CSEE 3827: Fundamentals of Computer Systems

Lecture 3

January 28, 2009

Martha Kim martha@cs.columbia.edu

Agenda

- DeMorgan's theorem
- Duals
- Standard forms

DeMorgan's Theorem

- Procedure for complementing expressions
- Replace...
 - AND with OR, OR with AND
 - 1 with 0, 0 with 1
 - X with \overline{X} , \overline{X} with X

Prove DeMorgan's Theorem

Prove DeMorgan's Theorem

DeMorgan's Practice

$$F = \overline{\overline{ABC}} + \overline{ACD} + \overline{BC}$$

DeMorgan's Practice

 $F = \overline{\overline{ABC}} + \overline{\overline{ACD}} + \overline{BC}$ $= (\overline{ABC}) (\overline{ACD}) (\overline{BC})$ $=(\overline{ABCD})(\overline{B+C})$ $= A\overline{B}CD + A\overline{B}CD$

 $= A\overline{B}CD$

Duals

Duals

- A theorem about theorems
- All boolean expressions have duals
- Any theorem you can prove, you can also prove for its dual
- To form a dual...
 - replace AND with OR, OR with AND
 - replace 1 with 0, 0 with 1

What is the dual of this expression?

What is the dual of this expression?

What are the complements of these expressions?

What are the complements of these expressions?

These are also the duals of one another.

Can be used for gate manipulation.

Boolean Algebra: Identities and Theorems

OR	AND	NOT	
X + 0 = X	X1 = X		(identity)
X+1 = 1	X0 = 0		(null)
X+X = X	XX = X		(idempotent)
$X + \overline{X} = 1$	$\overline{XX} = 0$		(complementarity)
		$\overline{\overline{X}} = X$	(involution)
X+Y = Y+X	XY = YX		(commutativity)
X + (Y + Z) = (X + Y) + Z	X(YZ) = (XY)Z		(associativity)
X(Y+Z) = XY + XZ	X+YZ = (X+Y)(X+Z)		(distributive)
$\overline{X+Y} = \overline{X}\overline{Y}$	$\overline{XY} = \overline{X} + \overline{Y}$		(DeMorgan's theorem)

Standard forms

Standard Forms

• There are many ways to express a boolean expression

F = XYZ + XYZ + XZ= XY(Z + Z) + XZ= XY + XZ

- It is useful to have a standard or canonical way
- Derived from truth table
- Generally not the simplest form

Two principle standard forms

- Sum-of-products (SOP)
- Product-of-sums (POS)

Sum-of-products form

- sometimes also called **disjunctive normal form** (DNF)
- sometimes also called a *minterm expansion*

Sum-of-products form 2

						(variables appear once in each minterm)
А	В	С	F	F	minterm	
0	0	0	1	0	m0 ĀBĒ	$F = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$
0	0	1	1	0	m1 ABC	$= m0 + m1 + m2 + m4 + m5$ $= \sum m(1,0,2,4,5)$
0	1	0	1	0	m2 ĀBĒ	
0	1	1	0	1	m3 ĀBC	
1	0	0	1	0	m4 ABC	$\overline{F} = \overline{A}BC + AB\overline{C} + ABC$
1	0	1	1	0	m5 ABC	= m3 + m6 + m7 = $\sum m(3,6,7)$
1	1	0	0	1	m6 ABC	
1	1	1	0	1	m7 ABC	

(variables appear once in each minterm)

Sum-of-products form 3

Two principle standard forms

- Sum-of-products (SOP)
- Product-of-sums (POS)

Product-of-sums form

• sometimes also called **conjunctive normal form** (CNF)

• sometimes also called a maxterm expansion

Product-of-sums form

• sometimes also called **conjunctive normal form** (CNF)

• sometimes also called a maxterm expansion

Product-of-sums form 2

А	В	С	F	F	maxterm	
0	0	0	1	0	M0 A+B+C	$F = (A + \overline{B} + \overline{C}) (\overline{A} + \overline{B} + C) (\overline{A} + \overline{B} + \overline{C})$ $= (M3)(M6)(M7)$ $= \prod M(3,6,7)$
0	0	1	1	0	M1 A+B+C	
0	1	0	1	0	M2 A+B+C	
0	1	1	0	1	M3 A+B+C	
1	0	0	1	0	M4 Ā+B+C	$\overline{F} = (A+B+C)(A+B+C)(A+B+C)(\overline{A}+B+C)(\overline{A}+B+C)$
1	0	1	1	0	M5 Ā+B+C	$\overline{C} = (MO)(M1)(M2)(M4)(M5)$
1	1	0	0	1	M6 Ā+B+C	
1	1	1	0	1	M7 A+B+C	

Summary of SOP and POS

Standard Form Example

Standard Form Example

Converting between canonical forms

DeMorgans

Next class: systematic minimization