
Rialto: a Bridge between Description and Implementation
of Control Algorithms for Wireless Sensor Networks

Alvise Bonivento∗ Luca P. Carloni Alberto L. Sangiovanni-Vincentelli

ABSTRACT
Rialto is a design framework that allows separating the de-
scription of a control application for wireless sensor networks
from its physical network implementation. The methodol-
ogy supported by Rialto consists of two steps:

1. An application is described in a Rialto Model in terms
of logical components queries and commands.

2. The description is translated into an internal format
called RialtoNet that is used to explore all the possi-
ble sequence of queries and commands that the appli-
cation may lead to. The RialtoNet is executed and a
set of constraints on the communication and sensing
infrastructure is generated.

The semantics of RialtoNet is based on a MoC that takes
inspiration from Kahn Process Networks, but blocking rules
are conveniently modified to exploit the domain specificity.

Our approach offers a clear interface to the application
designer as Rialto automatically bridges the gap between
application and implementation. Hence, Rialto facilitates
the adoption of wireless sensor networks technology in ap-
plication domains, such as industrial control, where the ap-
plication designer is not a communication engineer.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Distributed Networks, Wireless
Communications; D.2.1 [Software Engineering]: Require-
ments/Specifications—Languages, Methodologies, Tools

General Terms
Design, Languages

∗A. Bonivento and A. Sangiovanni-Vincentelli are with
the EECS Department of U.C. Berkeley, Berkeley,
CA 94720; alvise,alberto@eecs.berkeley.edu; www-
cad.eecs.berkeley.edu/∼alberto; L. Carloni is with the
Department of Computer Science of Columbia University
in the City of New York, NY 10027 luca@cs.columbia.edu;
www.cs.columbia.edu/∼luca.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05, September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

Keywords
Sensor Networks, Design Automation, Design Flow

1. INTRODUCTION AND BACKGROUND
Although wireless technology experienced great advance-

ments in the last years, several industrial domains have been
barely touched by it. A serious impediment is the complex-
ity of mapping an application on a wireless network for the
lack of appropriate abstraction levels that could insulate the
application engineer from the drudgery of the implementa-
tion architecture. This paper addresses this very problem of-
fering a methodology, an environment and supporting tools
to map an application on a wireless sensor network.

Consider the case of automotive manufacturing plants. In
these plants a huge number of sensors is deployed to monitor
and control the state of robots in the production line. These
sensor networks are usually wired and, as a consequence,
the plant is characterized by a large amount of cables. Be-
sides high maintenance and deployment costs, this solution
also has a reverse impact on flexibility (the addition of new
sensors and reconfiguration implies stopping the production
line) and safety (human operators may trip on cables). The
behavior of these networks is decided by a cyclic control
routine implemented in a Controller that is usually placed
inside the plant. The control routine evaluates the sensed
data and takes decisions on the next action to take to pre-
serve the proper working conditions. The routine is typically
characterized by a high level of computational complexity,
but a low number of possible decisions (i.e. move the robot
up, or down, or switch it off).

The software for these applications is usually written by
process or mechanical engineers that are expert in process
control technology, but know little of the communication
and sensing infrastructure that has to be deployed to sup-
port these algorithms. On the other side, the communica-
tion infrastructure is designed by communication engineers
that know little about process control technology. Moreover,
the adoption of wireless technology further complicates the
design of these networks. Being able to satisfy high require-
ments on communication performance over an extremely
unreliable communication channel is a difficult task. Con-
sequently, the gap between the control algorithm designers
and the network designers will inevitably increase and this
phenomenon might delay the adoption of wireless sensor net-
works technology within manufacturing plants. The Rialto
project is specifically aimed at bridging this gap.

Several tools to support the design of WSNs are avail-
able. The most common design methodology for WSNs

183

starts with the description of the protocol specifications us-
ing the NesC/TinyOS stack [6]. The NesC/TinyOS platform
was developed at U.C. Berkeley and it leverages a “method
call” model of computation. It was designed to describe
component-based architectures using a simple event-based
concurrency model. This platform has then been enriched
with a simulation environment called TOSSIM [7]. Its suc-
cess is also related to the wide spreading of the hardware
platforms of the Mica family [5].

Alternatively, protocol solutions are simulated using envi-
ronment such as OMNET++ [8] or VisualSense [9] and then
implemented in NesC/TinyOS. Omnet++ is a discrete event
simulator developed by Andras Varga at the Technical Uni-
versity of Budapest. Although it is not target specifically
for WSNs, Omnet++ is widely used within the communi-
cation community for protocol simulations. Visualsense is
a modeling framework for WSNs developed as part of the
Ptolemy project at U.C.Berkeley [10]. It is an extension
of a discrete-event model with the extra capability of de-
scribing properties of the wireless connectivity. Visualsense
is a powerful tool to model and evaluate protocol solutions
under different scenarios.

An attempt of raising the level of abstraction was made
by Yu et al. in [14], where a classification for node commu-
nication mechanisms was introduced to allow for a higher
level description of the network algorithms. In [15], a design
methodology was presented. That methodology is based on
a bottom-up part for the description of network algorithms,
a top-down part to describe the application, and a mapping
process to define the code that must be deployed on the
nodes. Although we share the idea of the coexistence of a
top-down and bottom-up approach, we believe that these
approaches are too network oriented and not enough appli-
cation oriented. Our approach enphasizes the control based
nature of WSN applications and offers a clear semantic and
set of primitives to interpret timing issues at a very high
level, hence providing a clear level of abstraction for the ap-
plication designer. In particular, the design flow that we
envision is summarized in Fig. 1:

Describe
Application

RialtoNet
Initial

Topology
HW

Platforms

Network Architecture

MAC
Routing

Rialto

Implementation

Mapping

Describe
Application

RialtoNet
Initial

Topology
HW

Platforms

Network Architecture

MAC
Routing

Rialto

Implementation

Mapping

Figure 1: Design Flow for WSN

The application engineer describes the control applica-
tion independently from the particular communication in-
frastructure or hardware platform with the Rialto Model.

Rialto capture these specifications in a formal way and
perform a state space exploration to analyze all the possible
scenarios that the application may lead to. As a result of
this exploration, produce a set of constraints that the com-
munication links and hardware infrastructure must satisfy
to ensure correct functionality of the network.

Starting from sensing requirements and an abstraction of
the physical components a first version of the network topol-

ogy is generated. Specifically, virtual components are re-
placed by an adequate number of physical components that
ensure enough sensing, actuating, and control capabilities.

Starting from this network topology and the requirements
on latency and bit error rates, routing and MAC algorithms
are designed to optimize for power consumption. At this
stage, the topology may be modified and extra physical
components may be added to improve power performance
and robustness of the communication infrastructure. This
implies the creation of a library of routing and MAC algo-
rithms whose performance can be modeled using protocol
level tools (i.e. VisualSense or Omnet++).

When the final topology and protocol stack are deter-
mined, the functionality of the application can be mapped
into the network architecture.

This paper is focused on the specification and translation
into requirements for the network architecture. How the
remaining steps can be approached is discussed in [11].

2. RIALTO MODEL
Following the approach of [1], in the proposed framework,

designers describe the application in a Rialto Model in terms
of Virtual Controllers, Virtual Sensors, and Virtual Actua-
tors.

Tokens. Virtual components exchange data Tokens that
are the abstraction of queries and commands. A query spec-
ifies the attribute to be sensed (i.e. vibration, temperature),
the function to return (e.g., all the data values, average
data value), the sampling rate, and the time scope. The
time scope defines the interval of time for which the sens-
ing should be performed. A command specifies the type of
actuation (e.g., switch off the robot, increase temperature),
the intensity of the actuation (i.e. temperature should be
increased of 5 degrees Celsius), the need for an acknowledg-
ment, and the time scope of the actuation. Both queries
and commands also specify a tolerated latency and message
error rate for the communication.

A token has nine fields, and its structure is:

Token = (q, c, n, a, v, T i, T f, L, Q),

where:
q ∈ {0, 1} specifies if it is a query or a command, c ∈ {0, 1}

specifies if it is a request or a response, n is the function to
return for a query or the need for an acknowledgment for
a command, a is the attribute of the query or the type of
actuation. v is the required sampling rate (for a query) or
the intensity of the actuation (for a command), Ti and Tf

are respectively the beginning and the end of the scope of
the query (i.e. “Give me humidity data from time Ti to time
Tf”), L [sec] is the latency requirement, Q is the quality of
service requirement (bit error rate).

Virtual Controller. A Virtual Controller (VC) contains
the description of the control algorithm of the application. If
the application has more than one independent control algo-
rithm, multiple Virtual Controllers have to be specified. The
VC is only an abstraction of the control capabilities required
by the application. This abstraction does not restrict our
design space to a centralized control solution. In fact, in the
physical implementation, the control algorithm described in
a single VC could be implemented in a distributed fashion
whenever it is convenient. Similarly, the functionalities of
different Virtual Controllers could be implemented in the
same physical component. Usually, designers already have

184

a good idea of where the physical controller, or controllers,
can be placed. Consequently, they can embed this location
information into the VC and limit the design space space
exploration. The internal structure of a VC is a cyclic con-
trol routine. The number of queries and commands that can
be generated during a control cycle must be limited. Con-
sequently, no while loop with a query or command inside is
allowed within a control cycle. Furthermore, the user can
specify the time scope of the control cycle (how much time
between two consecutive executions). If such parameter is
not specified, we assume that the time scope is given by the
the lowest Ti and the highest Tf of the generated queries or
commands.

Virtual Sensor and Virtual Actuator. A Virtual Sen-
sor (VS) represents a sensing area. This abstraction is use-
ful because designers know which are the areas that need
to be sensed, but they generally don’t know how many sen-
sors must be placed to cover that area and how they have
to placed. Similarly to the VC, there is not necessarily a
one-to-one relationship between virtual sensors and physi-
cal sensors. The number and the type of physical sensors
that will be used to implement a virtual sensor is an imple-
mentation choice.

A Virtual Actuator (VA) represents an actuation capabil-
ity. Similarly to the VS, the user describes the position of
the VA, but the number and type of physical actuators that
will be selected to implement its functionality is an imple-
mentation choice.

VA and VS are sequential threads of computation. They
read the queries (commands) at their inputs, perform their
sensing (actuating) task to satisfy those requests, and re-
turn data (if necessary) to the controller that sent the query
(command). They are composed of two main functions:
“Evaluate Inputs” and “Task”. The “Evaluate Inputs” func-
tion specifies the read semantics of the actor, while the
“Task” function specifies the method and the accuracy with
which the actor fulfills the required sensing/actuation task.

Communication Media. Actors communicate through
bidirectional, lossless, unbounded FIFO channels. Each chan-
nel is characterized by two separated queues, one for each
direction. Connections are allowed only between a VC and
a VA, and between a VC and a VS. Consequently, no con-
nection is allowed between two Virtual Sensors, two Vir-
tual Actuators, or a Virtual Sensor and a Virtual Actuator.
This restriction makes sense because we are describing an
application using logical components. Connections between
two sensors (commonly refered to as multi-hopping) are an
implementation option, and as such they don’t belong to
the application description level of abstraction. Similarly, a
connection between two physical controllers is an implemen-
tation option, but at the application description level con-
nections between two Virtual Controllers are not allowed.
Hence, if a Virtual Controller needs a particular set of data,
it has to send a query directly to a Virtual Sensor.

3. RIALTONET
After the application is described, the description is trans-

lated into an internal representation called RialtoNet.
The goal of RialtoNet is to generate a set of requirements

to design a sensing and communication infrastructure that
is able to satisfy every possible request of the controlling
algorithms. Consequently, we need to evaluate all the vari-
ous combinations of requests that Virtual Controllers could

generate. Since the number of these combinations in a con-
trol routine is typically limited, this exhaustive state space
exploration is often very manageable.

Generation of the RialtoNet. The generation of the
RialtoNet goes through the following steps:

1. A set of actors called VCBranches is generated from
each VC. We consider the conditional branches in a
single control cycle. For each conditional branch that
involves the possibility of sending a request, we con-
sider both scenarios: the one in which the branch is
taken, and the one in which the branch is not taken.
This analysis generates all the possible combinations
of queries and commands within a single cycle. Each of
these combinations generates a VCB. A VCB is com-
posed by a sequence of “SEND” instructions that rep-
resent a possible combination. Consequently, the VCB
is an actor that is only able to send a predetermined
sequence of tokens (“source” actor). Since in the con-
trol cycle of the original VC code there is only a limited
amount of queries and commands, also the number of
“SEND” instructions in a VCB is limited.

2. An actor called Virtual Sense Skeleton (VSS) is gener-
ated from each VS, and an actor called Virtual Actu-
ator Skeleton (VAS) is generated from each VA. The
VSS and VAS are sequential threads of computation.
Similarly to the VCB, the VSS and VAS do not in-
herit the information regarding read and write seman-
tics from their originating actor. They are composed
by a “Task” function that is fired whenever their fir-
ing rules are satisfied. The “Task” code is inherited
from their generating VS or VA. VSS and VAS have
an internal variable called Progression Tag. As we will
show in the next Section, this variable indicates the
end of the time scope of the last query or command
that has been served.

3. An extra actor, called Sink, is generated. The Sink has
only input channels and it is used to store the results
of a RialtoNet execution.

4. These actors are connected together to form a Rial-
toNet. Actors communicate through unbounded, uni-
directional, lossless, FIFO channels. Each VCB inher-
its the connections of its generating VC in the Rialto
Model. The direction of these connections is from the
VCB to the VSS or VAS. Each VSS and each VAS has
an output connection to the Sink.

Execution of the RialtoNet. Before describing the
read and write semantics, we need to introduce the END
Token, a particular token that is automatically produced by
a VCB to all its output channels upon termination of its
sequence of “SEND” instructions, or by a VSS or VAS to
the Sink whenever its execution is terminated. Its structure
can be interpreted as:

END = (q, 0, 0, 0, 0, null,∞, null, null)

The execution of the RialtoNet is based on a model of
computation that takes inspiration from Kahn Process Net-
works (KPN) [2, 3]. The VCB follows a non-blocking write
semantics. Since it is a source actor, no reading semantics
needs to be specified. The Sink has a non-blocking read

185

semantics. The VSS and VAS have blocking read and non-
blocking write semantics. Since the blocking read rules for
VSS and VAS are the same, we explain them only for the
case of the VSS.

1. The VSS stalls its execution until all its input queues
have at least one token. When all the input queues are
non empty, the VSS evaluates the first token of each
of the input queues.

2. If a VSS has END tokens in all its input queues, it
sends an END token to the Sink and stops executing.

3. Otherwise, the VSS selects the token with lowest Tf . If
more than one token happens to have the same Tf and
it is the lowest, all of these tokens are selected. Conse-
quently, an END token is never consumed because it
has ∞ in its Tf field.

4. The VSS fires its sensing task and produces a set of re-
quirements. These requirements are obtained by per-
forming a logical AND of the “a” (attribute to sense)
and “v” (sensing rate) fields of all the input tokens
whose Ti field is less than or equal to the Tf field of
the selected token. This information is embedded into
a “Requirement Token” that is sent to the Sink.

5. The VSS updates its Progression Tag to the value of
the Tf field of the selected token. The selected token
is consumed, i.e. it is removed from its input queue
and destroyed.

Requirement on Queries. Queries sent in the same
VCB connection must have non overlapping time scopes.
This is to avoid the situation in which, after advancing to
serve a query, a VS would have to backtrack to serve another
query with different requirements.

Queries emitted from the same VC branch must have non
decreasing Tf field. This is to avoid the phenomenon of
“sending a query to the past”.

Termination and Requirements Generation. The
execution terminates when each VSS and each VAS has sent
an END token to the Sink. The Sink displays the received
requirement tokens that specify the sensing and the commu-
nication requirements that the network architecture has to
satisfy for each time-scope.

Properties. The Execution of the RialtoNet is based on
a deterministic MoC. Because of the blocking read mech-
anism, VSS and VAS are continuous functions under the
pointwise prefix order. Furthermore, VCBranches and Sink
are also continuous functions. Consequently, the network is
a composition of continuous functions and it has only one
behavior.

Another important property of the RialtoNet execution is
that it does not deadlock. Deadlock may happen only if a
VSS or VAS waits in vain for a token that will never arrive.
The introduction of the END token is tailored to avoid this
problem. The idea of introducing the END query to resolve
unwanted deadlocks can be seen as a particular case of the
“null” message introduced by Misra in [13] when dealing
with asynchronous parallel simulations.

The RialtoNet does not follow the read and write semantic
specified in the original Rialto Model. It is only an inter-
nal representation that is generated to efficiently organize
the analysis of the quantities that are of interest to set the

requirements on the communication links and sensing capa-
bility of the physical network. Consequently, the RialtoNet
is not used to check the functionality of the application spec-
ified in the Rialto Model. However, the choice leaves com-
plete freedom to the application designer to speficy the con-
trol algorithm with the semantic and yet be able to derive
information to build an appropriate network architecture.

4. CONCLUSIONS
We presented Rialto, a framework for capturing control-

based WSN applications and generating a set of constraints
on latency and sensing capabilities that the communication
and sensor infrastructure must satisfy.

Rialto is based on two steps. First the application is de-
scribed in terms of virtual components, queries and com-
mands in a Rialto Model. Then this representation is trans-
lated into an internal format called RialtoNet the allows for
a complete exploration of all the possible combination of
requests that the WSN should serve. The RialtoNet is exe-
cuted and a set of requirements for the design of the com-
munication protocol and sensing capabilities is generated.

Rialto allows the user to express the application with a
high degree of freedom and to march towards implementa-
tion with a correct-by-construction methodology.

5. REFERENCES
[1] M. Sgroi et al., “A Service-Based Universal Application

Interface for Ad-hoc Wireless Sensor Networks”, whitepaper,
U.C.Berkeley 2004.

[2] G. Kahn, “The Semantics of a Simple Language for Parallel
Programming,” Proc. of the IFIP Congress 74, North-Holland
Pub.

[3] G. Kahn and D. B. MacQueen, “Coroutines and Networks of
Parallel Processes,” Information Processing 77, B. Gilchrist,
editor, North-Holland Publishing Co., 1977.

[4] http://www.motion.aptd.nist.gov/

[5] J. Hill, D. Culler, “Mica: A Wireless Platform for Deeply
Embedded Networks” IEEE Micro., vol22 (6), Nov/Dec 2002,
pp.12-24.

[6] D. Gay et al., “The nesC Language: A Holistic Approach to
Networked Embedded Systems”, Proceedings of Programming
Language Design and Implementation (PLDI) 2003, June 2003.

[7] P. Levis et al., “TOSSIM: Accurate and Scalable Simulation of
Entire TinyOS Application”,SENSYS 03.

[8] A. Varga, “The OMNeT++ Discrete Event Simulation
System”, in European Simulation Multiconference June 2001.

[9] P. Baldwin et al., “Visualsense: Visual Modeling for Wireless
and Sensor Network Systems”, UCB ERL Memorandum
UCB/ERL M04/8 April 23, 2004.

[10] http://ptolemy.eecs.berkeley.edu

[11] R.C. Shah et al., “Joint Optimization of a Protocol Stack for
Sensor Networks”, MILCOM 2004.

[12] E. A. Lee and A. Sangiovanni-Vincentelli, “A Framework for
Comparing Models of Computation”, IEEE Transactions on
CAD, 17(12), December, 1998.

[13] J. Misra, “Distributed Discrete-Event Simulation”,ACM
Computing Surveys, Vol. 18, No. 1, 1986, pp. 39-65.

[14] Y. Yu et al., “Communication Models for Algorithm Design in
Wireless Sensor Networks”, IPDPS ’05.

[15] A. Bakshi, V.K. Prasanna, “Algorithm Design and Synthesis
for Wireless Sensor Networks”, ICPP ’04.

186

