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Outline

• We will examine two MIPS implementations

• A single-cycle version

• A pipelined version

• Simple subset of MIPS, showing most aspects

• Memory reference: lw, sw

• Arithmetic/logical: add, sub, and, or, slt

• Control transfer: beq, j

• CPU performance factors

• Instruction count (determined by ISA and compiler)

• Cycles per instruction and cycle time (determined by CPU hardware)
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Instruction Execution

• PC → instruction memory, fetch instruction

• Register numbers → register file, read registers

• Depending on instruction class:

• Use ALU to calculate:

• Arithmetic or logical result

• Memory address for load/store

• Branch target address

• Access data for load/store

• PC ← target address or PC + 4
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CPU Overview
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Can’t just join wires together, use muxes
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Control
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MIPS Datapath
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Combinational Elements

• AND gate (Y = A & B)

• Multiplexer (Y = S ? A : B)
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• Adder (Y = A + B)

• Arithmetic/Logic Unit (ALU)
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Clocking Methodology

9

Combinational logic transforms data during clock cycles.  
Longest combinational delay determines clock period.
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Building a datapath incrementally

• Datapath: elements that process data and addresses in the CPU 

• Datapath will execute one instruction in one clock cycle

• Each datapath element can only do one function at a time

• Hence, we need separate instruction and data memories

• Use multiplexers where alternate data sources are used for different 
instructions
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Instruction Fetch
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• Fetch Instruction contained in PC register from memory

• Compute PC + 4 for next instruction
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Part 1: Instruction Fetch
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R-Format Instructions

• Read two register operands

• Perform arithmetic/logical operation

• Write register result
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Load/Store Instructions
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• Read register operands

• Calculate address using 16-bit offset (use ALU but sign-extend offset)

• Load: read memory and update register

• Store: write register value to memory
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Part 2: R-Type/Load/Store Datapath
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Branch Instructions

• Read register operands

• Compare operands (use ALU: subtract and check zero output)

• Calculate target address

• Sign-extend displacement

• Shift left two places  (word displacement)

• Add to PC+4 (already calculated by instruction fetch)
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Part 3: Instruction Fetch w. Branch
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Full Datapath
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MIPS Datapath Control
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Datapath Control Scheme

20

Main control controls whole 
datapath based on opcode

ALU control controls ALU 
based on opcode 

(ALUOp) and function 
field (funct)
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ALU Control Inputs/Outputs
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R-type → 10

lw     → 00

sw     → 00

beq    → 01

0000 → AND

0001 → OR

0010 → add

0110 → subtract

0111 → set on less than

Instruction[5:0]

Main Control

ALUOp

Operation

2

4

ALU

ALU control

(See Appendix C of text for implementation of corresponding ALU.)
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ALU Control Implementation
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ALU Control Truth Table
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ALU Control Truth Table 2
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Datapath Control Scheme
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Main control signals derive from instruction types
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0 rs rt rd shamt funct
31:26 25:21 20:16 15:11 10:6 5:0

35 or 43 rs rt constant
15:0

4 rs rt constant
15:0

R-type:

Load/Store:

Branch:

31:26 25:21 20:16

31:26 25:21 20:16

always
read

read, 
except 
for load

write for 
R-type 

and load

sign-extend
and add
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R-Type Control Signals
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(Alt. illustration: Fig. 4.19)
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lw Control Signals
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sw Control Signals
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beq Control Signals
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Main Control Truth Table
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Implementing Jumps
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• Unconditional jump to instruction at label

• Instruction encoded in J-type format

• Jump uses word addresses

• Update PC with concatenation of:

• Top 4 bits of old PC

• 26-bit jump address

• 00

The j instruction

33

2 address

j label

25:031:26
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Implementing the jump instruction
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Implementing the jump instruction -- in class soln
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CPU Performance
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Understanding Performance

• Algorithm → number of operations executed

• Programming language, compiler, architecture → determine number of 
machine instructions executed per operation

• Processor and memory system → determines how fast instructions are 
executed

• I/O system (including OS) → determines how fast I/O operations are executed
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Defining Performance

• Which airplane has the best performance?

38
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Response Time and Throughput

39

Response time: 
how long it takes to do a task, 

sometimes also called latency  [time/work]

Throughput: 
total work done per unit time [work/time]

How are response time and throughput affected by. . .
Replacing the processor with a faster version?

          Adding more processors?

For now, we’ll focus on response time
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Relative Performance

40

Define:   Performance = 1 / Execution Time

“X is n times faster than Y”  →
Performance X / Performance Y = 

Execution Time Y / Execution Time X = 
n 

Program takes 10 s to run on machine A, 15 s on machine B
Execution Time B / Execution Time A = 15 / 10 = 1.5

“A is 1.5 times faster than B”

Example:
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Measuring Execution Time
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Define:   Elapsed Time

Total response time including all aspects 
(Processing, I/O, overhead, idle time)

Define:   CPU Time

Time spent processing a given job 
(discounts I/O time, other jobs shares)

Elapsed Time > CPU Time
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CPU Clocking
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Operation of digital hardware governed by a constant-rate clock

Clock

Data transfer 

and computation

Update state

Clock period

Time

Clock period: duration of a clock cycle
e.g., 250ps = 0.25ns

Clock frequency (rate): cycles per second
e.g., 4.0GHz = 4000MHz
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CPU Time
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CPU Time = CPU Clock Cycles * Clock Cycle Time

 = CPU Clock Cycles / Clock Rate

Performance improved by:
1. Reducing number of clock cycles
2. Increasing clock rate (reducing clock period)

Hardware designer must often trade off 
clock rate against cycle count.
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CPU Time Example

44

Computer A: 2GHz clock, 10s CPU time

Designing Computer B: 
- Aim for 6s CPU Time
- Clock rate increase requires 1.2x the number of cycles

How fast must Computer B’s clock be?

4GHz
6s

1024
6s

10201.2Rate Clock

10202GHz10s

Rate ClockTime CPUCycles Clock

6s
Cycles Clock1.2

Time CPU
Cycles ClockRate Clock

99

B

9

AAA

A

B

B
B

=
×

=
××

=

×=×=

×=

×
==
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Instruction Count and CPI
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Clock Cycles = Instruction Count * Cycles per Instruction

CPU Time  = Instruction Count * CPI * Clock Cycle Time

= (Instruction Count * CPI) / Clock Rate

Instruction count 
Determined by program, ISA, and compiler

Average cycles per instruction (CPI)
- Determined by CPU hardware
- If different instructions have different CPI, can compute a 
weighted average based on instruction mix
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CPI Example
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Computer A: cycle time = 250ps, CPI=2.0
Computer B: cycle time = 500ps, CPI=1.2

Same ISA

Which is faster, and by how much?

1.2
500psI
600psI

ATime CPU
BTime CPU

600psI500ps1.2I
BTime CycleBCPICount nInstructioBTime CPU

500psI250ps2.0I
ATime CycleACPICount nInstructioATime CPU

=
×

×
=

×=××=

××=

×=××=

××=

A is faster...

… by this much
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Amdahl’s Law
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Be aware when optimizing. . .

T            =improved
T

improvement factor
+ T            unaffected

Example: On machine A, multiplication accounts for 80s out of 100s total 
CPU time.  

How much improvement in multiplication performance to get 5x 
speedup overall?

Corollary: make the common case fast

affected
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Performance Summary

48

CPU Time = 
Instructions

Program
Clock cycles
Instruction

Seconds
Clock cycle

x x

Performance depends on all of these things.

Algorithm, programming language and 
compiler compiler affect these terms.

ISA affects all three.
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Single-Cycle CPU Performance Issues

• Longest delay determines clock period

• Critical path: load instruction 

• instruction memory → register file → ALU → data memory → register file

• Not feasible to vary clock period for different instructions

• We will improve performance by pipelining

49
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Pipelining Preview: Laundry Analogy
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