CSEE 3827: Fundamentals of Computer Systems

Lecture 2

January 26, 2009

Martha Kim
mak2191@columbia.edu

Agenda

- TA office hours
- Boolean algebra
- Logic gates
- Circuit fabrication

TA Office Hours

TA Room, first floor of Mudd (see: http://ta.cs.columbia.edu/tamap.shtml)

Roopa Kakarlapudi Tuesdays 5-6:30PM
Harsh Parekh
Nishant Shah
Mondays 11-12:20PM; Tuesdays 3:30-5PM
Wednesdays 10-11:30AM

Boolean Logic

- Binary digits (or bits) have two values: $\{1,0\}$
- All logical functions can be implemented in terms of three logical operations:

AND

OR

Boolean Logic 2

- Precedence rules just like decimal system
- Implied precedence: NOT > AND > OR
- Use parentheses as necessary

$$
\begin{gathered}
A B+C=(A B)+C \\
(\bar{A}+B) C=((\bar{A})+B) C
\end{gathered}
$$

Boolean Logic: Example

D	X	A	$L=\bar{X}+A$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Boolean Logic: Example

D	X	A	\bar{X}	$\overline{D X}$	$\mathrm{~L}=\overline{\mathrm{DX}}+\mathrm{A}$
0	0	0	1	0	0
0	0	1	1	0	1
0	1	0	0	0	0
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	0	0	0
1	1	1	0	0	1

(M\&K Table 2-2)

Boolean Logic: Example 2

Boolean Logic: Example 2

Boolean Algebra: Identities and Theorems

OR	AND	NOT	
$X+0=X$	$X 1=X$		(identity)
$X+1=1$	$X 0=0$		(null)
$X+X=X$	$X X=X$		(idempotent)
$X+\bar{X}=1$	$X \bar{X}=0$		(complementarity)
		$\overline{\bar{X}}=\mathrm{X}$	(involution)
$X+Y=Y+X$	$X Y=Y X$		(commutativity)
$X+(Y+Z)=(X+Y)+Z$	$X(Y Z)=(X Y) Z$		(associativity)
$X(Y+Z)=X Y+X Z$	$X+Y Z=(X+Y)(X+Z)$		(distributive)
$\overline{X+Y}=\bar{X} \bar{Y}$	$\overline{X Y}=\bar{X}+\bar{Y}$		(DeMorgan's theorem)

Boolean Algebra: Example

Simplify this equation using algebraic manipulation.

$$
F=\bar{X} Y Z+\bar{X} Y \bar{Z}+X Z
$$

Boolean Algebra: Example

Simplify this equation using algebraic manipulation.

$$
\begin{aligned}
F= & \bar{X} Y Z+\bar{X} Y \bar{Z}+X Z & & \\
& \bar{X} Y(Z+\bar{Z})+X Z & & \text { (by reverse distribution) } \\
& \bar{X} Y 1+X Z & & \text { (by complementarity) } \\
& \bar{X} Y+X Z & & \text { (by identity) }
\end{aligned}
$$

Boolean Algebra: Example 2

Find the complement of F.

$$
\begin{aligned}
& F=A \bar{B}+\bar{A} B \\
& \bar{F}=
\end{aligned}
$$

Boolean Algebra: Example 2

Find the complement of F.

$$
\begin{array}{rlr}
F= & A \bar{B}+\bar{A} B \\
\bar{F}= & \overline{A \bar{B}+\overline{A B}} & \overline{(\bar{A})} \overline{(\bar{A} B)} \\
& & \text { (by DeMorgan's) } \\
& (\bar{A}+\overline{\bar{B}})(\bar{A}+\bar{B}) & \\
\text { (by DeMorgan's) } \\
& (\bar{A}+B)(A+\bar{B}) & \\
\text { (by involution) }
\end{array}
$$

Boolean Algebra: Why?

These circuits consume area, power, and time

Logic gate area

Information signaled through voltage level

(AND)

Idealized timing diagram of AND gate

Actual signal timing has delays

- transition time: time required for output to change (RC delay: ohms \times farads $=$ time

- propagation time: time from input change to output change

Returning to boolean algebra...

$$
\begin{aligned}
F= & \bar{X} Y Z+\bar{X} Y \bar{Z}+X Z & & \\
& \bar{X} Y(Z+\bar{Z})+X Z & & \text { (by reverse distribution) } \\
& \bar{X} Y 1+X Z & & \text { (by complementarity) } \\
& \bar{X} Y+X Z & & \text { (by identity) }
\end{aligned}
$$

Returning to boolean algebra...

(a) $F=\bar{X} Y Z+\bar{X} Y \bar{Z}+X Z$

(b) $\mathrm{F}=\overline{\mathrm{X}} \mathrm{Y}+\mathrm{XZ}$

Universal gates: NAND, NOR

x	y	$z=\overline{x y}$
0	0	1
0	1	1
1	0	1
1	1	0

Universal how?

Boolean algebra practice 1

Prove that this boolean equation is true using algebraic manipulation.

$$
\begin{aligned}
1= & \overline{\mathrm{A}} \mathrm{~B}+\overline{\mathrm{B}} \overline{\mathrm{C}}+\mathrm{AB}+\overline{\mathrm{B}} \mathrm{C} & & \\
& B(\bar{A}+\mathrm{A})+\bar{B}(\bar{C}+C) & & \text { (by distribution) } \\
& B+\bar{B} & & \text { (by complementarity) } \\
& 1 & & \text { (by complementarity) }
\end{aligned}
$$

Boolean algebra practice 2

Prove that this boolean equation is true using algebraic manipulation.

$$
\begin{aligned}
\bar{X}+Y= & \bar{X} \bar{Y}+\overline{X Y}+X Y & & \\
& \bar{X} \bar{Y}+\bar{X} Y+\bar{X} Y+X Y & & \text { (by idempotence) } \\
& \bar{X}(\bar{Y}+Y)+Y(\bar{X}+X) & & \text { (by distribution) } \\
& \bar{X} 1+Y_{1} & & \text { (by null) } \\
& \bar{X}+Y & & \text { (by identity) }
\end{aligned}
$$

Boolean algebra practice 3

Find the complement of F.

$$
\begin{aligned}
\mathrm{F}= & \bar{V} W+X) Y+\bar{Z} & & \\
\overline{\mathrm{~F}}= & \overline{(\bar{V} \omega+X) Y+\bar{\Sigma}} & & \\
& \overline{((\bar{V} \omega+x) Y)} \overline{\bar{Z}} & & \text { (by DeMorgan's) } \\
& (\overline{(\bar{V} \omega+x)}+\bar{Y}) Z & & \text { (by DeMorgan's \&involution) } \\
& (\overline{\bar{V} \omega} \bar{x}+\bar{Y}) Z & & \text { (by DeMorgan's) } \\
& ((\overline{\bar{V}}+\bar{\omega}) \bar{X}+\bar{Y}) Z & & \text { (by DeMorgan's) } \\
& ((V+\bar{\omega}) \bar{x}+\bar{Y}) Z & & \text { (by null) }
\end{aligned}
$$

Integrated circuit fabrication

Integrated circuit fabrication 2

Integrated circuit fabrication 3

processed wafer

dicing

packaging

Integrated circuit fabrication 4

packaged die

test

A more detailed tutorial on integrated circuit fabrication:

http://www.necel.com/fab/en/flow.html

Next class: more boolean algebra, duals

