
CSEE 3827: Fundamentals of Computer Systems

Lecture 18, 19, & 20

April 2009

Martha Kim
martha@cs.columbia.edu

mailto:martha@cs.columbia.edu
mailto:martha@cs.columbia.edu

CSEE 3827, Spring 2009 Martha Kim

Outline

• We will examine two MIPS implementations

• A single-cycle version

• A pipelined version

• Simple subset of MIPS, showing most aspects

• Memory reference: lw, sw

• Arithmetic/logical: add, sub, and, or, slt

• Control transfer: beq, j

• CPU performance factors

• Instruction count (determined by ISA and compiler)

• Cycles per instruction and cycle time (determined by CPU hardware)

2

CSEE 3827, Spring 2009 Martha Kim

Instruction Execution

• PC → instruction memory, fetch instruction

• Register numbers → register file, read registers

• Depending on instruction class:

• Use ALU to calculate:

• Arithmetic or logical result

• Memory address for load/store

• Branch target address

• Access data for load/store

• PC ← target address or PC + 4

3

CSEE 3827, Spring 2009 Martha Kim

CPU Overview

4

CSEE 3827, Spring 2009 Martha Kim

Can’t just join wires together, use muxes

5

CSEE 3827, Spring 2009 Martha Kim

Control

6

MIPS Datapath

CSEE 3827, Spring 2009 Martha Kim

Combinational Elements

• AND gate (Y = A & B)

• Multiplexer (Y = S ? A : B)

8

• Adder (Y = A + B)

• Arithmetic/Logic Unit (ALU)

A
B Y

A

B
Y

A

B
Y

F

(Y = F(A,B))

A
B Y

S

+

ALU

CSEE 3827, Spring 2009 Martha Kim

Clocking Methodology

9

Combinational logic transforms data during clock cycles.
Longest combinational delay determines clock period.

CSEE 3827, Spring 2009 Martha Kim

Building a datapath incrementally

• Datapath: elements that process data and addresses in the CPU

• Datapath will execute one instruction in one clock cycle

• Each datapath element can only do one function at a time

• Hence, we need separate instruction and data memories

• Use multiplexers where alternate data sources are used for different
instructions

10

CSEE 3827, Spring 2009 Martha Kim

Instruction Fetch

11

• Fetch Instruction contained in PC register from memory

• Compute PC + 4 for next instruction

CSEE 3827, Spring 2009 Martha Kim

Part 1: Instruction Fetch

12

CSEE 3827, Spring 2009 Martha Kim

R-Format Instructions

• Read two register operands

• Perform arithmetic/logical operation

• Write register result

13

CSEE 3827, Spring 2009 Martha Kim

Load/Store Instructions

14

• Read register operands

• Calculate address using 16-bit offset (use ALU but sign-extend offset)

• Load: read memory and update register

• Store: write register value to memory

CSEE 3827, Spring 2009 Martha Kim

Part 2: R-Type/Load/Store Datapath

15

CSEE 3827, Spring 2009 Martha Kim

Branch Instructions

• Read register operands

• Compare operands (use ALU: subtract and check zero output)

• Calculate target address

• Sign-extend displacement

• Shift left two places (word displacement)

• Add to PC+4 (already calculated by instruction fetch)

16

CSEE 3827, Spring 2009 Martha Kim

Part 3: Instruction Fetch w. Branch

17

CSEE 3827, Spring 2009 Martha Kim

Full Datapath

18

MIPS Datapath Control

CSEE 3827, Spring 2009 Martha Kim

Datapath Control Scheme

20

Main control controls whole
datapath based on opcode

ALU control controls ALU
based on opcode

(ALUOp) and function
field (funct)

CSEE 3827, Spring 2009 Martha Kim

ALU Control Inputs/Outputs

21

R-type → 10

lw → 00

sw → 00

beq → 01

0000 → AND

0001 → OR

0010 → add

0110 → subtract

0111 → set on less than

Instruction[5:0]

Main Control

ALUOp

Operation

2

4

ALU

ALU control

(See Appendix C of text for implementation of corresponding ALU.)

CSEE 3827, Spring 2009 Martha Kim

ALU Control Implementation

22

lw

sw

beq

R-type

R-type

R-type

R-type

R-type

→ 00

→ 00

→ 01

→ 10

→ 10

→ 10

→ 10

→ 10

xxxxxx → load word

xxxxxx → store word

xxxxxx → branch equal

100000 → add

100010 → subtract

100100 → AND

100101 → OR

101010 → set on less than

→ add

→ add

→ subtract

→ add

→ subtract

→ AND

→ OR

→ set on less than

→ 0010

→ 0010

→ 0110

→ 0010

→ 0110

→ 0000

→ 0001

→ 0111

op
co

de

AL
UOp

fro
m

 m
ain

co
nt

ro
l

Ins
tru

ct
ion

[5
:0

]

Ope
ra

tio
n

CSEE 3827, Spring 2009 Martha Kim

ALU Control Truth Table

23

xxxxxx

xxxxxx

xxxxxx

100000

100010

100100

100101

101010

0010

0010

0110

0010

0110

0000

0001

0111

AL
UOp

fro
m

 m
ain

co
nt

ro
l

Ins
tru

ct
ion

[5
:0

]
Ope

ra
tio

n

00

00

01

10

10

10

10

10

CSEE 3827, Spring 2009 Martha Kim

ALU Control Truth Table 2

24

CSEE 3827, Spring 2009 Martha Kim

Datapath Control Scheme

25

CSEE 3827, Spring 2009 Martha Kim

Main control signals derive from instruction types

26

0 rs rt rd shamt funct
31:26 25:21 20:16 15:11 10:6 5:0

35 or 43 rs rt constant
15:0

4 rs rt constant
15:0

R-type:

Load/Store:

Branch:

31:26 25:21 20:16

31:26 25:21 20:16

always
read

read,
except
for load

write for
R-type

and load

sign-extend
and add

CSEE 3827, Spring 2009 Martha Kim

R-Type Control Signals

27

0

0

10

0

1

0

0

1

(Alt. illustration: Fig. 4.19)

CSEE 3827, Spring 2009 Martha Kim

lw Control Signals

28

0

0

00

1

0

1

1

1

(Alt. illustration: Fig. 4.20)

CSEE 3827, Spring 2009 Martha Kim

sw Control Signals

29

0

1

00

x

x

1

0

0

CSEE 3827, Spring 2009 Martha Kim

beq Control Signals

30

1

0

01

x

x

0

0

0

(Alt. illustration: Fig. 4.21)

CSEE 3827, Spring 2009 Martha Kim

Main Control Truth Table

31

000000
100011
101011
000100

Ins
tru

cti
on

[31
:26

]

Implementing Jumps

CSEE 3827, Spring 2009 Martha Kim

• Unconditional jump to instruction at label

• Instruction encoded in J-type format

• Jump uses word addresses

• Update PC with concatenation of:

• Top 4 bits of old PC

• 26-bit jump address

• 00

The j instruction

33

2 address

j label

25:031:26

CSEE 3827, Spring 2009 Martha Kim

Implementing the jump instruction

34

CSEE 3827, Spring 2009 Martha Kim

Implementing the jump instruction -- in class soln

35

CPU Performance

CSEE 3827, Spring 2009 Martha Kim

Understanding Performance

• Algorithm → number of operations executed

• Programming language, compiler, architecture → determine number of
machine instructions executed per operation

• Processor and memory system → determines how fast instructions are
executed

• I/O system (including OS) → determines how fast I/O operations are executed

37

CSEE 3827, Spring 2009 Martha Kim

Defining Performance

• Which airplane has the best performance?

38

0 100 200 300 400 500

Douglas
DC-8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Passenger Capacity

0 2000 4000 6000 8000 10000

Douglas DC-
8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Cruising Range (miles)

0 500 1000 1500

Douglas
DC-8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Cruising Speed (mph)

0 100000 200000 300000 400000

Douglas DC-
8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Passengers x mph

CSEE 3827, Spring 2009 Martha Kim

Response Time and Throughput

39

Response time:
how long it takes to do a task,

sometimes also called latency [time/work]

Throughput:
total work done per unit time [work/time]

How are response time and throughput affected by. . .
Replacing the processor with a faster version?

 Adding more processors?

For now, we’ll focus on response time

CSEE 3827, Spring 2009 Martha Kim

Relative Performance

40

Define: Performance = 1 / Execution Time

“X is n times faster than Y” →
Performance X / Performance Y =

Execution Time Y / Execution Time X =
n

Program takes 10 s to run on machine A, 15 s on machine B
Execution Time B / Execution Time A = 15 / 10 = 1.5

“A is 1.5 times faster than B”

Example:

CSEE 3827, Spring 2009 Martha Kim

Measuring Execution Time

41

Define: Elapsed Time

Total response time including all aspects
(Processing, I/O, overhead, idle time)

Define: CPU Time

Time spent processing a given job
(discounts I/O time, other jobs shares)

Elapsed Time > CPU Time

CSEE 3827, Spring 2009 Martha Kim

CPU Clocking

42

Operation of digital hardware governed by a constant-rate clock

Clock

Data transfer

and computation

Update state

Clock period

Time

Clock period: duration of a clock cycle
e.g., 250ps = 0.25ns

Clock frequency (rate): cycles per second
e.g., 4.0GHz = 4000MHz

CSEE 3827, Spring 2009 Martha Kim

CPU Time

43

CPU Time = CPU Clock Cycles * Clock Cycle Time

 = CPU Clock Cycles / Clock Rate

Performance improved by:
1. Reducing number of clock cycles
2. Increasing clock rate (reducing clock period)

Hardware designer must often trade off
clock rate against cycle count.

CSEE 3827, Spring 2009 Martha Kim

CPU Time Example

44

Computer A: 2GHz clock, 10s CPU time

Designing Computer B:
- Aim for 6s CPU Time
- Clock rate increase requires 1.2x the number of cycles

How fast must Computer B’s clock be?

4GHz
6s

1024
6s

10201.2Rate Clock

10202GHz10s

Rate ClockTime CPUCycles Clock

6s
Cycles Clock1.2

Time CPU
Cycles ClockRate Clock

99

B

9

AAA

A

B

B
B

=
×

=
××

=

×=×=

×=

×
==

CSEE 3827, Spring 2009 Martha Kim

Instruction Count and CPI

45

Clock Cycles = Instruction Count * Cycles per Instruction

CPU Time = Instruction Count * CPI * Clock Cycle Time

= (Instruction Count * CPI) / Clock Rate

Instruction count
Determined by program, ISA, and compiler

Average cycles per instruction (CPI)
- Determined by CPU hardware
- If different instructions have different CPI, can compute a
weighted average based on instruction mix

CSEE 3827, Spring 2009 Martha Kim

CPI Example

46

Computer A: cycle time = 250ps, CPI=2.0
Computer B: cycle time = 500ps, CPI=1.2

Same ISA

Which is faster, and by how much?

1.2
500psI
600psI

ATime CPU
BTime CPU

600psI500ps1.2I
BTime CycleBCPICount nInstructioBTime CPU

500psI250ps2.0I
ATime CycleACPICount nInstructioATime CPU

=
×

×
=

×=××=

××=

×=××=

××=

A is faster...

… by this much

CSEE 3827, Spring 2009 Martha Kim

Amdahl’s Law

47

Be aware when optimizing. . .

T =improved
T

improvement factor
+ T unaffected

Example: On machine A, multiplication accounts for 80s out of 100s total
CPU time.

How much improvement in multiplication performance to get 5x
speedup overall?

Corollary: make the common case fast

affected

CSEE 3827, Spring 2009 Martha Kim

Performance Summary

48

CPU Time =
Instructions

Program
Clock cycles
Instruction

Seconds
Clock cycle

x x

Performance depends on all of these things.

Algorithm, programming language and
compiler compiler affect these terms.

ISA affects all three.

CSEE 3827, Spring 2009 Martha Kim

Single-Cycle CPU Performance Issues

• Longest delay determines clock period

• Critical path: load instruction

• instruction memory → register file → ALU → data memory → register file

• Not feasible to vary clock period for different instructions

• We will improve performance by pipelining

49

CSEE 3827, Spring 2009 Martha Kim

Pipelining Preview: Laundry Analogy

50

