CSEE 3827: Fundamentals of Computer Systems

Lecture 1

January 21, 2009

Martha Kim
mak2191@columbia.edu

Agenda

- Administrative details
- Course introduction
- Information representation and definitions

Instructor

Prof. Martha Kim

mak2191@columbia.edu
CSB 461

Office hours: Tuesdays and Thursdays, 2-3pm
(Email or drop by to schedule other times.)

Teaching assistants

Roopa Kakarlapudi

Nishant Shah
Harsh Parekh

Lectures

Mondays and Wednesdays

1:10-2:25pm

Fayerweather 310

Textbooks

Logic and Computer Design Fundamentals, 4th ed, by M. Morris Mano and Charles Kime

Computer Organization and Design, The Hardware/Software Interface, 4th ed, by David A. Patterson and John L. Hennessy

Grading formula

Final Exam
 - early May (scheduled by University)
 - covers 2nd half of course

Eight problem sets

- handful of practice problems
- one week to complete

Midterm Exam

- early March (before spring break)
- covers 1st half of course

Problem sets

Due at start of class on due date.

Collaboration policy: In working on the problem sets, feel free to discuss the problems with your classmates. However, no collaboration is allowed in writing up the solutions. Each student is to write up his or her own solution and is expected to be able to explain and reproduce the work she or she submits.

Course webpage

http://www1.cs.columbia.edu/~martha/courses/3827/sp09/

Agenda

- Administrative details
- Course introduction
- Information representation and definitions

What does this ...

[Source: http://ftp.arl.army.mil/~mike/comphist]

... have in common with this?


```
growth in performance = growth in raw resources + system design innovation
```


growth in performance $=$ growth in raw resources + system design innovation

CPU Transistor Counts 1971-2008 \& Moore's Law

growth in performance $=$ growth in raw resources + system design innovation

Agenda

- Administrative details
- Course introduction
- Information representation and definitions

Number systems: Base 10 (Decimal)

- 10 digits $=\{0,1,2,3,4,5,6,7,8,9\}$
- example: $4537.8=(4537.8)$

$$
\begin{gathered}
4 \\
\times 10^{3} \times 10^{2} \times \frac{3}{410^{1} \times 10^{0} \times 10^{-1}} \\
4000+500+40+7+8 \\
\times 10
\end{gathered}
$$

Number systems: Base 2 (Binary)

- 2 digits $=\{0,1\}$
- example: $1011.1=(1011.1)_{2}$

Number systems: Base 8 (Octal)

- 8 digits $=\{0,1,2,3,4,5,6,7\}$
- example: (2365.2) ${ }_{8}$

Number systems: Base 16 (Hexadecimal)

- 16 digits $=\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}$
- example: $(26 \mathrm{BA})_{16} \quad$ [alternate notation for hex: $\left.0 \times 26 \mathrm{BA}\right]$

Hexadecimal (or hex) is often used for addressing

fssm32.exe

fssm32.exe has encountered a problem and needs to close. We are sorry for the inconvenience.

If you were in the middle of something, the information you were working on might be lost.

Please tell Microsoft about this problem.
We have created an error report that you can send to us. We will treat this report as confidential and anonymous.

To see what data this error report contains, click here.

fssm32.exe - Application Error
The instruction at " 0×1000228 " referenced memory at " $0 \times 08 f 3 \mathrm{~d} 920$ ". The memory could not be "read".
Click on OK to terminate the program
Click on CANCEL to debug the program
\square Cancel

Number ranges

- Map infinite numbers onto finite representation for a computer
- How many numbers can I represent with ...
... 5 digits in decimal?

$$
10^{5} \text { possible values }
$$

... 8 binary digits?

$$
2^{8} \text { possible values }
$$

... 4 hexadecimal digits?

$$
16^{4} \text { possible values }
$$

Need a bigger range?

- Change the encoding.
- Floating point (used to represent very large numbers in a compact way)
- A lot like scientific notation:

$$
5.4 \times 10^{5} \text { exponent }
$$

mantissá

- Except that it is binary:

$$
1001 \times 2^{\underline{1011}}
$$

What about negative numbers?

- Change the encoding.
- Sign and magnitude
- Ones compliment
- Twos compliment

Sign and magnitude

- Most significant bit is sign
- Rest of bits are magnitude

$$
0110=(6)_{10} \quad 1110=(-6)_{10}
$$

- Two representations of zero

$$
0000=(0)_{10} \quad 1000=(-0)_{10}
$$

Ones compliment

- Compliment bits in positive value to create negative value
- Most significant bit still a sign bit

$$
0110=(6)_{10} \quad 1001=(-6)_{10}
$$

- Two representations of zero

$$
0000=(0)_{10} \quad 1111=(-0)_{10}
$$

Twos compliment

- Compliment bits in positive value and add 1 to create negative value
- Most significant bit still a sign bit

$$
0110=(6)_{10} \quad 1001+1=1010=(-6)_{10}
$$

- One representation of zero

$$
0000=(0)_{10} \quad 1000=(-8)_{10} \quad 1111=(-1)_{10}
$$

- One more negative number than positive

$$
\mathrm{MIN}: 1000=(-8)_{10} \quad \mathrm{MAX}: 0111=(7)_{10}
$$

How about letters?

- Change the encoding.
\square TABLE 1-5
American Standard Code for Information Interchange (ASCII)

$\mathbf{B}_{4} \mathbf{B}_{3} \mathbf{B}_{2} \mathbf{B}_{1}$	$\mathrm{B}_{7} \mathrm{~B}_{6} \mathrm{~B}_{5}$							
	000	001	010	011	100	101	110	111
0000	NULL	DLE	SP	0	@	P	-	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	B	R	b	r
0011	ETX	DC3	\#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	\%	5	E	U	e	u
0110	ACK	SYN	\&	6	F	V	f	v
0111	BEL	ETB	,	7	G	W	g	w
1000	BS	CAN	(8	H	X	h	x
1001	HT	EM)	9	I	Y	i	y
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	K	[k	\{
1100	FF	FS	,	$<$	L	1	1	,
1101	CR	GS	-	$=$	M]	m	\}
1110	SO	RS	.	>	N	\wedge	n	\sim
1111	SI	US	1	?	O	-	o	DEL

Some definitions

- bit $=\mathbf{a}$ binary digit
- byte $=8$ bits
- word = a group of bytes
a 16 -bit word $=2$ bytes e.g., 1001110111000101
a 32 -bit word $=4$ bytes e.g., 100111011100010101110111000101

Next class: binary logic, logic gates

