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Abstract

We study the problem of secure two-party and multi-party computation in a setting where
some of the participating parties hold very large inputs. Such settings increasingly appear
when participants wish to securely query a database server, a typical situation in cloud related
applications. Classic results in secure computation require work that grows linearly with the
size of the input, while insecure versions of the same computation might require access to only
a small number of database entries.

We present new secure MPC protocols that, in an amortized analysis, have only polylogarith-
mic overhead when compared with the work done in an insecure computation of the functionality.
Our first protocol is generically constructed from any Oblivious RAM scheme and any secure
computation protocol. The second protocol is optimized for secure two-party computation, and
is based directly on basic cryptographic primitives.

1 Introduction

We propose a new mechanism for secure two party computation using a combination of Random
Access Machines (RAM) and traditional MPC. RAMs [?] are a natural computational model, where
an algorithm has direct access to the memory space.

As secure two party computation protocols mature, we begin to identify and address bottlenecks
in performance that stem from fundamental properties of the current techniques. One of the main
such bottlenecks is the fact that MPC is based on boolean or arithmetic circuits, rather than RAMs.
Circuits, even if evaluated insecurely, must separately encode and process every possible evaluation
path (e.g., both branches of if statements must be evaluated). In particular, the description of a
boolean circuit must be at least as long as the input to the algorithm that the circuit encodes.

When computing on large inputs, e.g., when accessing a database, this is prohibitive. For
example, any type of search on sorted DB will always require accessing all records, instead of the
logarithmic cost of the (insecure) binary search. The state of affairs is that there are currently no
satisfactory solutions for privately computing on large databases.
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A new approach for secure two party computation. We propose a new approach for secure
computation where the functionality is represented as a RAM. We then design secure protocols in
this model. The potential gains are:

• RAMs maintain a small state and access only the needed data. When inputs are large, this
will lead to significant gains in performance. As an example, a secure binary search on a
sorted database will require accessing roughly O(logc n) entries (for some constant c), rather
than reading the entire database, as is required in current MPC techniques.

• Many computationally intensive tasks admit algorithms that perform well in most situations,
but can perform quite badly in the worst case. Using RAM as the basic model of computation
will allow us to take advantage of the efficiency of such algorithms. Our secure computation
protocols will only introduce cryptographic overhead for the operations performed by the
insecure version of the algorithm. In contrast, existing protocols rely on circuit representations
and always run (at least) at the worst-case running time of the algorithm (with additional
cryptographic overhead).

At first glance, it may appear that sublinear secure computation is impossible. Indeed, consider
computing f(x, i) = xi (i.e. f simply returns the ith bit of x). Then, unless the entire input x is
accessed during evaluation of f , the party holding x will learn that i 6= j for every j that is not
accessed during the computation. We address this by adding a form of joint pre-processing on both
inputs x and y, which will hide the location of the data. Importantly, we only require a one-time
pre-processing, which will then allow the secure evaluation of an unbounded number of arbitrary
functions on x and y in the future. Each such evaluation of the function fi requires only as much
data access as does the insecure version of fi, with some fixed overhead that does not depend on
the sizes of x and y.

This pre-processing can be done as part of the protocol, or, as would be pertinent in many
applications, in advance by a supervising third party. An example is an encrypted fingerprint
database where users, such as the FBI, have the appropriate key to access the data. The user
can then perform a secure search for a specific fingerprint match without revealing the query to
the server, and the server is able to answer the query without scanning the entire database, and
without revealing any intermediate results.

Existing solutions for secure MPC using RAM representation. Several approaches exist
(e.g. [?, ?, ?, ?]) for securely evaluating functionalities that are represented as random access
machines (rather than boolean or arithmetic circuits). Indeed, when possible, these solutions
achieve communication complexity sublinear in the sizes of the inputs. However, to our knowledge,
no secure MPC protocols exist where the computational work done by the parties is sublinear in
the input size.

Our approach. We propose an approach for securely evaluating a two party function f(x, y)
based on its RAM representation. One of the basic tools that we use are Oblivious RAM protocols
[?, ?, ?, ?]. Such protocols allow a client holding a key K to evaluate an algorithm represented as
RAM on data which is encrypted using K, and stored on a server. During the protocol, the server
learns nothing about the data, or the data access pattern of the client. Moreover, the client only
needs to store a small state, whose size does not depend on the size of the data that is stored on
the server.
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The main mismatch between the goals of Oblivious RAM and secure two-party computation
is that the client in the former is trusted, and in particular learns intermediate values during
the computation (e.g. for binary search, the client would learn the values on the entire path to
the requested entry). We therefore propose to combine Oblivious RAM techniques with secure
two-party computation to gain security against both parties. In more detail:

1. The two parties, holding inputs x and y respectively, run a pre-processing protocol, where
each party obtains an encrypted version of its own input under a key that is given to the
other party. As a result, the first party holds a key K1 and an encryption of x under K2, and
the second party holds K2 and encryption of y under K1.

2. After the initial pre-processing phase, the two parties can repeat the following process an
unbounded number of times. Given a two-party functionality f(x, y), the parties generate an
encoding f̂ of f as a RAM according to the specification of the Oblivious RAM protocol. They
then engage in a sequence of two party computation protocol instances, jointly evaluating the
“next instruction” function of f̂ on their respective inputs. The state of the machine f̂ is
secret-shared between the two parties. That is, the two parties act both as the client and the
server in the oblivious RAM protocol by secret-sharing the state of the RAM between them,
and jointly computing the next state via a secure two-party computation protocol.

The key idea is that since the access pattern is hidden in Oblivious RAM, the accessed locations of
the encoded x and y can be made public! This allows us to run the MPC protocol only on the parts
of x and y that are needed for the evaluation of f̂ , and leave the rest of the input untouched. Note,
we do not need to apply Oblivious RAM techniques to the party whose input is short (resulting in
corresponding simplification and performance improvement). This is the case, for example, when
searching large databases.

One subtlety that arises in this model is that the runtime of the protocol might depend on
the particular inputs of the parties. This is not the case when we represent the computation as a
circuit, since the circuit size is independent of the particular input being used. As part of the model
design, we allow the adversary to gain information leaked by the running time of RAM. Note, in
many functions, e.g. in search, the runtime can be cheaply padded to the logarithmic bound, and
will reveal nothing. When input-based shortcuts are taken, this necessarily reveals runtime, so in a
sense, this small compromise is unavoidable. After developing the model and the above techniques
we extend them to multiple parties, and to malicious adversaries.

Efficiency improvements. The above construction is completely generic, and would work with
any secure two-party computation protocol, and any Oblivious RAM protocol. The main drawback
of the generic solution is that, depending on the ORAM protocol, the functionalities evaluated by
the MPC protocol may be quite complex. This in turn would reduce the usability of the Secure-
RAM protocol. The second part of our work consists of a new Secure-RAM protocol, designed
from scratch for practical efficiency. Our construction is based on ideas from the Pinkas-Reinman
oblivious RAM protocol and standard garbled circuit techniques. The resulting protocol is quite
efficient, and the cryptographic functionalities that are evaluated using secure MPC are quite
simple. We expect that our second protocol will be able to handle input sizes that are beyond
reach for current MPC implementations.
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