
CSEE 3827: Fundamentals of Computer Systems

Lecture 23

April 29, 2009

Martha Kim
martha@cs.columbia.edu

mailto:martha@cs.columbia.edu
mailto:martha@cs.columbia.edu

Caching

CSEE 3827, Spring 2009 Martha Kim

Memory Technology

Static RAM (SRAM) → 0.5ns – 2.5ns, $2000 – $5000 per GB

Dynamic RAM (DRAM) → 50ns – 70ns, $20 – $75 per GB

Magnetic disk → 5ms – 20ms, $0.20 – $2 per GB

Ideal memory = access time of SRAM + capacity and cost/GB of disk

3

CSEE 3827, Spring 2009 Martha Kim

Principle of Locality

4

Programs access a small proportion of their address space at any time

Temporal Locality:
Items accessed recently are likely to be accessed again soon

e.g., instructions in a loop, induction variables

Spatial locality:
Items near those accessed recently are likely to be accessed soon

E.g., sequential instruction access, array data

CSEE 3827, Spring 2009 Martha Kim

Taking Advantage of Locality

5

Organize memory hierarchically

Copy more recently accessed (and nearby) items from
DRAM to smaller SRAM memory → cache attached to CPU

Copy recently accessed (and nearby) items to smaller
DRAM memory → main memory

Store everything on disk

CSEE 3827, Spring 2009 Martha Kim

Canonical Memory Hierarchy

6

FIGURE 5.1 The basic structure of a memory hierarchy. By implementing the memory system
as a hierarchy, the user has the illusion of a memory that is as large as the largest level of the hierarchy, but
can be accessed as if it were all built from the fastest memory. Flash memory has replaced disks in many
embedded devices, and may lead to a new level in the storage hierarchy for desktop and server computers;
see Section 6.4. Copyright © 2009 Elsevier, Inc. All rights reserved.

CSEE 3827, Spring 2009 Martha Kim

Memory Hierarchy Levels

7

Block (aka line): unit of copying, may be
multiple words

→ If accessed data is present in upper level
• Hit: access satisfied by upper level
• Hit ratio: hits/accesses

→ If accessed data is absent
• Miss: block copied from lower level
• Time taken: miss penalty
• Miss ratio: misses

→ Accessed data then supplied from upper
level

How do we know if the data is present?
Where do we look?

FIGURE 5.2 Every pair of levels in the memory hierarchy can be thought of as having an
upper and lower level. Within each level, the unit of information that is present or not is called a block
or a line. Usually we transfer an entire block when we copy something between levels. Copyright © 2009
Elsevier, Inc. All rights reserved.

CSEE 3827, Spring 2009 Martha Kim

A General Memory Hierarchy

8

FIGURE 5.3 This diagram shows the structure of a memory hierarchy: as the distance
from the processor increases, so does the size. This structure, with the appropriate operating
mechanisms, allows the processor to have an access time that is determined primarily by level 1 of the hier-
archy and yet have a memory as large as level n. Maintaining this illusion is the subject of this chapter.
Although the local disk is normally the bottom of the hierarchy, some systems use tape or a fi le server over a
local area network as the next levels of the hierarchy. Copyright © 2009 Elsevier, Inc. All rights reserved.

n

CSEE 3827, Spring 2009 Martha Kim

Direct Mapped Cache

• Location determined by address

• Direct mapped: only one choice = (Block address) modulo (#Blocks in cache)

9

If a power of two, use
low order address bits

CSEE 3827, Spring 2009 Martha Kim

Tags and Valid Bits

• How do we know which particular block is stored in a cache location?

• Store block address as well as the data

• Actually, only need the high-order bits

• Called the tag

• What if there is no data in a location?

• Valid bit: 1 = present, 0 = not present

• Initially 0

10

CSEE 3827, Spring 2009 Martha Kim

Address Subdivision

11

FIGURE 5.7 For this cache, the lower portion of the address is used to select a cache
entry consisting of a data word and a tag. This cache holds 1024 words or 4 KB. We assume 32-bit
addresses in this chapter. The tag from the cache is compared against the upper portion of the address to
determine whether the entry in the cache corresponds to the requested address. Because the cache has 210

(or 1024) words and a block size of one word, 10 bits are used to index the cache, leaving 32 10 2 20 bits
to be compared against the tag. If the tag and upper 20 bits of the address are equal and the valid bit is on,
then the request hits in the cache, and the word is supplied to the processor. Otherwise, a miss occurs.
Copyright © 2009 Elsevier, Inc. All rights reserved.

CSEE 3827, Spring 2009 Martha Kim

Cache Example 1

12

Initial state after power on

8-block cache, 1 word/block, 32B memory

Index V Tag Data

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

CSEE 3827, Spring 2009 Martha Kim

Cache Example 2

13

Index V Tag Data

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1 1 0 Mem[10110]
1 1 1 0

After handling miss of address 10110

CSEE 3827, Spring 2009 Martha Kim

Cache Example 3

14

Index V Tag Data

0 0 0 0
0 0 1 0
0 1 0 1 1 1 Mem[11010]
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1 1 0 Mem[10110]
1 1 1 0

After handling miss of address 11010

CSEE 3827, Spring 2009 Martha Kim

Cache Example 4

15

Index V Tag Data

0 0 0 1 1 0 Mem[10000]
0 0 1 0
0 1 0 1 1 1 Mem[11010]
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1 1 0 Mem[10110]
1 1 1 0

After handling miss of address 10000

CSEE 3827, Spring 2009 Martha Kim

Cache Example 5

16

Index V Tag Data

0 0 0 1 1 0 Mem[10000]
0 0 1 0
0 1 0 1 1 1 Mem[11010]
0 1 1 1 0 0 Mem[00011]
1 0 0 0
1 0 1 0
1 1 0 1 1 0 Mem[10110]
1 1 1 0

After handling miss of address 00011

CSEE 3827, Spring 2009 Martha Kim

Cache Example 6

17

Index V Tag Data

0 0 0 1 1 0 Mem[10000]
0 0 1 0
0 1 0 1 1 0 Mem[10010]
0 1 1 1 0 0 Mem[00011]
1 0 0 0
1 0 1 0
1 1 0 1 1 0 Mem[10110]
1 1 1 0

After handling miss of address 10010

CSEE 3827, Spring 2009 Martha Kim

Multi-word Cache Blocks

18

32-bit memory address
2 bitsn bitsm bits32-n-m-2 bits

tag

index into cache
(cache = 2^m blocks)

index into block
(block = 2^n words)

index into word
(word = 4 bytes)

CSEE 3827, Spring 2009 Martha Kim

Example: Larger Block Size

• 64 blocks, 16 bytes/block

• To what block number does address 1200 map?

• Block address = floor(1200/16) = 75

• Block number = 75 modulo 64 = 11

19

32-bit memory address
2 bits6 bits22 bits 2 bits

CSEE 3827, Spring 2009 Martha Kim

Block Size Considerations

• Larger blocks should reduce miss rate, due to spatial locality

• But in a fixed-sized cache

• Larger blocks → fewer of them → more competition → increased miss rate

• Larger blocks → pollution

• Larger miss penalty, which could override benefit of reduced miss rate

20

CSEE 3827, Spring 2009 Martha Kim

Handling Cache Misses

• On cache hit, CPU proceeds normally

• On cache miss

• Stall the CPU pipeline

• Fetch block from next level of hierarchy

• After Instruction cache miss, restart instruction fetch

• After data cache miss, complete data access

21

CSEE 3827, Spring 2009 Martha Kim

Handling Writes: Write Through

• On data-write hit, could just update the block in cache, but then cache and
memory would be inconsistent

• Write through: on write, update memory as well as cache

• Makes writes take longer (e.g., if base CPI = 1, 10% of instructions are
stores, write to memory takes 100 cycles, effective CPI = 1 + 0.1×100 =
11)

• Solution: write buffer which holds data waiting to be written to memory.
CPU can now continue immediately, stalling only if write buffer is full.

22

CSEE 3827, Spring 2009 Martha Kim

Handling Writes: Write Back

• An alternative to write through

• Write through: on data-write hit, just update the block in cache

• Keep track of whether each block is dirty

• When a dirty block is replaced, write it back to memory

• Can use a write buffer to allow replacing block to be read first

23

CSEE 3827, Spring 2009 Martha Kim

Example: Intrinsity FastMATH

• Embedded MIPS processor

• 12-stage pipeline

• Instruction and data access on each cycle

• Split cache: separate I-cache and D-cache

• Each 16KB: 256 blocks × 16 words/block

• SPEC2000 miss rates

• I-cache: 0.4%

• D-cache: 11.4%

• Weighted average: 3.2%

24

Computer Architecture, Then and Now and Here

CSEE 3827, Spring 2009 Martha Kim

History of Processor Performance

26

CSEE 3827, Spring 2009 Martha Kim

History of Processor Performance

27

CSEE 3827

CSEE 3827, Spring 2009 Martha Kim

History of Processor Performance

28

CSEE 4824

CSEE 3827, Spring 2009 Martha Kim

The Power Wall

29

CSEE 3827, Spring 2009 Martha Kim

Sea Change in Architecture: Multicore

30

CSEE 3827, Spring 2009 Martha Kim

Modern Processor Performance

31

While single threaded performance has leveled, multithreaded performance potential scaling.

