CSEE 3827: Fundamentals of Computer Systems

Lecture 11

February 25, 2009

Martha Kim martha@cs.columbia.edu

A state machine model of a system's behavior in terms of **states** and **transitions** between those states that are triggered by **actions**.

State diagrams represent state machines

CSEE 3827, Spring 2009

A state machine that has a finite number of states

- * Any finite state machine can be implemented with sequential logic
- * All sequential circuits implement finite state machines

Implementing a finite state machine

In class exercise: design a 3-bit counter

Moore machine

a circuit in which the output depends only on the current state

(+ outputs are synchronous)

Mealy machine

a circuit in which the outputs depend on the inputs as well as the current state

(+ typically fewer states than a Moore machine)

A Mealy or Moore circuit?

M. Morris Mano & Charles R. Kime LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

An example Moore circuit

5-16

Present state	Inputs		Next state	Output
А	X	Y	А	Z
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(b) State table

© 2008 Pearson Education, Inc. M. Morris Mano & Charles R. Kime LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

In class exercise

• Design a Mealy machine to identify when the sequence "3827" has occurred in a serial numerical input.

• Now design a Moore machine to do the same thing.

In class exercise: design a vending machine

- This vending machine will dispense a soda after the user has entered \$.15
- Inputs: N, D (nickel, dime, quarter inserted)
- Output: R (release soda)