CSEE 3827: Fundamentals of Computer Systems

Lecture 2

January 26, 2009

Martha Kim mak2191@columbia.edu

Agenda

- TA office hours
- Boolean algebra
- Logic gates
- Circuit fabrication

TA Office Hours

TA Room, first floor of Mudd (see: <u>http://ta.cs.columbia.edu/tamap.shtml</u>)

Roopa Kakarlapudi Tuesdays 5-6:30PM
Harsh Parekh Mondays 11-12:20PM; Tuesdays 3:30-5PM
Nishant Shah Wednesdays 10-11:30AM

Boolean Logic

- Binary digits (or bits) have two values: {1,0}
- All logical functions can be implemented in terms of three logical operations:

4

Boolean Logic 2

- Precedence rules just like decimal system
- Implied precedence: NOT > AND > OR
- Use parentheses as necessary

AB + C = (AB) + C

(A + B)C = ((A) + B)C

D	Х	А	L=DX + A
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

D	Х	А	X	DX	L=DX + A
0	0	0	1	0	0
0	0	1	1	0	1
0	1	0	0	0	0
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	0	0	0
1	1	1	0	0	1

(M&K Table 2-2) 7

Boolean Algebra: Identities and Theorems

OR	AND	NOT	
X + 0 = X	X1 = X		(identity)
X+1 = 1	X0 = 0		(null)
X + X = X	XX = X		(idempotent)
$X + \overline{X} = 1$	$\overline{XX} = 0$		(complementarity)
		$\overline{\overline{X}} = X$	(involution)
X+Y = Y+X	XY = YX		(commutativity)
X + (Y + Z) = (X + Y) + Z	X(YZ) = (XY)Z		(associativity)
X(Y+Z) = XY + XZ	X+YZ = (X+Y)(X+Z)		(distributive)
$\overline{X+Y} = \overline{X}\overline{Y}$	$\overline{XY} = \overline{X} + \overline{Y}$		(DeMorgan's theorem)

Simplify this equation using algebraic manipulation.

$\mathsf{F} = \overline{\mathsf{X}}\mathsf{Y}\mathsf{Z} + \overline{\mathsf{X}}\overline{\mathsf{Y}}\overline{\mathsf{Z}} + \mathsf{X}\mathsf{Z}$

Simplify this equation using algebraic manipulation.

$F = \overline{XYZ} + \overline{XYZ} + XZ$ $\overline{XY(Z + Z)} + XZ \quad (by reverse distribution)$ $\overline{XY1} + XZ \quad (by complementarity)$ $\overline{XY} + XZ \quad (by identity)$

Find the complement of F.

$$F = A\overline{B} + \overline{A}B$$

 $\overline{F} =$

Find the complement of F.

 $F = \overline{AB} + \overline{AB}$ $\overline{F} = \overline{AB} + \overline{AB}$ $(\overline{AB} + \overline{AB})$ $(by \ De Morgan's)$ $(\overline{A} + \overline{B}) (\overline{A} + \overline{B})$ $(by \ De Morgan's)$ $(\overline{A} + B) (A + B)$ $(by \ involution)$

Boolean Algebra: Why?

These circuits consume area, power, and time

Logic gate area

AND gate

Information signaled through voltage level

Idealized timing diagram of AND gate

Actual signal timing has delays

 transition time: time required for output to change (RC delay: ohms x farads = time

LDHΩ

• propagation time: time from input change to output change

19

bLH

Returning to boolean algebra...

 $F = \overline{XYZ} + \overline{XYZ} + XZ$ $\overline{XY(Z + Z)} + XZ \quad (by reverse distribution)$ $\overline{XY1} + XZ \quad (by complementarity)$ $\overline{XY} + XZ \quad (by identity)$

Returning to boolean algebra...

Universal gates: NAND, NOR

Universal how?

Boolean algebra practice 1

Prove that this boolean equation is true using algebraic manipulation.

$$1 = \overline{AB} + \overline{BC} + AB + \overline{BC}$$

$$B(\overline{A} + A) + B(\overline{C+C}) \quad (by \text{ distribution})$$

$$B + \overline{B} \quad (by \text{ complementarity})$$

$$(by \text{ complementarity})$$

Boolean algebra practice 2

Prove that this boolean equation is true using algebraic manipulation.

$$\overline{X} + Y = \overline{XY} + \overline{XY} + XY$$

$$\overline{XY} + \overline{XY} + \overline{XY} + XY \qquad (by idempotence)$$

$$\overline{X}(\overline{Y} + Y) + Y(\overline{X} + X) \qquad (by distribution)$$

$$\overline{X} + Y \qquad (by null)$$

$$\overline{X} + Y \qquad (by identity)$$

Boolean algebra practice 3

Find the complement of F.

 $F = (\overline{V}W + X)Y + \overline{Z}$ $\overline{F} = (\overline{V}\omega + X)Y + \overline{Z}$ $((\nabla w + x)Y)\overline{\overline{Z}}$ $((\overline{V}\omega + \overline{X}) + \overline{Y})Z$ $(\overline{V}\omega \overline{X} + \overline{Y})Z$ $((\overline{V} + \overline{w})\overline{X} + \overline{Y})Z$ $((V + \overline{w})\overline{X} + \overline{Y})Z$

(by DeMorgan's) (by DeMorgan's & involution) (by DeMorgan's) (by DeMorgan's)

(by null)

wafer 27

processed wafer

dicing

packaged die

A more detailed tutorial on integrated circuit fabrication:

http://www.necel.com/fab/en/flow.html

Next class: more boolean algebra, duals