CSEE 3827: Fundamentals of Computer Systems

Lecture 4 & 5

February 2 & 4, 2009

Martha Kim martha@cs.columbia.edu Standard forms (redux)

- Product term: logical AND of literals (e.g., \overline{XYZ})
- Sum term: logical OR of literals (e.g., $A + \overline{B} + C$)

А	В	С	minterm
0	0	0	m0 ĀBĒ
0	0	1	m1 ĀBC
0	1	0	m2 ĀBĒ
0	1	1	m3 ĀBC
1	0	0	m4 ABC
1	0	1	m5 ABC
1	1	0	m6 ABC
1	1	1	m7 ABC

- A product term in which all variables appear once, either complemented or uncomplemented.
- Each minterm evaluates to 1 for exactly one variable assignment, 0 for all others.
- Denoted by mX where X corresponds to the variable assignment for which mX = 1.

Sum of minterms form

• The logical OR of all minterms for which F = 1.

А	В	С	minterm	F
0	0	0	m0 ĀBĒ	0
0	0	1	m1 ĀBC	1
0	1	0	m2 ĀBĒ	1
0	1	1	m3 ĀBC	1
1	0	0	m4 ABC	0
1	0	1	m5 ABC	0
1	1	0	m6 ABĒ	0
1	1	1	m7 ABC	0

 $F = \overline{ABC} + \overline{ABC} + \overline{ABC}$ = m1 + m2 + m3 $= \sum m(1,2,3)$

Sum of minterms form (2)

• The logical OR of all minterms for which F = 1.

А	В	С	minterm	F	m0	m1 m2 m3	m4	m5	m6	m7
0	0	0	m0 ĀBĒ	0	1	0 + 0 + 0	0	0	0	0
0	0	1	m1 ĀBC	1	0	1 + 0 + 0	0	0	0	0
0	1	0	m2 ĀBĒ	1	0	0 + 1 + 0	0	0	0	0
0	1	1	m3 ĀBC	1	0	0 + 0 + 1	0	0	0	0
1	0	0	m4 ABC	0	0	0 + 0 + 0	1	0	0	0
1	0	1	m5 ABC	0	0	0 + 0 + 0	0	1	0	0
1	1	0	m6 ABC	0	0	0 + 0 + 0	0	0	1	0
1	1	1	m7 ABC	0	0	0 + 0 + 0	0	0	0	1

Sum of minterms form (3)

• What is F in sum of minterms form?

Α	В	С	minterm	F
0	0	0	m0 ĀBĒ	0
0	0	1	m1 ĀBC	1
0	1	0	m2 ĀBĒ	1
0	1	1	m3 ĀBC	1
1	0	0	m4 ABC	0
1	0	1	m5 ABC	0
1	1	0	m6 ABŪ	0
1	1	1	m7 ABC	0

Sum of minterms form (4)

• What is $A(\overline{B}+C)$ in sum of minterms form?

А	В	С	maxterm
0	0	0	M0 A+B+C
0	0	1	M1 A+B+C
0	1	0	M2 A+B+C
0	1	1	M3 A+B+C
1	0	0	M4 A+B+C
1	0	1	M5 Ā+B+Ē
1	1	0	M6 Ā+B+C
1	1	1	M7 Ā+B+C

- A sum term in which all variables appear once, either complemented or uncomplemented.
- Each maxterm evaluates to 0 for exactly one variable assignment, 1 for all others.
- Denoted by MX where X corresponds to the variable assignment for which MX = 0.

Relationship between minterms and maxterms

• Minterms and maxterms with the same subscripts are complements.

 $\overline{mX} = MX$

Product of maxterms form

• The logical AND of all maxterms for which F = 0.

А	В	С	maxterm	F
0	0	0	M0 A+B+C	0
0	0	1	M1 A+B+C	1
0	1	0	M2 A+B+C	1
0	1	1	M3 A+B+C	1
1	0	0	M4 A+B+C	0
1	0	1	M5 Ā+B+Ē	0
1	1	0	M6 Ā+B+C	0
1	1	1	M7 A+B+C	0

 $\mathsf{F} = (\mathsf{A} + \mathsf{B} + \mathsf{C}) \ \overline{(\mathsf{A}} + \mathsf{B} + \mathsf{C}) \ \overline{(\mathsf{A}} + \mathsf{B} + \mathsf{C}) \ \overline{(\mathsf{A}} + \overline{\mathsf{B}} + \mathsf{C}) \ \overline{(\mathsf{A}} + \overline{\mathsf{B}} + \mathsf{C})}$

= (M0) (M4) (M5) (M6) (M7)

 $= \prod M(0,4,5,6,7)$

Product of maxterms form (2)

• The logical AND of all maxterms for which F = 0.

А	В	С	maxterm	F	MO	M1	M2	МЗ	M4	M5	M6	M7
0	0	0	M0 A+B+C	0	0	1	1	1	1	1	1	1
0	0	1	M1 A+B+C	1	1	0	1	1	1	1	1	1
0	1	0	M2 A+B+C	1	1	1	0	1	1	1	1	1
0	1	1	M3 A+B+C	1	1	1	1	0	1	1	1	1
1	0	0	M4 A+B+C	0	1	1	1	1	0	1	1	1
1	0	1	M5 Ā+B+Ē	0	1	1	1	1	1	0	1	1
1	1	0	M6 Ā+B+C	0	1	1	1	1	1	1	0	1
1	1	1	M7 A+B+C	0	1	1	1	1	1	1	1	0

Product of maxterms form (3)

• What is \overline{F} in product of maxterms form?

Α	В	С	maxterm	F
0	0	0	M0 A+B+C	0
0	0	1	M1 A+B+C	1
0	1	0	M2 A+B+C	1
0	1	1	M3 A+B+C	1
1	0	0	M4 A+B+C	0
1	0	1	M5 Ā+B+Ē	0
1	1	0	M6 Ā+B+C	0
1	1	1	M7 A+B+C	0

• Sum of products (SOP): OR of ANDs

e.g.,
$$F = \overline{Y} + \overline{X}Y\overline{Z} + XY$$

• Product of sums (POS): AND of ORs

e.g.,
$$G = X(\overline{Y} + Z)(X + Y + \overline{Z})$$

Relations between standard forms

CSEE 3827, Spring 2009

Expression simplification / circuit optimization

Cost criteria

- Literal cost: the number of literals in an expression
- Gate-input cost: the literal cost + all terms with more than one literal + (optionally) the number of distinct, complemented single literals

Roughly proportional to the number of transistors and wires in an AND/OR/NOT circuits. Does not apply, to more complex gates, for example XOR.

	Literal cost	Gate-input cost
$G = \overline{A}\overline{B}\overline{C}\overline{D} + ABCD$	8	8 + 2 + (4)
$G = (\overline{A} + B)(\overline{B} + C)(\overline{C} + D)(\overline{D} + A)$	8	8 + 4 + (4)

Karnaugh maps

- All functions can be expressed with a map
- There is one square in the map for each minterm in a function's truth table

Karnaugh maps express functions

• Fill out table with value of a function

Simplification using a k-map

• Whenever two squares share an edge and both are 1, those two terms can be combined to form a single term with one less variable

Simplification using a k-map (2)

- Circle contiguous groups of 1s (circle sizes must be a power of 2)
- There is a correspondence between circles on a k-map and terms in a function expression
- The bigger the circle, the simpler the term
- Add circles (and terms) until all 1s on the k-map are circled

Karnaugh maps: terminology

- A term is an **implicant** if it has the value 1 for all minterms (corresponds to any circled groups of 1, 2, 4, etc. 1s on a k-map)
- A term is a **prime implicant** if the removal of any literal makes it no longer an implicant (corresponds to circles that cannot be made any larger)
- If a minterm is included in only one prime implicant, that implicant is called an essential prime implicant (corresponds to any circle that is the only one to cover a 1 on a k-map)

3-variable Karnaugh maps

- Use gray ordering on edges with multiple variables
- Gray encoding: order of values such that only one bit changes at a time
- Two minterms are considered adjacent if they differ in only one variable (this means maps wrap)

3-variable Karnaugh maps (2)

- List all all of the prime implicants for this function
- Is any of them an essential prime implicant?
- What is a simplified expression for this function?

4-variable Karnaugh maps

• Extension of 3-variable maps

4-variable Karnaugh maps (2)

- List all all of the prime implicants for this function
- Is any of them an essential prime implicant?
- What is a simplified expression for this function?

4-variable Karnaugh maps (3)

- List all all of the prime implicants for this function
- Is any of them an essential prime implicant?
- What is a simplified expression for this function?

5-variable Karnaugh maps

A = 0

A = 1

CSEE 3827, Spring 2009

5-variable Karnaugh map (2)

• What is a simplified expression for this function?

Design example : 2-bit multiplier

a1	aO	b1	b0	z3	z2	z1	z0
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

K-Maps: Complements, POS, don't care conditions

Finding \overline{F}

• Find prime implicants corresponding to the 0s on a k-map

 $\overline{F} = YZ + WXY$

POS expressions from a k-map

• Find \overline{F} as SOP and then apply DeMorgan's

Optimized standard forms Example

- M&K 2-26 (b)
- Find optimized versions of F as SOP and as POS:

 $F(W,X,Y,Z) = \sum m(3,4,9,15)$ $d(W,X,Y,Z) = \sum m(0,1,2,5,10,14)$

Don't care conditions

- There are circumstances in which the value of an output doesn't matter
- For example, in that 2-bit multiplier, what if there were only 3 bits for the product and one bit to indicate an overflow situation?
- Don't care situations are denoted by "x" in a truth table and in Karnaugh maps.
- Can also be expressed in minterm form:

 $z_2 = \Sigma m(10, 11, 14)$ $d = \Sigma m(15)$

 During minimization can be treated as either a 1 or a 0

a1	a0	b1	b0	0	z2	z1	z0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	1	1	0
1	1	1	1	1	х	х	х

Don't care example

- M&K 2-24 (a)
- Optimize this function:

 $F(A,B,C,D) = \sum m(0,1,7,13,15)$ $d(A,B,C,D) = \sum m(2,6,8,9,10)$

Glitches and hazards

- Glitch: an unintended change in circuit output
- Hazard: the hardware structures that cause a glitch to occur
- Caused by multiple path delays through a circuit
- Example: $\overline{A}\overline{B} + BC$
- Avoidance
 - Synchronous design (coming later)
 - Extra implicants

Next week: multibit outputs and standard circuits