CSEE 3827: Fundamentals of Computer Systems

Lecture 4 \& 5

February 2 \& 4, 2009

Martha Kim
martha@cs.columbia.edu

Standard forms (redux)

Product and sum terms

- Product term: logical AND of literals (e.g., $X \bar{Y} Z$)
- Sum term: logical OR of literals (e.g., $A+\bar{B}+C$)

Minterms

A	B	C	minterm
0	0	0	$m 0$
$\bar{A} \bar{B} \bar{C}$			
0	0	1	$m 1$
$A \bar{B} C$			
0	1	0	$m 2$
$A B \bar{C}$			
0	1	1	$m 3$
$A B C$			
1	0	0	$m 4$
$A \bar{B} \bar{C}$			
1	0	1	$m 5$
$A \bar{B} C$			
1	1	0	$m 6$

- A product term in which all variables appear once, either complemented or uncomplemented.
- Each minterm evaluates to 1 for exactly one variable assignment, 0 for all others.
- Denoted by mX where X corresponds to the variable assignment for which $\mathrm{mX}=1$.

Sum of minterms form

- The logical OR of all minterms for which $F=1$.

A	B	C	minterm	F	
0	0	0	$\mathrm{m0} \overline{\mathrm{~A}} \overline{\mathrm{~B}} \overline{\mathrm{C}}$	0	
0	0	1	$\mathrm{m} 1 \quad \overline{\mathrm{~A}} \overline{\mathrm{~B}} \mathrm{C}$	1	$F=\bar{A} \bar{B} C+\bar{A} B \bar{C}+\bar{A} B C$
0	1	0	$m 2 \bar{A} B \bar{C}$	1	$=m 1+m 2+m 3$
0	1	1	$m 3 \bar{A} B C$	1	$=\sum m(1,2,3)$
1	0	0	$m 4 A \bar{B} \bar{C}$	0	
1	0	1	m5 A $\bar{B} C$	0	
1	1	0	m6 ABC	0	
1	1	1	m7 ABC	0	

Sum of minterms form (2)

- The logical OR of all minterms for which $\mathrm{F}=1$.

Sum of minterms form (3)

- What is \bar{F} in sum of minterms form?

A	B	C	minterm	F	
0	0	0	$m 0$	$\bar{A} \bar{B} \bar{C}$	0
0	0	1	$m 1$	$\bar{A} \bar{B} C$	1
0	1	0	$m 2$	$\bar{A} B \bar{C}$	1
0	1	1	$m 3$	$\bar{A} B C$	1
1	0	0	$m 4$	$A \bar{B} \bar{C}$	0
1	0	1	$m 5$	$A \bar{B} C$	0
1	1	0	$m 6$	$A B \bar{C}$	0
1	1	1	$m 7$	$A B C$	0

Sum of minterms form (4)

- What is $A(\bar{B}+C)$ in sum of minterms form?

Maxterms

A	B	C	maxterm	
0	0	0	$M 0$	$A+B+C$
0	0	1	$M 1$	$A+B+\bar{C}$
0	1	0	$M 2$	$A+\bar{B}+C$
0	1	1	$M 3$	$A+\bar{B}+\bar{C}$
1	0	0	$M 4$	$\bar{A}+B+C$
1	0	1	$M 5$	$\bar{A}+B+\bar{C}$
1	1	0	$M 6$	$\bar{A}+\bar{B}+C$
1	1	1	$M 7$	$\bar{A}+\bar{B}+\bar{C}$

- A sum term in which all variables appear once, either complemented or uncomplemented.
- Each maxterm evaluates to 0 for exactly one variable assignment, 1 for all others.
- Denoted by MX where X corresponds to the variable assignment for which $M X=0$.

Relationship between minterms and maxterms

- Minterms and maxterms with the same subscripts are complements.

$$
\overline{m X}=M X
$$

Product of maxterms form

- The logical AND of all maxterms for which $\mathrm{F}=0$.

Product of maxterms form (2)

- The logical AND of all maxterms for which $\mathrm{F}=0$.

A	B	C	maxterm	F	MO	M1	M2	M3	M4	M5	M6	M7
0	0	0	M0 A+B+C	0	0	1	1	1	1	1	1	1
0	0	1	M1 $\mathrm{A}+\mathrm{B}+\overline{\mathrm{C}}$	1	1	0	1	1	1	1	1	1
0	1	0	M2 A+ $\bar{B}+C$	1	1	1	0	1	1	1	1	1
0	1	1	M3 $A+\bar{B}+\bar{C}$	1	1	1	1	0	1	1	1	1
1	0	0	M4 $\overline{\text { A }}+\mathrm{B}+\mathrm{C}$	0	1	1	1	1	0	1	1	1
1	0	1	M5 $\bar{A}+B+\bar{C}$	0	1	1	1	1	1	0	1	1
1	1	0	M6 $\overline{\mathrm{A}}+\overline{\mathrm{B}}+\mathrm{C}$	0	1	1	1	1	1	1	0	1
1	1	1	M7 $\overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}}$	0	1	1	1	1	1	1	1	0

Product of maxterms form (3)

- What is $\overline{\mathrm{F}}$ in product of maxterms form?

A	B	C	maxterm	F
0	0	0	$M 0$	$A+B+C$
0	0	1	$M 1$	$A+B+\bar{C}$
0	1	0	$M 2$	$A+\bar{B}+C$
0	1	1	$M 3$	$A+\bar{B}+\bar{C}$
1	0	0	$M 4$	1
1	0	1	$M 5$	$\bar{A}+B+B+\bar{C}$
1	1	0	$M 6$	$\bar{A}+\bar{B}+C$
1	1	1	$M 7$	0
$A+\bar{B}+\bar{C}$	0			

Summary of forms

	F	\bar{F}
Sum of minterms	$\sum m(F=1)$	$\sum m(F=0)$
Product of maxterms	$\Pi M(F=0)$	$\Pi M(F=1)$

POS \& SOP

- Sum of products (SOP): OR of ANDs

$$
\text { e.g., } F=\bar{Y}+\bar{X} Y \bar{Z}+X Y
$$

- Product of sums (POS): AND of ORs

$$
\text { e.g., } G=X(\bar{Y}+Z)(X+Y+\bar{Z})
$$

Relations between standard forms

Expression simplification / circuit optimization

Cost criteria

- Literal cost: the number of literals in an expression
- Gate-input cost: the literal cost + all terms with more than one literal + (optionally) the number of distinct, complemented single literals

Karnaugh maps

- All functions can be expressed with a map
- There is one square in the map for each minterm in a function's truth table

Karnaugh maps express functions

- Fill out table with value of a function

Simplification using a k-map

- Whenever two squares share an edge and both are 1, those two terms can be combined to form a single term with one less variable

$$
F=X+Y
$$

$$
F=X+\bar{X} Y
$$

Simplification using a k-map (2)

- Circle contiguous groups of 1 s (circle sizes must be a power of 2)
- There is a correspondence between circles on a k -map and terms in a function expression
- The bigger the circle, the simpler the term
- Add circles (and terms) until all 1s on the k-map are circled

$$
F=X+Y
$$

Karnaugh maps: terminology

- A term is an implicant if it has the value 1 for all minterms (corresponds to any circled groups of $1,2,4$, etc. 1 s on a k-map)
- A term is a prime implicant if the removal of any literal makes it no longer an implicant (corresponds to circles that cannot be made any larger)
- If a minterm is included in only one prime implicant, that implicant is called an essential prime implicant (corresponds to any circle that is the only one to cover a 1 on a k-map)

$$
F=X+Y
$$

Karnaugh-map example

3-variable Karnaugh maps

- Use gray ordering on edges with multiple variables
- Gray encoding: order of values such that only one bit changes at a time
- Two minterms are considered adjacent if they differ in only one variable (this means maps wrap)

3-variable Karnaugh maps (2)

- List all all of the prime implicants for this function
- Is any of them an essential prime implicant?
- What is a simplified expression for this function?

4-variable Karnaugh maps

- Extension of 3-variable maps

4-variable Karnaugh maps (2)

- List all all of the prime implicants for this function
- Is any of them an essential prime implicant?
- What is a simplified expression for this function?

4-variable Karnaugh maps (3)

- List all all of the prime implicants for this function
- Is any of them an essential prime implicant?
- What is a simplified expression for this function?

5-variable Karnaugh maps

$A=0$

$A=1$

5-variable Karnaugh map (2)

-What is a simplified expression for this function?

$A=0$

$A=1$

Design example : 2-bit multiplier

a1	a0	b1	$b 0$	$z 3$	$z 2$	$z 1$	$z 0$
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

K-Maps: Complements, POS, don't care conditions

Finding $\overline{\mathrm{F}}$

- Find prime implicants corresponding to the Os on a k-map

$F=\bar{Y}+\bar{X} \bar{Z}+\bar{W} \bar{Z}$

Y Z				
WX	00	01	11	10
00	0	0	1	0
01	0	0	1	0
11	0	0	1	$1)$
10	0	0	1	0

$\bar{F}=Y Z+W X Y$

POS expressions from a k-map

- Find \bar{F} as SOP and then apply DeMorgan's

Optimized standard forms Example

- M\&K 2-26 (b)
- Find optimized versions of F as SOP and as POS:

$$
\begin{aligned}
& F(W, X, Y, Z)=\sum m(3,4,9,15) \\
& d(W, X, Y, Z)=\sum m(0,1,2,5,10,14)
\end{aligned}
$$

Don't care conditions

- There are circumstances in which the value of an output doesn't matter
- For example, in that 2-bit multiplier, what if there were only 3 bits for the product and one bit to indicate an overflow situation?
- Don't care situations are denoted by " x " in a truth table and in Karnaugh maps.
- Can also be expressed in minterm form:

$$
\begin{aligned}
z 2 & =\Sigma m(10,11,14) \\
d & =\Sigma m(15)
\end{aligned}
$$

- During minimization can be treated as either a 1 or a 0

a1	a0	b1	b0	0	z2	z1	z0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	1	1	0
1	1	1	1	1	x	x	x

Don't care example

- M\&K 2-24 (a)
- Optimize this function:

$$
\begin{aligned}
& F(A, B, C, D)=\sum m(0,1,7,13,15) \\
& d(A, B, C, D)=\sum m(2,6,8,9,10)
\end{aligned}
$$

Glitches and hazards

- Glitch: an unintended change in circuit output
- Hazard: the hardware structures that cause a glitch to occur
- Caused by multiple path delays through a circuit
- Example: $\bar{A} \bar{B}+B C$
- Avoidance
- Synchronous design (coming later)
- Extra implicants

Next week: multibit outputs and standard circuits

