \\ &= \sum_{i} f_{i}(x,y) \mathbf{W}_{i} \\ &= \mathbf{W}_{1} \mathbf{f}_{1}(x,y) + \mathbf{W}_{54} + \mathbf{W}_{118} + \mathbf{W}_{14} + \mathbf{W}_{10078} + \mathbf{W}_{9000} + \mathbf{W}_{1078} + \mathbf{W}_{101} \end{aligned}$$

42

From [Collins and Koo, 2005]:

The following types of features were included in the model. We will use the rule $VP \rightarrow PP VBD NP NP SBAR$ with head VBD as an example. Note that the output of our baseline parser produces syntactic trees with headword annotations.

Bigrams These are adjacent pairs of non-terminals to the left and right of the head. As shown, the example rule would contribute the bigrams (Right,VP,NP,NP), (Right,VP,NP,SBAR), (Right,VP,SBAR,STOP), and (Left,VP,PP,STOP) to the left of the head.

Rules These include all context-free rules in the tree, for example $VP \rightarrow PP$ VBD NP NP SBAR.

45

Grandparent Rules Same as Rules, but also including the non-terminal above the rule.

Lexical Bigrams Same as **Bigrams**, but with the lexical heads of the two non-terminals also included.

VP PP(in) VBD(gave) (NP(boy) SBAR(because) NP(treat)

Two-level Rules Same as Rules, but also including the entire rule above the rule.

Grandparent Bigrams Same as **Bigrams**, but also including the non-terminal above the bigrams.

49

Two-level Bigrams Same as **Bigrams**, but also including the entire rule above the rule.

Trigrams All trigrams within the rule. The example rule would contribute the trigrams (VP,STOP,PP,VBD!), (VP,PP,VBD!,NP), (VP,VBD!,NP,NP), (VP,NP,NP,SBAR) and (VP,NP, SBAR,STOP) (! is used to mark the head of the rule)

53

Head-Modifiers All head-modifier pairs, with the grandparent non-terminal also included. An adj flag is also included, which is 1 if the modifier is adjacent to the head, 0 otherwise. As an example, say the non-terminal dominating the example rule is S. The example rule would contribute (Left,S,VP,VBD,PP,adj=1), (Right,S,VP,VBD,NP,adj=1), (Right,S,VP,VBD,SBAR, adj=0).

PPs Lexical trigrams involving the heads of arguments of prepositional phrases. The example shown at right would contribute the trigram (NP,NP,PP,NP,president,of,U.S.), in addition to the more general trigram relation (NP,NP,PP,NP,of,U.S.).

Overview

- A brief review of history-based methods
- A new framework: Global linear models
- Parsing problems in this framework: Reranking problems
- Parameter estimation method 1: A variant of the perceptron algorithm

59

A Variant of the Perceptron Algorithm

Inputs:	Training set (x_i, y_i) for $i = 1 \dots n$
Initialization:	$\mathbf{W} = 0$
Define:	$F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \mathbf{f}(x, y) \cdot \mathbf{W}$
Algorithm:	For $t = 1 \dots T$, $i = 1 \dots n$ $z_i = F(x_i)$ If $(z_i \neq y_i)$ $\mathbf{W} = \mathbf{W} + \mathbf{f}(x_i, y_i) - \mathbf{f}(x_i, z_i)$
Output:	Parameters W

Distance Head-Modifiers Features involving the distance between head words. For example, assume *dist* is the number of words between the head words of the VBD and SBAR in the (VP, VBD, SBAR) head-modifier relation in the above rule. This relation would then generate features (VP, VBD, SBAR, = *dist*), and (VP, VBD, SBAR, $\leq x$) for all *dist* $\leq x \leq 9$ and (VP, VBD, SBAR, $\geq x$) for all $1 \leq x \leq dist$.

Further Lexicalization In order to generate more features, a second pass was made where all non-terminals were augmented with their lexical heads when these headwords were closed-class words. All features apart from **Head-Modifiers**, **PPs** and **Distance Head-Modifiers** were then generated with these augmented non-terminals.

Theory Underlying the Algorithm

- **Definition:** $\overline{\mathbf{GEN}}(x_i) = \mathbf{GEN}(x_i) \{y_i\}$
- Definition: The training set is separable with margin δ , if there is a vector $\mathbf{U} \in \mathbb{R}^d$ with $||\mathbf{U}|| = 1$ such that

$$\forall i, \forall z \in \overline{\mathbf{GEN}}(x_i) \quad \mathbf{U} \cdot \mathbf{f}(x_i, y_i) - \mathbf{U} \cdot \mathbf{f}(x_i, z) \ge \delta$$

GEOMETRIC INTUITION BEHIND SEPARATION

ALL EXAMPLES ARE SEPARATED

THEORY UNDERLYING THE ALGORITHM

Theorem: For any training sequence (x_i, y_i) which is separable with margin δ , then for the perceptron algorithm

Number of mistakes $\leq \frac{R^2}{\delta^2}$

where R is a constant such that $\forall i, \forall z \in \overline{\mathbf{GEN}}(x_i)$ $||\mathbf{f}(x_i, y_i) - \mathbf{f}(x_i, z)|| \le R$

Proof: Direct modification of the proof for the classification case.

Proof:

Let \mathbf{W}^k be the weights before the k'th mistake. $\mathbf{W}^1 = 0$ If the k'th mistake is made at i'th example, and $z_i = \operatorname{argmax}_{y \in \mathbf{GEN}(x_i)} \mathbf{f}(x_i, y) \cdot \mathbf{W}^k$, then $\mathbf{W}^{k+1} = \mathbf{W}^k + \mathbf{f}(x_i, y_i) - \mathbf{f}(x_i, z_i)$ $\Rightarrow \mathbf{U} \cdot \mathbf{W}^{k+1} = \mathbf{U} \cdot \mathbf{W}^k + \mathbf{U} \cdot \mathbf{f}(x_i, y_i) - \mathbf{U} \cdot \mathbf{f}(x_i, z_i)$ $\geq \mathbf{U} \cdot \mathbf{W}^k + \delta$ $\geq k\delta$ $\Rightarrow ||\mathbf{W}^{k+1}|| \geq k\delta$ Also, $||\mathbf{W}^{k+1}||^2 = ||\mathbf{W}^k||^2 + ||\mathbf{f}(x_i, y_i) - \mathbf{f}(x_i, z_i)||^2 + 2\mathbf{W}^k \cdot (\mathbf{f}(x_i, y_i) - \mathbf{f}(x_i, z_i))$ $\leq ||\mathbf{W}^k||^2 + R^2$ $\Rightarrow ||\mathbf{W}^{k+1}||^2 \leq kR^2$ $\Rightarrow k^2\delta^2 \leq ||\mathbf{W}^{k+1}||^2 \leq kR^2$ $\Rightarrow k \leq R^2/\delta^2$

67

Perceptron Experiments: Parse Reranking

Parsing the Wall Street Journal Treebank

Training set = 40,000 sentences, test = 2,416 sentences Generative model (Collins 1999): 88.2% F-measure Reranked model: 89.5% F-measure (11% relative error reduction) Boosting: 89.7% F-measure (13% relative error reduction)

- Results from Charniak and Johnson, 2005:
 - Improvement from 89.7% (baseline generative model) to 91.0% accuracy
 - Uses a log-linear model
 - Gains from improved n-best lists, better features

Summary

- A new framework: global linear models GEN, f, W
- There are several ways to train the parameters W:
 - Perceptron
 - Boosting
 - Log-linear models (maximum-likelihood)
- Applications:
 - Reranking models
 - LFG parsing
 - Generation
 - Machine translation
 - Tagging problems
 - Speech recognition

69