CSEE 3827: Fundamentals of Computer Systems

Lecture 3

January 28, 2009

Martha Kim
martha@cs.columbia.edu

Agenda

- DeMorgan's theorem
- Duals
- Standard forms

DeMorgan's Theorem

- Procedure for complementing expressions
- Replace...
- AND with OR, OR with AND
- 1 with 0,0 with 1
- X with $\overline{\mathrm{X}}, \overline{\mathrm{X}}$ with X

$$
\begin{aligned}
& \overline{X Y}=\bar{X}+\bar{Y} \\
& \overline{X+Y}=\bar{X} \bar{Y}
\end{aligned}
$$

Prove DeMorgan's Theorem

$$
\overline{X Y}=\bar{X}+\bar{Y}
$$

Prove DeMorgan's Theorem

$$
\overline{X Y}=\bar{X}+\bar{Y}
$$

DeMorgan's Practice

$$
F=\overline{\overline{\mathrm{AB}} \overline{\mathrm{~B}}}+\overline{\mathrm{ACD}}+\mathrm{B} \mathrm{\bar{C}}
$$

DeMorgan's Practice

$$
\begin{aligned}
F & =\overline{\bar{A} \bar{B} C}+\overline{\mathrm{ACD}}+\mathrm{B} \overline{\bar{C}} \\
& =(A \bar{B} C)(A C D)(\overline{B \bar{C}}) \\
& =(A \bar{B} C D)(\bar{B}+C) \\
& =A \bar{B} C D+A \bar{B} C D \\
& =A \bar{B} C D
\end{aligned}
$$

Duals

Duals

- A theorem about theorems
- All boolean expressions have duals
- Any theorem you can prove, you can also prove for its dual
- To form a dual...
- replace AND with OR, OR with AND
- replace 1 with 0,0 with 1

What is the dual of this expression?

$$
\bar{X}+\bar{Y}=\overline{X Y}
$$

What is the dual of this expression?

$$
\begin{gathered}
\bar{X}+\bar{Y}=\overline{X Y} \\
\overline{\bar{W}} \\
\overline{\bar{z}} \\
\bar{X} \bar{Y}=\overline{X+Y}
\end{gathered}
$$

What are the complements of these expressions?

What are the complements of these expressions?

These are also the duals of one another.

Can be used for gate manipulation.

$$
\bar{X}+\bar{Y}=\overline{X Y}
$$

$$
-Q_{\text {NAND }} \longleftrightarrow-\text { NAND } 0-
$$

$$
\bar{X} \bar{Y}=\overline{X+Y}
$$

$$
X+Y=\overline{\bar{X}} \bar{Y}
$$

Boolean Algebra: Identities and Theorems

OR	AND	NOT	
$X+0=X$	$X 1=X$		(identity)
$X+1=1$	$X 0=0$		(null)
$X+X=X$	$X X=X$		(idempotent)
$X+\bar{X}=1$	$X \bar{X}=0$		(complementarity)
		$\overline{\bar{X}}=X$	(involution)
$X+Y=Y+X$	$X Y=Y X$		(commutativity)
$X+(Y+Z)=(X+Y)+Z$	$X(Y Z)=(X Y) Z$		(associativity)
$X(Y+Z)=X Y+X Z$	$X+Y Z=(X+Y)(X+Z)$		(distributive)
$\overline{X+Y}=\bar{X} \bar{Y}$	$\overline{X Y}=\bar{X}+\bar{Y}$		(DeMorgan's theorem)

Standard forms

Standard Forms

- There are many ways to express a boolean expression

$$
\begin{aligned}
F & =X Y Z+X Y Z+x Z \\
& =x Y(Z+Z)+x Z \\
& =x Y+x Z
\end{aligned}
$$

- It is useful to have a standard or canonical way
- Derived from truth table
- Generally not the simplest form

Two principle standard forms

- Sum-of-products (SOP)
- Product-of-sums (POS)

Sum-of-products form

- sometimes also called disjunctive normal form (DNF)
- sometimes also called a minterm expansion

Sum-of-products form 2

A	B	C	F	\bar{F}	minterm
0	0	0	1	0	$\mathrm{mo} \overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}}$
0	0	1	1	0	$\mathrm{m1} \overline{\mathrm{~A}} \overline{\mathrm{~B}} \mathrm{C}$
0	1	0	1	0	$\mathrm{m} 2 \overline{\mathrm{~A}} \mathrm{~B} \overline{\mathrm{C}}$
0	1	1	0	1	m3 $\overline{\text { A }} \mathrm{BC}$
1	0	0	1	0	$\mathrm{m} 4 \mathrm{~A} \bar{B} \bar{C}$
1	0	1	1	0	m5 A $\bar{B} C$
1	1	0	0	1	$m 6$ ABC
1	1	1	0	1	m7 ABC

Sum-of-products form 3

Two principle standard forms

- Sum-of-products (SOP)
- Product-of-sums (POS)

Product-of-sums form

- sometimes also called conjunctive normal form (CNF)
- sometimes also called a maxterm expansion

$$
F=(\mathrm{A}+\overline{\mathrm{B}}+\overline{\mathrm{C}})(\overline{\mathrm{A}}+\overline{\mathrm{B}}+\mathrm{C})(\overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}})
$$

Product-of-sums form

- sometimes also called conjunctive normal form (CNF)
- sometimes also called a maxterm expansion

$$
F=(A+\bar{B}+\bar{C})(\bar{A}+\bar{B}+C)(\bar{A}+\bar{B}+\bar{C})
$$

A	B	C	F	\bar{F}
0	0	0	1	0

Product-of-sums form 2

A	B	C	F	\bar{F}	maxterm	
0	0	0	1	0	MO A+B+C	$F=(A+\bar{B}+\bar{C})(\bar{A}+\bar{B}+C)(\overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}})$
0	0	1	1	0	M1 A+B+C	= (M3)(M6)(M7)
0	1	0	1	0	$\mathrm{M} 2 \quad \mathrm{~A}+\overline{\mathrm{B}}+\mathrm{C}$	$=\prod \mathrm{M}(3,6,7)$
0	1	1	0	1	M3 A+B $+\bar{C}$	
1	0	0	1	0	M4 $\bar{A}+B+C$	$\bar{F}=(A+B+C)(A+B+\bar{C})(A+\bar{B}+C) \overline{(A}+B+C) \overline{(A}+B+\bar{C})$
1	0	1	1	0	M5 $\overline{\mathrm{A}}+\mathrm{B}+\overline{\mathrm{C}}$	$=(\mathrm{MO})(\mathrm{M} 1)(\mathrm{M} 2)(\mathrm{M} 4)(\mathrm{M} 5)$
1	1	0	0	1	M6 $\overline{\mathrm{A}}+\overline{\mathrm{B}}+\mathrm{C}$	$=\prod \mathrm{M}(0,1,2,4,5)$
1	1	1	0	1	M7 $\overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}}$	

Summary of SOP and POS

Sum of products (SOP)

Product of sums (POS)

$\sum \mathrm{m}(\mathrm{F}=1)$	$\sum \mathrm{m}(\mathrm{F}=0)$
$\Pi \mathrm{M}(\mathrm{F}=0)$	$\Pi \mathrm{M}(\mathrm{F}=1)$

Standard Form Example

A	B	C	F	\bar{F}
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	0	1

F

\bar{F}
Sum of products
(SOP)

Product of sums (POS)

Standard Form Example

A	B	C	F	\bar{F}
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	0	1

	F	$\overline{\text { F }}$
$\underset{\substack{\text { Sum ff pooducts } \\ \text { (Sop) }}}{ }$	$\operatorname{\sum m}(1,3,5,6)$	$\operatorname{\sum m}(0,2,4,7)$
Producto (sums(Pos)	$\Pi М(0,2,4,7)$	$\Pi M(1,3,5,6)$

Converting between canonical forms

> DeMorgans

Next class: systematic minimization

