CSEE 3827: Fundamentals of Computer Systems

Lecture 1

January 21, 2009

Martha Kim mak2191@columbia.edu

Agenda

- Administrative details
- Course introduction
- Information representation and definitions

Instructor

Prof. Martha Kim

mak2191@columbia.edu

CSB 461

Office hours: Tuesdays and Thursdays, 2-3pm (Email or drop by to schedule other times.)

Teaching assistants

Roopa Kakarlapudi

Nishant Shah

Harsh Parekh

Lectures

Mondays and Wednesdays

1:10-2:25pm

Fayerweather 310

Textbooks

Logic and Computer Design Fundamentals, 4th ed, *by M. Morris Mano and Charles Kime*

Computer Organization and Design, The Hardware/Software Interface, 4th ed, by David A. Patterson and John L. Hennessy

Grading formula

Due at start of class on due date.

Collaboration policy: In working on the problem sets, feel free to discuss the problems with your classmates. However, no collaboration is allowed in writing up the solutions. Each student is to write up his or her own solution and is expected to be able to explain and reproduce the work she or she submits.

Course webpage

http://www1.cs.columbia.edu/~martha/courses/3827/sp09/

Agenda

- Administrative details
- Course introduction
- Information representation and definitions

What does this ...

[Source: http://ftp.arl.army.mil/~mike/comphist]

... have in common with this?

growth in performance = growth in raw resources + system design innovation

ENIAC (1946)	Intel Larrabee (2009)	
5,000 operations per second	2,000,000,000,000 operations per second	400,000,000x faster
8.5' x 3' x 80' (2040 ft ³)	49.5 mm ²	1,167,000,000x smaller
\$500,000	~\$300	1666x cheaper

growth in performance = growth in raw resources + system design innovation

CPU Transistor Counts 1971-2008 & Moore's Law

Gordon Moore co-founder of Intel

Moore's Law: Density of transistors doubles every two years

Date of introduction

growth in performance = growth in raw resources + system design innovation

Agenda

- Administrative details
- Course introduction
- Information representation and definitions

Number systems: Base 10 (Decimal)

- 10 digits = $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- example: 4537.8 = (4537.8) ₁₀

Number systems: Base 2 (Binary)

- 2 digits = {0,1}
- example: $1011.1 = (1011.1)_2$

Number systems: Base 8 (Octal)

- 8 digits = {0,1,2,3,4,5,6,7}
- example: (2365.2) ₈

Number systems: Base 16 (Hexadecimal)

- 16 digits = {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}
- example: (26BA) [alternate notation for hex: 0x26BA]

Hexadecimal (or hex) is often used for addressing

Number ranges

- Map infinite numbers onto finite representation for a computer
- How many numbers can I represent with ...
 - ... 5 digits in decimal?

10⁵ possible values

... 8 binary digits?

28 possible values

... 4 hexadecimal digits?

164 possible values

Need a bigger range?

- Change the encoding.
- Floating point (used to represent very large numbers in a compact way)
 - A lot like scientific notation: 5.4×10^{5} exponent mantissa
 - Except that it is binary: 1011 1001 x 2

What about negative numbers?

- Change the encoding.
 - Sign and magnitude
 - Ones compliment
 - Twos compliment

Sign and magnitude

- Most significant bit is sign
- Rest of bits are magnitude

 $0110 = (6)_{10}$

 $1110 = (-6)_{10}$

• Two representations of zero

 $0000 = (0)_{10} \qquad 1000 = (-0)_{10}$

Ones compliment

- Compliment bits in positive value to create negative value
- Most significant bit still a sign bit

 $0110 = (6)_{10}$

$$1001 = (-6)_{10}$$

• Two representations of zero

 $0000 = (0)_{10} \qquad 1111 = (-0)_{10}$

Twos compliment

- Compliment bits in positive value and add 1 to create negative value
- Most significant bit still a sign bit

 $0110 = (6)_{10}$ $1001 + 1 = 1010 = (-6)_{10}$

- One representation of zero
 - $0000 = (0)_{10} \qquad 1000 = (-8)_{10} \qquad 1111 = (-1)_{10}$
- One more negative number than positive

MIN: $1000 = (-8)_{10}$ MAX: $0111 = (7)_{10}$

How about letters?

• Change the encoding.

$B_4 B_3 B_2 B_1$	$\mathbf{B}_7 \mathbf{B}_6 \mathbf{B}_5$									
	000	001	010	011	100	101	110	111		
0000	NULL	DLE	SP	0	@	Р		р		
0001	SOH	DC1	!	1	Α	Q	a	q		
0010	STX	DC2		2	В	R	b	r		
0011	ETX	DC3	#	3	С	S	с	S		
0100	EOT	DC4	\$	4	D	Т	d	t		
0101	ENQ	NAK	%	5	E	U	e	u		
0110	ACK	SYN	&	6	F	v	f	v		
0111	BEL	ETB	,	7	G	W	g	w		
1000	BS	CAN	(8	H	Х	h	х		
1001	HT	EM)	9	Ι	Y	i	у		
1010	LF	SUB	*	:	J	Ζ	j	Z		
1011	VT	ESC	+	;	K	[k	{		
1100	FF	FS	,	<	L	Ň	1	Í		
1101	CR	GS	-	=	Μ]	m	}		
1110	SO	RS		>	Ν	~	n	~		
1111	SI	US	1	?	0	_	0	DE		

TABLE 1-5 American Standard Code for Information Interchange (ASCII)

Some definitions

- bit = a binary digit e.g., 1 or 0
- byte = 8 bits e.g., 01100100
- word = a group of bytes

a 16-bit word = 2 bytes e.g., 1001110111000101

a 32-bit word = 4 bytes e.g., 100111011100010101110111000101

Next class: binary logic, logic gates