A Note on the Identities in Section 5.2 Here's a derivation that hopefully clarifies some of the steps in section 5.2 of the note on EM.

Say that we could efficiently calculate the following quantities for any x of length n, for any $j \in 1 \ldots n$, and for any $p \in 1 \ldots(N-1)$ and $q \in 1 \ldots N$:

$$
\begin{equation*}
P\left(y_{j}=p, y_{j+1}=q \mid x, \Theta\right)=\sum_{y: y_{j}=p, y_{j+1}=q} P(y \mid x, \Theta) \tag{1}
\end{equation*}
$$

The inner sum can now be re-written using terms such as that in Eq. 1, as

$$
\sum_{y} P\left(y \mid x^{i}, \Theta^{t-1}\right) \operatorname{Count}\left(x^{i}, y, p \rightarrow q\right)=\sum_{j=1}^{n_{i}} P\left(y_{j}=p, y_{j+1}=q \mid x^{i}, \Theta^{t-1}\right)
$$

This identity was stated in section 5.2 on the note on EM; this note gives a justification for the identity.

To see why this is true, define

$$
g(y, j, p, q)
$$

to be 1 if $y_{j}=p$ and $y_{j+1}=q$, and 0 otherwise. It then follows that

$$
\operatorname{Count}\left(x^{i}, y, p \rightarrow q\right)=\sum_{j=1}^{n_{i}} g(y, j, p, q)
$$

We can then write

$$
\begin{aligned}
\sum_{y} P\left(y \mid x^{i}, \Theta^{t-1}\right) \operatorname{Count}\left(x^{i}, y, p \rightarrow q\right) & =\sum_{y} P\left(y \mid x^{i}, \Theta^{t-1}\right) \sum_{j=1}^{n_{i}} g(y, j, p, q) \\
& =\sum_{j=1}^{n_{i}} \sum_{y} P\left(y \mid x^{i}, \Theta^{t-1}\right) g(y, j, p, q) \\
& =\sum_{j=1}^{n_{i}} P\left(y_{j}=p, y_{j+1}=q \mid x^{i}, \Theta^{t-1}\right)
\end{aligned}
$$

where the last line follows because

$$
\sum_{y} P\left(y \mid x^{i}, \Theta^{t-1}\right) g(y, j, p, q)=P\left(y_{j}=p, y_{j+1}=q \mid x^{i}, \Theta^{t-1}\right)
$$

A similar argument can be used to derive the other identities, for example

$$
\sum_{y} P\left(y \mid x^{i}, \Theta^{t-1}\right) \operatorname{Count}\left(x^{i}, y, p \uparrow o\right)=\sum_{j: x_{j}=o} P\left(y_{j}=p \mid x^{i}, \Theta^{t-1}\right)
$$

