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Abstract—Hardware design is a difficult task. Beside ensuring
functional correctness of an implementation, hardware develop-
ers are confronted with multiple and often conflicting constraints,
such as performance and area cost targets, that require lengthy
explorations. This issue is compounded when considering the
acceleration of complex applications, of which some parts are
implemented in software, and others are accelerated in hardware.
Hardware/Software partitioning must be settled early in the
development cycle, and is far from trivial, since at this stage
detailed performance measurements are not available, while
wrong choices can lead to vastly sub-optimal solutions or to
wasted implementation efforts. To address this challenge, we
present a framework to automatically identify, from un-modified
software code, software segments that are promising candidates
for hardware acceleration, to evaluate their potential speedup
and resource requirements, and to select a subset of them under
resource constraint. Our strategy is based on Intermediate Rep-
resentation (IR) analysis passes, which we embed in the LLVM
compiler toolchain, and does not require any time-consuming
synthesis. We explore its effectiveness on the reference software
implementation of a complex application, the H.264 Decoder from
University of Illinois, and demonstrate that our methodology
selects higher-performance sets of accelerators, when compared
to strategies only based on profiling information.

Index Terms—Hardware/Software Co-Design, Application Spe-
cific Processors, Accelerators Identification, Software Analysis

I. INTRODUCTION

System-level design is witnessing a revolution. Emerging

best practices based on High Level Synthesis (HLS) allow

unprecedented productivity levels. HLS, in fact, dramatically

shortens development cycles by employing C/C++ descriptions

as entry points for the development of both software and

hardware, greatly easing the task of migrating functionalities

between the two.

However, the design of heterogeneous systems comprising

software processors and hardware accelerators is still a com-

plex endeavour, during which key decisions are left solely to

manual effort and designer expertise [1] [2]. Furthermore, the

long time required for hardware synthesis, coupled with the
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huge space of alternative implementations exposed by real-

world applications, limits in practice the number of accelerator

choices that can be considered manually by a designer before

hardware/software partitioning is settled.

Addressing these issues, performance estimators have been

proposed that, while not providing working hardware imple-

mentations, can gauge the characteristics of different accel-

erator implementation alternatives [3] [4]. Nonetheless, these

tools can only evaluate one choice of accelerated function

at once. Hence, when using them, the evaluation of each

potentially viable hardware/software partitioning alternative

requires distinct experimental runs, a time-consuming task for

large-sized target applications.

To limit the entailed design effort, it is therefore crucial

to identify the set of viable acceleration options quickly, and

also early in the design process, before performing later and

more detailed estimations. This key step is currently poorly

supported by design automation tools. Indeed, state of the

art early partitioning strategies are solely based on profiling

information [5] [6] which, as was also shown by the authors

of [7], may often be misleading.

Against this backdrop, herein we present AccelSeeker,

a methodology to identify and select the suitable acceleration

candidates in an application, from its software source code.

AccelSeeker, which is implemented within the LLVM

[6] compiler infrastructure, first provides a measure of the

cost (required resources) and merit (potential speedup) of

all candidate accelerators in a single, quick pass, and then

selects the set that maximises the estimated speedup, while

not exceeding a resource target. The use of AccelSeeker

can therefore guide IC architects in the early design phases,

highlighting which segments of a computing flow should be

targeted with high level synthesis, and which parts, instead,

are not likely to yield tangible benefits if realised in hardware

— either because they present a low computational footprint,

or because their characteristics hamper their potential for

hardware acceleration, e.g. they require an excessive amount

of data transfers while performing limited computations.

The approach of AccelSeeker is markedly different from

that of performance estimators, as we aim at pinpointing the

most promising candidates in a single, high-level exploration,
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reducing the scope of further, and more detailed, estimations.

On the other hand, it is also distant from approaches based

solely on profiling information, because profilers do not offer

a measure of costs and run-times of hardware implementa-

tions. They also do not account for invocation overheads –

potentially leading to the selection of frequently called, but

small, candidates – and for data transfers – hence potentially

suggesting candidates requiring an excessive amount of com-

munication. In both cases, poor choices may even result in

slower systems with respect to a software-only alternative.

Our contribution is two-fold:

• we introduce AccelSeeker, a compiler-based frame-

work able to assist system designers in hardware/software

partitioning choices.

• we explore AccelSeeker effectiveness on a complex

application (H.264 decoding [8]), showcasing that its

selection of acceleration candidates performs partitioning

choices of higher quality compared to those solely based

on profiling.

II. RELATED WORK

High Level Synthesis tools have considerably matured in

recent years [9]. Nowadays, available commercial tools (e.g.:

Xilinx Vivado HLS [10], Cadence Stratus HLS [11]), as

well as academic alternatives (e.g.: Legup [12], Bambu [13])

support the design of very large accelerators from C/C++ code.

They reach performance levels comparable to hand-crafted

implementations specified in low-level Hardware Description

Languages (HDL) such as VHDL or Verilog [8].

Nonetheless, the automated selection of the application

parts most amenable to hardware acceleration is still an open

research topic. Selection approaches based on synthesis results

[14] scale poorly to complex applications, as these are only

available late in the design process. Estimation frameworks

offer a detailed analysis on the performance and resource

requirements of a hardware-accelerated system while avoiding

full synthesis runs, either by interfacing software and hardware

simulators (e.g., gem5 [15] and Aladdin [16] in [3]), or

by adopting a hybrid stance, in which hardware execution

times are estimated, while software ones are measured on

a target platform (as in Xilinx SdSoC [4]). However, in

both cases, estimations are performed after the partitioning of

hardware and software, which is left to a trial-and-error basis.

A methodical solution for partitioning is instead proposed here.

The downside of poor partitioning choices, and

consequently the importance of automated tools such

AccelSeeker that guide the selection of high-quality

accelerator sets, is even more prominent when considering

the high effort required to optimise the implementation of

HLS-defined accelerators. Design optimisation entails the

specification of multiple directives to steer designs towards

the desired area-performance trade-off. The link between

directives and the performance of implementations is not

straightforward, hence requiring the evaluation of multiple

alternatives to reach the intended results, as exemplified in

[17] [18] [19] [20] [21] [22]. It is therefore key to focus

Fig. 1. Evolution of the SoA in automatic selection of custom instruc-
tions/accelerators: (a) from data-flow level [23] [24], (b) to control-flow level
[25] [26], (c) to function-call graph level (this work).

up-front this optimisation effort only on those candidate

accelerators which can lead, from an application perspective,

to tangible speedups.

To this end, our approach is inspired by previous works

on automatic identification of instruction set extensions. Most

techniques in this field target customizable processors aug-

mented with application-specific functional units, within the

processor pipelines. Hence, these techniques usually constrain

their search to the scope of single basic blocks [23] [24], as de-

picted in Figure 1a. Recently, the authors of [25] and [26] have

instead targeted the identification of larger code segments,

including control-flow structures belonging to single functions

(depicted in Figure 1b). However, such scope still falls short

of the one employed in HLS tools, which are devoted to

the implementation of dedicated accelerators interfaced on a

system bus [27]. In this setting, the cost of data movement

becomes so prominent that even control-flow structures inside

functions fail to deliver performance. Suitable accelerator

candidates must then encompass entire functions, including in

turn all functions called within their call tree. AccelSeeker

considers this same granularity (Figure 1c), advancing the state

of the art in automatic accelerators identification.

III. METHODOLOGY

In the following, we detail the methodology embedded

in AccelSeeker, whose high-level scheme is depicted in

Figure 2. First, we define what a candidate for acceleration

is, and then we detail how we select, among a pool of such

candidates extracted from an application source code, the

subset to be implemented in hardware (boxes A and C in the

figure). The approach we employed to estimate the candidates

performance and resource requirements (box B) is instead

detailed in Section IV.

A. Candidate Identification

In order to discover which parts of an application can be

most profitably accelerated in hardware, we investigate its

function-call graph, i.e., a Directed Acyclic Graph G(N,E),
where every node n ∈ N corresponds to a function and every

edge e = (u, v) ∈ E corresponds to a call from function u to

function v. A root is a node that reaches all other nodes of

the graph, i.e., for every other node n ∈ N , there exists a path

from the root to it. The function-call graph G has a root, which

represents the top-level function of the application. Figure 3a
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Fig. 5. a) An example call graph with eight nodes, and hence eight
AccelCands, and b) the corresponding conflict graph. c) Given example merits
and cost values associated to the eight AccelCands, d) and given a maximum
tolerated cost Cmax, maximum independent sets that solve problem Accel

Selection are shown. A maximum independent set maximises merit, while
not exceeding the given cost, and not including conflicts.

are able to correctly model the two merits separately, because

we can identify how many calls to the ’shared’ functions

come from within candidate A, and how many come from

within candidate B. Hence, partial overlap does not constitute

a conflict.

The problem formulation of Accel Selection borrows from

that found in [25]. It has however an important difference.

Since [25] targets Regions within a the control-flow graph of

a single functions as candidates for acceleration, no overlaps

are allowed within the same selection. Conversely, we consider

subgraphs of the function-call graph, hence allowing solutions

including partially overlapping AccelCands.

C. Selection Algorithm

Solving the Accel Selection problem on the function-call

graph of the application corresponds to solving the indepen-

dent set problem on the resulting conflict graph. The conflict

graph, in fact, expresses which pairs of AccelCands are in

conflict; thus, an independent set of the conflict graph satisfies

condition 3 of the Accel Selection Problem.

We therefore implement an algorithm that recursively ex-

plores the independent sets of the conflict graph, similarly to

the Bron-Kerbosch algorithm [28], and that returns the set S

with the highest merit M(S) (hence satisfying condition 1
of the problem formulation) and whose cost C(S) does not

exceed a user-given maximum cost Cmax (hence satisfying

condition 2 of the problem formulation). This returned set

represents the optimal solution to the Accel Selection Problem.

An algorithm solving an independent set problem is of

course one of non-polynomial complexity. Our exact imple-

mentation is still able to find the optimal solution for the

experiments in this paper in a matter of milliseconds, even

for the considerable dimension of the function-call graph of

the application considered (a function-call graph of 63 nodes,

as detailed in the experiments section).

An example of selection can be seen in Figure 5. First the

example call graph is depicted, which has 8 nodes and hence

8 AccelCands, each rooted in one of the 8 nodes. The eight

corresponding AccelCands are not depicted in this figure, but

some of them can be seen in Figure 4a: for example, the

AccelCand rooted in node 2 is depicted there and labelled A,

Fig. 6. Estimation of hardware computation times at the basic block (a),
function (b) and AccelCand (c) levels.

the AccelCand rooted in node 3 is also depicted in the same

Figure and labelled B, etc. Figure 5b depicts the complete

conflict graph corresponding to this example. As can be seen,

candidate 1 (corresponding to the whole graph) is in conflict

with all other candidates, candidates 2 and 3 are not in conflict

(they only overlap in function 7) etc. Now, given example

values of cost and merit for each candidate (in Figure 4c), the

maximum independent set is found in the conflict graph, which

maximises the sum of merits of the candidates selected, does

not overcome a maximum sum of cost, and does not include

conflicts. Two examples (for Cmax = 25 and for Cmax = 40)

are shown in Figure 4d.

IV. COST AND MERIT ESTIMATION

Herein, we detail how the abstract cost and merit employed

in the previous section are automatically computed from

source code (Figure 2, box B). As the goal of our framework is

to select the most performing candidates in advance of their

optimisation, AccelSeeker considers their default imple-

mentations, e.g., ones where no function is inlined and no loop

is unrolled. High-performance implementations will likely

have greater resource requirements, in turn potentially requir-

ing to discard some of the selected AccelCands. Nonetheless,

these additional design decisions will be performed within the

limited scope of the candidate set retrieved by our tool (as

opposed to the whole design) thereby easing the ensuing effort.

A. Architectural characterisation

AccelSeeker bases its estimations on few parameters

characterising the target platform. Being them only related to

the modelled architecture, but independent from the applica-

tion, the characterisation represents a one-time effort for a

given hardware target.

For the experiments in Section VII, this task was performed

by employing a series of micro-benchmarks, synthesised on a

Zynq Programmable System-on-Chip (PSoC). Our methodol-

ogy, however, is not limited to this target. On the contrary, it

can be adapted to different computing architectures (e.g.: ASIC

implementations) by measuring 1) the area and critical path

of single operators (adders, multipliers, etc...), 2) the overhead

entailed by initiating an acceleration invocation, 3) the time

required to transfer inputs and outputs and 4) the resources

employed to realise accelerator-memory links (realised by

default as master axi ports in Zynq systems).
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B. Estimating cost

We compute the cost C() of an AccelCand as the sum of its

estimated logic and memory real estates. As for logic, we add

up the required resources (independently for look-up tables

and DSP blocks) of the arithmetic operations present in its top

function. If function calls are present, we recursively account

for the area of the called functions as well. Furthermore,

again mimicking the default implementation of Xilinx PSoC

accelerators, we add the cost of the logic required by a

master axi port for each array present in the AccelCand

parameters list.

Then, the memory area is derived from the size of the arrays

storing the input/output and intermediate values required by

the accelerator. The I/O size is determined by analysing the

elements in the parameters list of the candidate top function,

while the memory required for intermediate values is derived

from the variable declarations in each candidate, ultimately

determining the number of required BRAM blocks. In line

with the limitation of HLS tools, we do not support dynamic

memory allocations.

C. Estimating merit

The merit M() of an AccelCand is expressed in terms of the

number of clock cycles that are saved by implementing it as

a hardware accelerator instead of executing it in software. In

turn, the estimation of hardware run times must account both

for computation bounds and host-accelerator communication

overheads. The latter are retrieved by considering the num-

ber of required memory accesses, scaled by an architecture-

specific factor, as discussed in the previous section.

To assess the computation time of candidates in hardware,

we instead proceed in a bottom-up fashion, as also exemplified

in Figure 6. First, we compute the maximum propagation delay

of each of the Basic Blocks (BBs) present in an AccelCand

(both in the top function and in its callees) by traversing their

DFGs and accounting for the operations delays, thus retrieving

the longest input-to-output paths (Figure 6a). Critical paths

of BBs are then expressed in clock cycles, dividing the

propagation delays with the period of the system clock. By

multiplying the critical paths with the number of executions

of each BB, we calculate the associated workload. Finally, an

estimate of the computation time of an AccelCand is the sum

of the workloads of its constituent BBs (Figure 6b-c).

Software run-times are estimated in a similar fashion, but

instead of computing critical paths at the BB level, we sum

the latency (in clock cycles) of all its constituent operations,

modelling that these are processed sequentially in software.

From the gathered data, the merit of an AccelCand i is

computed as follows:

M(i) = [TSw(i)−(Toh+max(T comp
Hw (i), T comm

Hw (i)))]×nexec

where TSw(i) is the AccelCand run-time in software, Toh is

the fixed overhead required to configure and start the hardware

acceleration, T
comp
Hw (i) and T comm

Hw (i) are the run-times when

i is hardware-accelerated, assuming its performance is either

computation or communication bound. Finally, nexec is the

number of times the AccelCand is executed in the application.

V. ACCELSEEKER COMPILER ANALYSIS

AccelSeeker is implemented as a compiler pass within the

LLVM 3.8 [6] infrastructure. The resulting implementation

comprises methods for the identification and analysis of the

AccelCands (Figure 2, box A), for the estimation of their merit

and cost (Figure 2, box B), and for their selection (Figure 2,

box C). In this section we give further details on how the data

needed in these phases is retrieved using our LLVM IR-level

analysis.

AccelCands identification and analysis. For the generation of

the call graph, we annotate every function with caller/callee

relationships; we then traverse the call graph to identifies all

valid AccelCands as defined in section III-A. At this level

we also detect information regarding the overlapping of such

AccelCands, needed for the creation of the conflict graph,

and for subsequent selection. The control flow graph of each

candidate, and the data flow graph of each basic block are

extracted so that they can be used as input for the cost and

merit calculation, according to the method already detailed in

Section IV-B and IV-C

Execution Frequency. The number of invocations of each

candidate as well as the execution frequency of each basic

block in each candidate is retrieved via LLVM and Clang,

using a profiling-via-instrumentation routine, which requires

the generation of an instrumented version of the code, and

then enables the obtained frequencies to be annotated back to

the IR level.

HW Latency Communication Estimation. In order to take into

account the memory latency overhead due to data exchange

between the implemented HW accelerators and main memory

(term T comm
Hw (i) in Section IV-C), I/O requirements for each

AccelCand are estimated within the LLVM framework by

retrieving the parameter list of each candidate and obtaining

the data requirements of each candidate type (e.g. size of array

of integers, size of a struct etc).

Area of Master AXI ports Estimation. To account for the HW

resources required for a Master AXI port, the parameter list

of each candidate is analysed. Every array identified accounts

for extra logical units (LUTs), contributing to the total area.

Selection. The selection algorithm described in Section III-C

is implemented as a C++ program which receives, from

the LLVM passes, the list of identified AccelCands, their

associated cost and merit, the conflict graph, and the value of

the maximum available resources Cmax. In output, it returns

the maximum independent set that solves the Accel Selection

Problem, i.e., the set of AccelCands to be implemented in HW.

VI. EXPERIMENTAL SETUP

Validation. We evaluated the outcome of our selection

of candidates by implementing the corresponding hardware-

accelerated systems on a Xilinx Zynq Ultrascale+ PSoC

running the Linux operating systems. The system is clocked

at 100MHz, with one of its Cortex A53 processors being
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Fig. 7. Call graph of H.264, with some function names highlighted.

dedicated to the execution of the software (non-accelerated)

parts of the considered benchmark.

Baselines for comparative evaluation. We compared the

quality of the choice of accelerators given by AccelSeeker

with the ones a designer would obtain when guided solely by

a software profiling tool instead. For such baseline solutions,

we rely on the gprof tool [29]. Gprof retrieves the software

execution time of all functions, but provides no support for the

estimation of hardware execution times, hardware area, nor I/O

and invocation overheads. Mimicking the possible strategies a

designer would follow based on profiling data, we considered

three possible alternatives:

• In a breadth-first approach (termed gprof1), the leaf

function with the highest computing time is selected first.

Further functions are considered for hardware execution

recursively, as the ones a) having the highest computation

time in software, and b) that are either leaves in the

call graph, or, in case they have callees, those have all

been already selected in previous steps. After synthesis,

a candidate is implemented in hardware if its inclusion

in the accelerator set does not violate the area constraint.

• Conversely, gprof2 adopts a depth-first stance. It also

starts from the most compute-intensive leaf in the ap-

plication call graph. It then traverses it by iteratively

considering the parents of the current candidate, in order

of decreasing workloads, selecting the highest-workload

one which does not exceed the area budget.

• Finally, gprof3 selects the most compute-intensive func-

Validation Estimation Estimation
Candidate Ranking Ranking Ranking

(AccelSeeker) (gprof)

residual-block-cavlc-16 1 1 4

TrailingOnes-TotalCoeff 2 2 2

inter-prediction-chroma 3 3 5

scale-residual4x4 4 7 6

total-zeros 5 5 9

prediction-Chroma 6 10 13

IntraInfo 7 9 18

run-before 8 4 15

... ... ... ...

showbits 17 17 1

Clip3 18 18 3

TABLE I
RANKING OF ACCELCANDS, BASED ON APPLICATION SPEEDUP WHEN

IMPLEMENTED AS ACCELERATORS ON THE ZYNQ PSOC IMPLEMENTATION

(COLUMN 2), AS WELL AS ACCORDING TO EARLY ESTIMATION

STRATEGIES (ACCELSEEKER , COLUMN 3, AND GPROF, COLUMN 4).

tions (without accounting for their callees) first, regard-

less of the call graph hierarchy.

In all cases, these baselines disregard functions that con-

tribute less than 0.5% to the total run-time, as these will not

be of interest to a designer. In Section VII, we show that

AccelSeeker outperforms the strategies above, outlining

that the more comprehensive insights it offers are crucial to-

wards pinpointing the AccelCands leading to higher speedups,

and in defining higher-performance hardware/software parti-

tionings under resource constraint.

Benchmark application. We perform the experiments on

the H.264 video decoding benchmark released by University

of Illinois [8], processing three video segments provided by

the benchmark authors (in QCIF (176x144), CIF (352x288)

and VGA (640x480) formats, respectively). The targeted im-

plementation comprises 63 functions and more than 6000 lines

of code. It is derived from the H.264 reference code described

in [30], which was adapted to avoid non-synthesisable con-

structs.Its call graph is presented in Figure 7, along with the

names of some of the functions.

VII. EXPERIMENTAL RESULTS

A. Ranking of acceleration candidates

Herein, we showcase the effectiveness of AccelSeeker

in identifying the AccelCands most amenable to hardware

 0
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6000 10000 14400
(Artix-Z-7007S)

20000 30000 34400
(Artix-Z-7012S)

S
pe
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up

Area (LUTs)

AccelSeeker
gprof1

gprof2
gprof3

Fig. 8. Speedup obtained over the whole runtime of H.264 decoder by
implementing, as hardware accelerators, the candidate sets obtained with
AccelSeeker and the ones retrieved by gprof1, gprof2 and gprof3 profiling
strategies (as detailed in VII-B ), varying the area constraint.
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Fig. 9. H.264 call-graphs highlighting the acceleration candidates selected by by AccelSeeker, and by the three gprof strategies, for a 30k LUTs area
budget.

Max LUTs AccelSeeker gprof1 gprof2 gprof3

6 000
TrailingOnes TotalCoeff showbits showbits showbits

TrailingOnes TotalCoeff TrailingOnes TotalCoeff TrailingOnes TotalCoeff
Clip3 Clip3
write luma write luma
Clip1y Clip1y

10 000

inter prediction chroma subblock double showbits showbits showbits
scale residual4x4 and trans inverse TrailingOnes TotalCoeff TrailingOnes TotalCoeff TrailingOnes TotalCoeff

Clip3 Clip3 scale residual4x4 and trans inverse
scale residual4x4 and trans inverse Clip1y
Clip1y total zeros
total zeros

20 000

TrailingOnes TotalCoeff showbits residual block cavlc 16 Clip3
inter prediction chroma subblock double TrailingOnes TotalCoeff residual block cavlc 16
scale residual4x4 and trans inverse Clip3 scale residual4x4 and trans inverse

scale residual4x4 and trans inverse Clip1y
inter prediction chroma subblock double
inter luma double bizero skip
total zeros

30 000

residual block cavlc 16 showbits residual block cavlc 16 Clip3
inter prediction chroma subblock double TrailingOnes TotalCoeff residual block cavlc 16
scale residual4x4 and trans inverse Clip3 scale residual4x4 and trans inverse
prediction Chroma scale residual4x4 and trans inverse Clip1y

inter prediction chroma subblock double inter prediction chroma subblock double
inter luma double bizero skip inter luma double bizero skip
total zeros
copy V
run before

TABLE II
ROOT FUNCTION OF THE SELECTED H.264 CANDIDATES, FROM THE REFERENCE CODE IN [8], FOR DIFFERENT METHODS AND RESOURCE BUDGETS.

acceleration. For this round of experiments, we imple-

mented the best suggested candidates either by gprof or by

AccelSeeker, disregarding those which are too large to

be mapped in the programmable logic of the employed test

system (Xilinx Zynq XCZU9EG). In Table I, AccelCands are

ordered by the speedup they provide on the Zynq PSoC when

implemented as accelerators (column 2), compared to a fully

software execution. AccelSeeker estimates a very similar

ranking (reported in column 3), with only minor differences.

Instead, a ranking based on profiling-only information such

as gprof (column 4) badly correlates with actual achievable

speedups. Indeed, some candidates suggested (e.g.: Clip3() and

showbits()) actually present a larger run-time in hardware than

in software, and are ranked poorly both by AccelSeeker

and by validation. Results refer to the QCIF test video. Very

similar outcomes were retrieved using the CIF and VGA

inputs: 9 out of 10 of the highest-merit candidates are the

same, with almost identical ranking.

B. Performance of resource constrained accelerator selections

To measure the performance of the proposed method, we

compare the application speedups of the hardware-accelerated

systems selected by AccelSeeker, under different Cmax

constraints, to those selected by the baseline methods. We

express such constraint as a maximum number of LUTs

dedicated to the accelerators implementation (including that of

two real-world PSoCs, namely Xilinx Artix Z-7007S and Z-

7012S [31]); similar considerations could be derived by instead

limiting BRAMs or DSPs, or combinations of the three.

Figure 8 shows these results, again for the QCIF test

input. The speedups are obtained by comparing the run-time

of the benchmark application on accelerated systems (where

selected AccelCands are executed in hardware) with the non-

accelerated one (where all parts are run on the PSoC proces-

sor). The figure comparatively reports also the speedups ob-

tained when using the three profiling-based strategies outlined
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in Section VI. These results show that our approach returns a

performance increase even for very low area constraints, and

in a 1.9X speedup for an area budget of 34 400 look-up tables

(the amount available on the mid-range Artix Z-7012S).

On the other hand, the candidates identified by all pro-

filing strategies fail to save any run-time (leading instead

to slowdowns) for tight areas, because the advantages of

hardware acceleration are dwarfed by invocation and data

transfer overheads, which are not estimated by tools based only

on profiling data. Even when some performance enhancement

is achieved, as is the case for gprof2 and gprof3 for more

lenient constraints, the retrieved selections are of inferior

quality with respect to the AccelSeeker ones. Moreover, in

gprof strategies an increase in the resources dedicated to hard-

ware acceleration may even worsen the actual performance of

the system, since more and more ill-performing candidates

are earmarked for hardware execution. Conversely, the sets

of AccelCands selected by AccelSeeker monotonically

increase in performance as the Cmax constraint is relaxed.

Further detailing the outcomes of our methodology and the

considered profiling-based baselines, Table II reports the root

function of the AccelCands selected for hardware acceleration

under different area constraints, while Figure 9 depicts them

on the H.264 call graph for a budget of 30K LUTs. This

experimental evidence highlights that the breadth-first gprof1

approach tends to select a large number of small, leaf functions

which, due to the high implied overheads, fail to achieve

high performance. A depth-first stance (embodied in gprof2)

may instead select too few candidates, as it is restricted to

focus only on a single branch of the function-call graph.

Speedup opportunities are also missed by disregarding the

call graph hierarchy entirely, as done in gprof3. Ultimately,

higher performance can be obtained through the non-obvious

selection of accelerator sets identified by AccelSeeker.

The reasons behind this superiority are twofold. Firstly,

AccelSeeker is not only guided by execution frequency,

as profiling is: it can instead account for the potential speedup

that can be harnessed via hardware execution, and for the

traded-off overhead due to transferring data between proces-

sors and accelerators (see Section IV-C). It can then evaluate

this in the light of the resource cost that a dedicated hardware

unit entails (see Section IV-B). Secondly, AccelSeeker

is empowered by the selection algorithm described in Sec-

tion III-C, which solves the Accel Selection Problem, max-

imising merit under cost constraint. Given an instance such

as H264, with a call-graph of 63 functions, and resulting in a

conflict graph of 63 nodes and 361 edges, it is evident that the

problem should not be left to be solved manually by designers.

As opposed to an approach based on profiling only, then, our

compiler-based strategy is well-suited to guide this complex

challenge.

C. Design effort analysis

A single invocation of AccelSeeker retrieves an entire

set of acceleration candidates, focusing on those that can best

leverage hardware acceleration. Conversely, all profiling-based

 0

 2

 4

 6

 8

 10

 12

 14

 16

AccelSeeker

gprof1

gprof2

gprof3

                          

# 
of

 C
an

di
da

te
s 

co
ns

id
er

ed

Area (LUTs)
6000 10000 14400 20000 30000 34400

used discarded

Fig. 10. Number of candidates selected by AccelSeeker and, for com-
parison, by the gprof-based strategies, while varying the area constraints.
Candidate accelerators selected by gprof exceeding resource constraints can
only be discarded after their implementation.

baselines necessitate a trial-and-error stance, because resource

estimations are not available and cannot be relied upon to

discard up-front AccelCands that exceed available budgets.

Therefore, these strategies either mandate a large number of

synthesis runs for many possible choices (gprof1, gprof3)

or overly restrict the set of possible acceleration candidates,

thereby hampering the resulting speedups (as is the case

of gprof2). Indeed, this effort is reported in Figure 10: the

majority of the candidates identified by profiling ultimately

violate the resource constraints, across different strategies

and amounts of available resources. The synthesis of such

candidates is avoided by instead employing AccelSeeker,

hence greatly reducing the design effort towards the selection

of highly effective hardware/software partitionings. Indeed, the

collection of all AccelSeeker phases took a time in the

order of milliseconds for the experiments in Figures 8 and 10.

VIII. CONCLUSIONS

We presented AccelSeeker, a framework for assisting

system architects during the early design phase of hardware-

accelerated systems. By automatically assessing the potential

speedup of different hardware acceleration choices, in their

default implementation , as well as the hardware resources

they demand, AccelSeeker allows architects to pinpoint the

code sections that are worthy targets for further, more detailed

analysis and optimisation.

AccelSeeker performs the identification of candidate

accelerators, as well as their area and speedup estimations,

through compiler analysis passes implemented within the

LLVM compiler, without requiring lengthy and detailed eval-

uations of each acceleration candidate individually. It then

automatically selects the set of candidates that maximise esti-

mated speedup under a given resource constraint. Experimen-

tal evidence highlights that the hardware/software partitionings

selected by AccelSeeker vastly outperform choices that are

solely based on profiling information.
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