
CRYLOGGER:
Detecting Crypto Misuses Dynamically

Luca Piccolboni, Giuseppe Di Guglielmo, Luca P. Carloni, Simha Sethumadhavan
{piccolboni, giuseppe, luca, simha}@cs.columbia.edu

Columbia University, New York, NY, USA

Abstract—Cryptographic (crypto) algorithms are the essential

ingredients of all secure systems: crypto hash functions and en-

cryption algorithms, for example, can guarantee properties such

as integrity and confidentiality. Developers, however, can misuse

the application programming interfaces (API) of such algorithms

by using constant keys and weak passwords. This paper presents

CRYLOGGER, the first open-source tool to detect crypto misuses

dynamically. CRYLOGGER logs the parameters that are passed to

the crypto APIs during the execution and checks their legitimacy

offline by using a list of crypto rules. We compare CRYLOGGER

with CryptoGuard, one of the most effective static tools to detect

crypto misuses. We show that our tool complements the results of

CryptoGuard, making the case for combining static and dynamic

approaches. We analyze 1780 popular Android apps downloaded

from the Google Play Store to show that CRYLOGGER can detect

crypto misuses on thousands of apps dynamically and automat-

ically. We reverse-engineer 28 Android apps and confirm the

issues flagged by CRYLOGGER. We also disclose the most critical

vulnerabilities to app developers and collect their feedback.

Index Terms—Android, Cryptography, Security, Misuses.

Repository—https://github.com/lucapiccolboni/crylogger [1]

I. INTRODUCTION

Cryptographic (crypto) algorithms are the key ingredients of
all secure systems [2]. Crypto algorithms can guarantee that the
communication between two entities satisfies strong properties
such as data confidentiality (with encryption) and data integrity
(with hashing). While the crypto theory can formally guarantee
that those properties are satisfied, in practice poor implementa-
tions of the crypto algorithms [3] can jeopardize communication
security. For instance, Brumley et al. [4] showed how to obtain
the entire private key of an encryption algorithm, which is based
on elliptic curves, by exploiting an arithmetic bug in OpenSSL.
Unfortunately, ensuring that the actual implementation of the
crypto algorithms is correct as well as secure is not sufficient.
The crypto algorithms can be, in fact, misused. Egele et al. [5]
showed that 88% of the Android apps they downloaded from the
Google Play Store had at least one crypto misuse. For example,
thousands of apps used hard-coded keys for encryption instead
of truly-random keys, thus compromising data confidentiality.
Similarly, Rahaman et al. [6] showed that 86% of the Android
apps they analyzed used broken hash functions, e.g., SHA1, for
which collisions can be produced [7], threatening data integrity.

Recently, researchers analyzed the causes of crypto misuses
in many contexts. Fischer et al. [8] found that many Android

apps included snippets of code taken from Stack Overflow and
98% of these snippets included several crypto issues. Nadi et
al. [9] claimed that the complexity of application programming
interfaces (APIs) is the main origin of crypto misuses in Java.
Developers have to take low-level decisions, e.g., select the type
of padding of an encryption algorithm, instead of focusing on
high-level tasks. Acar et al. [10] compared 5 crypto libraries
for Python and argued that poor documentation, lack of code
examples and bad choices of default values in the APIs are the
main causes of crypto misuses. Muslukhov et al. [11] showed
that 90% of the misuses in Android originated from third-party
libraries, a result that was later confirmed by Rahaman et al. [6].

At the same time, researchers started to implement tools to
automatically detect crypto misuses, e.g., [5], [6]. The idea is to
define a set of crypto rules and check if an application respects
them by verifying the parameters passed to the crypto APIs. The
rules usually come from (i) papers that show the vulnerabilities
caused by some crypto algorithms or their misconfigurations,
e.g., [12], and (ii) organizations and agencies, e.g., NIST and
IETF, that define crypto-related standards to prevent attacks.
Examples of crypto rules are setting (i) a minimum key size for
encryption, e.g., 2048 bits for RSA [13] or (ii) a minimum num-
ber of iterations for key derivation, e.g., 1000 for PKCS#5 [14].

To check the crypto rules, researchers developed static as well
as dynamic solutions. Static approaches, e.g., CrySL [15], Cryp-
toLint [5], CryptoGuard [6], MalloDroid [16], CogniCrypt [17]
and CMA [18], examine the code with program slicing [19] to
check the values of the parameters that are passed to the APIs
of the crypto algorithms. Static analysis has the benefit that the
code is analyzed entirely without the need of executing it. Also,
it can scale up to a large number of applications. Static analysis
produces, however, false positives, i.e., alarms can be raised
on legit calls to crypto algorithms. Some static approaches, e.g.
CryptoGuard, suffer also from false negatives, i.e., some misuses
escape detection, because the exploration is pruned prematurely
to improve scalability on complex programs. It is also possible
that static analysis misses some crypto misuses in the code that
is loaded dynamically [20]. Most of the recent research efforts
focused on static approaches [21], while little has been done to
bring dynamic approaches to the same level of completeness and
effectiveness. Few approaches have been proposed towards this
direction, e.g., SMV-Hunter [22], AndroSSL [23], K-Hunt [24],
and iCryptoTracer [25]. Dynamic approaches are usually more
difficult to use since they require to trigger the crypto APIs at

runtime to expose the misuses, but they do not usually produce
false positives. Unfortunately, these dynamic approaches do not
support as many crypto rules as the current static approaches.
SMV-Hunter and AndroSSL consider only rules for SSL/TLS,
and K-Hunt focuses on crypto keys. iCryptoTracer attacks the
hard problem of detecting misuses in iOS apps. iCryptoTracer
supports few rules as it needs to rely on API hooking techniques.

A. Contributions

In this paper, we present CRYLOGGER , an open-source tool to
detect crypto misuses dynamically. It consists of (i) a logger that
monitors the APIs of the crypto algorithms and stores the values
of the relevant parameters in a log file, and (ii) a checker that
analyzes the log file and reports the crypto rules that have been
violated. The key insights of this work are: (1) we log the relevant
parameters of the crypto API calls by instrumenting few classes
that are used by a large number of applications; (2) we log the
values of the parameters of the crypto APIs at runtime, while we
check the rules offline to reduce the impact on the applications
performance; (3) we show that, for most Android apps, the calls
to the crypto APIs can be easily triggered at runtime, and thus
a dynamic approach can be effective in detecting misuses even
if the code of the applications has not been explored entirely;
(4) we show that, for Android apps, it is sufficient to execute an
application for a relatively short amount of time to find many of
the crypto misuses that are reported by the current static tools.

We envision two main uses of CRYLOGGER . (1) Developers
can use it to find crypto misuses in their applications as well
as in the third-party libraries they include. CRYLOGGER can
exploit the input sequences that are defined by developers for
verification purposes to detect the misuses. CRYLOGGER can
be used alongside static tools as it complements their analysis
(Section VIII). Using CRYLOGGER also helps to reduce the false
positives reported by static tools. (2) CRYLOGGER can be used
to check the apps submitted to app stores, e.g., the Google Play
Store. Using a dynamic tool on a large number of apps is hard,
but CRYLOGGER can refine the misuses identified with static
analysis because, typically, many of them are false positives that
cannot be discarded manually on such a large number of apps.

We make the following contributions:

1. we describe CRYLOGGER , the first open-source tool to
detect crypto misuses dynamically; the tool is available
at: https://github.com/lucapiccolboni/crylogger [1];

2. we implement CRYLOGGER for Android and Java
apps; we support 26 crypto rules, and we decouple the
logging and the checking mechanisms so that new rules
can be easily added and checked with CRYLOGGER ;

3. we compare CRYLOGGER against CryptoGuard [6],
one of the most effective static tools to detect misuses:
we use 150 popular Android apps of the Google Play
Store for the comparison; we show that CRYLOGGER

reports misuses that CryptoGuard misses, but we show
that the opposite is also possible, thus making the case
for combining static and dynamic approaches;

crypto library

10 …
11 M = MessageDigest(“SHA1”);
12 …
…
19 …
20 S = SymmEncryption(“AES”);
21 …

application

execution log
[MessageDigest] alg: SHA1
[SymmEncryption] alg: AES

MessageDigest

SymmEncryption

logger

ONLINE

OFFLINE
checker

crypto rules

logger

R-01 Don’t use SHA1
R-02 Don’t use DES
….

broken hash function: SHA1

(Section IV)

(Section IV)

(Section V)

checking
procedures

API calls triggered
during the execution

1

2

3

Fig. 1. Overview of CRYLOGGER . 1� We run the application with an
instrumented crypto library. 2� We generate a log containing the parameters of
the crypto API calls. 3� We check the crypto rules and report all the violations.

4. we reverse engineer 150 Android apps to evaluate the
false positives of CryptoGuard; we show that for some
rules many false positives are reported due to insecure,
but untriggerable, code included in the apps;

5. we compare CRYLOGGER against CryptoGuard by
using the CryptoAPI-Bench [26], a set of Java programs
that include misuses; we also extend the CryptoAPI-
Bench with tests cases suited for dynamic tools;

6. we use CRYLOGGER to analyze 1780 Android apps
downloaded from the Google Play Store (the dataset
was collected between September and October 2019).
These are the most popular apps of 33 different cate-
gories. We confirm the results previously reported with
static tools [5], [6] and report new misuses;

7. we disclose the vulnerabilities we found to 306 app
and library developers and we report the feedback we
received from the 10 who replied; we manually reverse-
engineer 28 apps to determine if the vulnerabilities
reported by CRYLOGGER can actually be exploited.

II. OVERVIEW

Fig. 1 provides an overview of CRYLOGGER . It consists of:
1. logger: the logger extends a crypto library, for example

the Java crypto library, to trace the API calls to crypto
algorithms; for each of these calls, it logs the relevant
parameters that must be used to check the crypto rules;
for example, in Fig. 1, the logger saves the names of
the algorithms chosen by the application for message
digest (SHA1) and symmetric encryption (AES);

2. checker: the checker analyzes the log offline, after the
application has been executed, and it produces a list
of all the crypto rules violated by the application. To
check the rules it uses a set of checking procedures,
each of which covers many crypto rules; for instance,
in Fig. 1, the checker finds that the application uses the
broken algorithm SHA1 as message digest algorithm.

We decouple logging from checking for 4 main reasons: (1) the
parameters of interest of the crypto library are more stable, i.e., it
is unlikely that new parameters are added; for example, the main
parameters of an algorithm for key derivation are the salt, the
password and the number of iterations, (2) the crypto rules are
likely to change: for example, new rules can be added when new
vulnerabilities are found as well as current rules may need to be
updated (for example the minimum key size of RSA), (3) crypto
rules are context-dependent: some rules may be not relevant for
certain applications or contexts, and (4) checking rules offline
does not affect the application performance, which is important,
for instance, when the application response is critical (Android).

Similarly to most of the current static solutions, we developed
CRYLOGGER primarily to check Java and Android applications.
Our ideas, however, could be adapted to other contexts. In the
next sections, we describe our tool in more detail. In Section III,
we discuss the related work. In Section IV, we describe a generic
crypto library that we use to define the crypto rules and the API
parameters that must be logged. In Section V, we explain how
CRYLOGGER checks the rules. In Section VI, we present an
implementation of CRYLOGGER for Java and Android [1], by
explaining which APIs we instrumented and how we analyzed
a large number of Android apps. In Section VII, we describe
the dataset of apps we use for the evaluation. In Section VIII,
we perform a comparison of CRYLOGGER against CryptoGuard
by using 150 Android apps and the CryptoAPI-Bench [26]. In
Section IX, we present an analysis of 1780 apps from the Google
Play Store. We also report the feedback received for disclosing
the vulnerabilities and our reverse-engineering analysis of the
vulnerabilities found in 28 apps. In Section X, we discuss the
limitations of our approach before concluding in Section XI.

III. RELATED WORK

A. Detection of Crypto Misuses

Several tools exist to detect crypto misuses. Most of them are
based on static analysis, e.g., CryptoLint [5], CryptoGuard [6],
CrySL [15], MalloDroid [16], CogniCrypt [17] and CMA [18].
These tools differ in the crypto rules that they support and in
the slicing algorithms [19] that they adopt for analysis. Among
them, CryptoGuard covers the highest number of crypto rules.
As discussed in [27], the main problem with static analysis is
the high number of false positives, which requires the users to
manually examine the results and determine the true positives.
Recent studies [6], [26] showed that CryptoGuard is one of the
most effective tools in reducing the false positives, thanks to rule-
specific algorithms that refine the results of the static analysis.
We show, however, that CryptoGuard still produces many false
positives in practice by reporting crypto misuses that can never
be triggered at runtime (Section VIII). To achieve scalability on
complex apps, some tools “cut off” some branches of the static
explorations, e.g., CryptoGuard clips orthogonal explorations.
This causes false negatives in addition to false positives. False
negatives are also caused by code that is loaded at runtime [20].

Other tools identify crypto misuses by employing dynamic
analysis. SMV-Hunter [22] and AndroSSL [23], for example,

detect misuses of the SSL/TLS protocol. K-Hunt [24] detects
badly-generated keys, insecurely-negotiated keys and recover-
able keys by analyzing execution traces of Java programs. iCryp-
toTracer [25] detects misuses in iOS apps, which is a complex
task that must be implemented through API hooking techniques.
To the best of our knowledge, there are no approaches that are
as exhaustive and effective as static approaches and cover many
crypto tasks, e.g., encryption, authentication, and SSL/TLS. This
motivated us to develop CRYLOGGER , a tool that supports more
crypto rules than current static approaches and covers several
crypto tasks. The main disadvantage of all dynamic tools is the
possibility of missing vulnerabilities due to poor coverage [28].
Some misuses can remain undetected if the application are not
explored thoroughly. We show, however, that CRYLOGGER is
capable of finding most of the crypto misuses that CryptoGuard
reports even if the apps are not fully explored (Section VIII).

B. Other Related Research
The problem of crypto misuses has been studied from many

different perspectives. Fischer et al. [8] analyzed security-related
code snippets taken from Stack Overflow. They found that >15%
of the apps of the Google Play Store contained snippets of code
directly taken from Stack Overflow and ⇠98% of these had at
least one misuse. In a more recent work [29], they showed that
nudges [30] significantly helped developers in making better
decisions when crypto tasks need to be implemented. Nadi et
al. [9] showed that the main cause of misuses lies in the com-
plexity of the APIs rather than in the lack of security knowledge
in developers. Acar et al. [10] showed that poor documentation,
lack of code examples and bad choices of default values in the
crypto APIs contribute to many of the crypto misuses. Green et
al. [31] made the case for developing security-friendly APIs that
help developers to avoid common mistakes. Many recent works,
e.g., [6], [11] showed that third-party libraries cause most of the
crypto misuses in Android, up to 90% in some cases. To simplify
the work for developers, several approaches display security
tips or warnings in an integrated development environment. For
example, CogniCrypt [17] generates code snippets in Eclipse,
which can be used when crypto tasks need to be implemented.
Similarly, FixDroid [32] provides suggestions to developers on
how to fix crypto-related issues in Android Studio. To remove
the burden of fixing misuses from developers, some approaches
repair problematic code snippets automatically [33]–[36].

C. Testing Android Apps
Analyzing Android apps dynamically and automatically is

considered a hard problem [37], [38]. The common solution
to verify the apps correctness is Monkey1. Monkey generates
pseudo-random events that interact with the GUI of the emulator
or the real device. Monkey often obtains low code coverage
because the events are completely random [39], but it is quite
efficient in terms of execution time. Other approaches try to
exploit some information about the app to improve coverage. For
example, SmartDroid [28] exploits a combination of static and
dynamic techniques to trigger the APIs of interest. DroidBot [40]

1Monkey UI Exerciser: https://developer.android.com/studio/test/monkey.

is a test generator based on control-flow graphs that can be ex-
tended to support custom exploration strategies. Dynodroid [41]
monitors the app to guide the generation of the next input event.
These approaches have a significant overhead on the execution
of the app because to generate useful events they require either
to (i) rely on static analysis of the code [28] or (ii) create a model
at runtime that helps the exploration [40]. In CRYLOGGER , we
use Monkey as it is lightweight and common among developers.

IV. CRYPTO LIBRARY AND CRYPTO RULES

A typical crypto library (e.g., Java Cryptography Architecture)
includes 7 classes of tasks: (1) message digest, (2) symmetric
encryption, (3) asymmetric encryption, (4) key derivation/gen-
eration, (5) random number generation, (6) key storage, and (7)
SSL/TLS and certificates. Fig. 2 shows the parameters used by
CRYLOGGER . The parameters of Fig. 2 are logged and used to
check the rules. We do not claim that this library is complete. We
include the classes that are used by current static tools and those
that have a corresponding implementation in Java and Android.
These are the classes with the highest number of misuses in
Android and Java [5], [6], [16]. Extensions are possible, e.g.,
HKDF [42] can be added to the key derivation class.
(1) MessageDigest implements crypto hash functions [43].
These functions take as input an arbitrary amount of data and
produce fixed-length hash values, called digests. They are used to
check data integrity. For this class, the most important parameter
is the algorithm (alg) that is used as hash function, for example,
SHA1, SHA256. Different libraries support different algorithms.
(2) SymmEncryption contains block ciphers that are used for
symmetric encryption [43]. A block cipher takes as input a block
of data with fixed size (e.g., 128 bits) and a key (whose size
is defined by the algorithm) and it generates the corresponding
output block (encrypted or decrypted). A decrypted block of data
is called plaintext, while an encrypted block is the ciphertext. In
addition to the algorithm (alg), e.g., AES, used for encryption
and decryption, we log the key (key) and some other parameters.
Block ciphers work on a fixed-size data block. Therefore, to work
on multiple blocks of data (#blocks) they need to support some
operation modes (mode). For example, by using electronic code
book (ECB) each block is decrypted / encrypted independently
from the other blocks. With cipher block chaining (CBC), each
block of plaintext is xored with the previous block of ciphertext.
The initialization vector (IV) is a parameter (iv) that defines
the block that is xored with the very first block. Other common
operation modes are cipher feedback (CFB), output feedback
(OFB), and Galois/counter (GCM). Another important parameter
is the padding algorithm (pad), which is the algorithm used to
fill the last block of data if the input is not a multiple of the block
size. Example of padding algorithms are ZEROPADDING, where
the last block is filled with zeros, PKCS#5 [14] and PKCS#7 [44].
(3) AsymmEncryption implements algorithms for public-key
cryptography [2]. These algorithms use a key pair (key): a public
key and a private key. They can be used for (i) encryption and
decryption as well as (ii) signature and verification. For (i), the
message is encrypted with the public key of the receiver. It can

(7) SSL/TLS/Certif

R-26R-25R-24

urlprot

allhost

R-22 allcert

sethost

(5) RandomGenerator

R-18R-17R-08R-06

alg

seed

(3) AsymmEncryption

R-21R-20R-19

alg

key

pad

(1) MessageDigest

R-01

alg

(6) KeyStorage

R-23

pass

(4) KeyDerivation

R-13R-12R-11

salt

pass

R-10 iter

R-16R-15R-14

(2) SymmEncryption

R-05R-04R-03

iv

key

R-02
alg

R-09R-08R-07R-06

pad

mode

#blocks

out

Fig. 2. Classes of a typical crypto library with their parameters (arrows entering
in the class). For each class we report the crypto rules of TABLE I that need
parameters of that specific class.

be then decrypted only with the private key of the receiver. For
(ii), a message is signed with the private key of the sender and
verified with the corresponding public key. The parameters of
this class are the algorithm (alg) used for encryption, e.g., RSA,
elliptic curves (EC) or digital signature algorithm (DSA), and the
padding (pad), e.g., NOPADDING, PKCS1-v1.5 and PSS [45].
(4) KeyDerivation implements algorithms to derive crypto
keys [43]. A key derivation function takes as input a password or
a passphrase (pass) and generates a key by using a salt (salt),
i.e., a random value, and by applying a function, e.g., hashing,
for a fixed number of iterations (iter). The larger is the number
of iterations the harder is to implement brute-force attacks [14].
(5) RandomGenerator implements algorithms for generating
random numbers. The relevant parameters are the algorithm
(alg) used for generating the numbers, the bytes of the generated
number (out), and the seed (seed) for the generation. In this
paper we assume that there are only two categories of algorithms:
Secure and NotSecure. The parameter alg is Secure if it
generates numbers suited for crypto, otherwise it is NotSecure.
(6) KeyStorage implements algorithms to store crypto keys,
certificates and other sensitive content. Usually, it takes as input
a password or a passphrase (pass) to store contents securely.
(7) SSL/TLS/Certif is a class including multiple functions
for SSL/TLS and certificates: (1) connections that can be HTTP
or HTTPS (urlprot), (2) host name verification that can accept
all the host names or not (allhost), (3) certificate validation,
which can trust all certificates or not (allcert), and (4) host
name verification for SSL/TLS connections (sethost) [16].

A. Threat Model and Crypto Rules

TABLE I reports the rules that are supported by CRYLOGGER .
We collected them from (i) papers ad (ii) documents published
by NIST as well as IETF. Fig. 2 shows how the rules relate to
the crypto classes. Some rules use parameters from more than
one class (e.g., R-06 and R-08). We use the same threat model

ID Rule Description Ref.

R-01 Don’t use broken hash functions (SHA1, MD2, MD5, ..) [8]
R-02 Don’t use broken encryption alg. (RC2, DES, IDEA ..) [8]
R-03 Don’t use the operation mode ECB with > 1 data block [5]
R-04 † Don’t use the operation mode CBC (client/server scenarios) [12]
R-05 Don’t use a static (= constant) key for encryption [5]
R-06 † Don’t use a “badly-derived” key for encryption [5]
R-07 Don’t use a static (= constant) initialization vector (IV) [5]
R-08 † Don’t use a “badly-derived” initialization vector (IV) [5]
R-09 † Don’t reuse the initialization vector (IV) and key pairs [46]
R-10 Don’t use a static (= constant) salt for key derivation [5]
R-11 † Don’t use a short salt (< 64 bits) for key derivation [14]
R-12 † Don’t use the same salt for different purposes [46]
R-13 Don’t use < 1000 iterations for key derivation [14]

ID Rule Description Ref.

R-14 † Don’t use a weak password (score < 3) [47]
R-15 † Don’t use a NIST-black-listed password [48]
R-16 Don’t reuse a password multiple times [48]
R-17 Don’t use a static (= constant) seed for PRNG [49]
R-18 Don’t use an unsafe PRNG (java.util.Random) [49]
R-19 Don’t use a short key (< 2048 bits) for RSA [13]
R-20 † Don’t use the textbook (raw) algorithm for RSA [50]
R-21 † Don’t use the padding PKCS1-v1.5 for RSA [51]
R-22 Don’t use HTTP URL connections (use HTTPS) [16]
R-23 Don’t use a static (= constant) password for store [48]
R-24 Don’t verify host names in SSL in trivial ways [16]
R-25 Don’t verify certificates in SSL in trivial ways [16]
R-26 Don’t manually change the hostname verifier [16]

TABLE I
Crypto rules that are considered in this paper. The symbol † indicates the rules that are not covered by other approaches (we used [6] as reference).

of the current static tools. We briefly describe the crypto rules
below. The severity of most of these rules is discussed in [6].

R-01 does not let applications use broken hash functions,
e.g., those for which we can generate collisions, like SHA1 [7].
R-02 forbids the use of some broken algorithms for symmetric
encryption, for example, Blowfish, DES, etc. R-03 and R-04
do not allow applications to use the operation modes ECB and
CBC, respectively. ECB is well known to be vulnerable since
identical blocks of plaintext are encrypted to identical blocks of
ciphertext. This breaks the property of semantic security [52].
CBC is instead vulnerable to padding oracle attacks in client-
server scenarios [12]. R-05 and R-06 put restrictions on how
to generate keys. R-05 requires that the keys for symmetric
encryption are randomly generated by the application instead
of being hard-coded in the app as constants. R-06 requires the
keys to have enough randomness, i.e., they should be generated
by using a random generator that is considered secure for
crypto. R-07 and R-08 are similar to R-05 and R-06, but they
consider the IVs that are used in symmetric encryption instead
of the keys. The IVs, in fact, should always be random and
non-constant to strengthen data confidentiality when they are
paired with some operation modes, e.g., GCM. R-09 requires
that the same pair (key, IV) is never reused to encrypt different
messages. Reusing the same pair (key, IV) makes the encryption
predictable. R-10 is the same as R-05: it is, however, applied
to the salt used in key generation instead of the keys used in
symmetric encryption. R-11 requires the salt to be large enough
(� 64 bits) to protect the password used for key generation. R-12
prohibits the reuse of the same salt because it defeats the purpose
of adding randomness to the corresponding password. R-13
requires to use a sufficient number of iterations to generate the
key so that brute-force attacks become infeasible. R-14 and R-15
require to use a password that has not been black-listed and that
is “hard” enough for password-based encryption, respectively.
R-16 forbids using the same password multiple times (e.g.,
constant passwords). R-17 requires to use a random value as
seed instead of a constant value for pseudo-random number
generation (PRNG). Using a constant seed defeats the purpose
of generating random number as the sequence of numbers that is
generated becomes predictable. R-18 does not allow applications

to use PRNGs that are not approved for crypto operations, for
example java.util.Random [6]. R-19, R-20 and R-21 forbid
some configurations of the RSA algorithm. In particular, the
key should be � 2048 bits and a padding algorithm different
from NOPADDING (R-20) and PKCS1-v1.5 (R-21) must be used
for encryption / decryption. R-22 forbids the use of HTTP and
requires the use of the more secure alternative HTTPS. R-23
forbids the use of static passwords for key storage. R-24 and
R-25 require to properly verify host names and certificates. For
example, accepting all host names or all certificates should not be
allowed. R-26 forbids to modify the standard host name verifier,
which can lead to insecure communication over SSL/TLS.

V. CHECKING CRYPTO RULES DYNAMICALLY

We define four checking procedures to cover the crypto rules
reported in TABLE I. Each checking procedure covers multiple
rules, while each rule is verified by only one checking procedure.
These checking procedures are shown graphically in Fig. 3 and
explained in detail in the next sections. These procedures are
generic: they can be applied to new crypto rules if needed.

A. Unacceptable Values

The checking procedure of Fig. 3 (a) extracts from the log
all the values of a parameter or a combination of parameters
and verifies that they can be used to configure the corresponding
crypto class. All the values that are collected from the log are
sent to a rule-specific function that says ‘yes’ if the values are
allowed by the rule or ‘no’ otherwise. For R-01, for instance,
we need to ensure that the parameter alg of MessageDigest
never takes one of the following values: SHA1, MD2, MD5, etc.
This is the most basic checking procedure and it is used to check
the highest number of crypto rules. We describe how we check
the crypto rules that fall under this type below. For each rule, we
report which property must be satisfied by all the values that are
collected for that rule.

R-01: MessageDigest.alg /2 {‘SHA1’, ..}
R-02: SymmEncryption.alg /2 {‘DES’, ..}

For rules R-01 and R-02 we simply check that broken algorithms
are not used for message digest and encryption, respectively.

(c) Badly-Derived Values

[SymmEncryption] key: k1

logYes / No

[SymmEncryption] key: k2

[SymmEncryption] key: k3

(b) Constant Values

log2

log1

=
Yes / No

[SymmEncryption] key: k1

[SymmEncryption] key: k2

(d) Reused Values

[SymmEncryption] IV: v1
[SymmEncryption] key: k1

[SymmEncryption] IV: v2
[SymmEncryption] key: k2

log

=Yes / No

[MessageDigest] alg: SHA1

log

acceptable?

Yes / No

[MessageDigest] alg: SHA1

[MessageDigest] alg: SHA2

(a) Unacceptable Values

random?

Fig. 3. We define four checking procedures to cover all the crypto rules of TABLE I. (a) We check if some unacceptable values are used to configure a parameter of
a crypto class (e.g., SHA1 for rule R-01). (b) We check if a parameter is configured with constant values by verifying if the same values are found in two different
executions of an application (e.g., same key for rule R-05). (c) We check if the values of a parameter of a crypto class has enough randomness (e.g., the keys for
rule R-06). (d) We check if some values of a parameter are reused multiple times during the execution of an application (e.g., the pairs (key, IV) for R-09).

R-03: SymmEncryption.mode 6= ‘ECB’ or
SymmEncryption.#blocks = 1

R-04: SymmEncryption.mode 6= ‘CBC’

For rules R-03 and R-04, we check that the operation modes
ECB / CBC are not used. We accept the use of ECB for 1 data
block.

R-11: KeyDerivation.salt � 64 bits
R-13: KeyDerivation.iter � 1000

For key derivation we check that the lengths of the salts in the
log are always � 64 bits and the number of iterations is � 1000.

R-14: KeyDerivation.pass /2 BadPass
R-15: score(KeyDerivation.pass) � 3

For key derivation, we check if the password is broken (i.e., it
belongs to BadPass2) or weak. To check if a password is weak
we use zxcvbn [47] and consider it bad if it has a score < 3.

R-18: RandomGenerator.alg = ‘Secure’

We check that the algorithm to generate random numbers is
Secure, i.e., it should generate truly-random numbers. For
example in Java, java.secure.SecureRandom must be used
instead of java.util.Random, whose randomness is limited.

R-19: AsymmEncryption.alg 6= ‘RSA’ or
AsymmEncryption.key � 2048 bits

R-20: AsymmEncryption.alg 6= ‘RSA’ or
AsymmEncryption.pad 6= ‘NOPADDING’

R-21: AsymmEncryption.alg 6= ‘RSA’ or
AsymmEncryption.pad 6= ‘PKCS1-v1.5’

These rules do not admit encryption keys that are < 2048 bits
for RSA and require some padding algorithm different from
NOPADDING and PKCS1-v1.5 for encryption/decryption [51].

R-22: SSL/TLS/Cert.urlprot 6= ‘HTTP’

We check that HTTP is never used as a connection protocol.

R-24: SSL/TLS/Cert.allhost = ‘False’
R-25: SSL/TLS/Cert.allcert = ‘False’
R-26: SSL/TLS/Cert.sethost not assigned

2We used a set of passwords from: https://github.com/cry/nbp.

For rules R-24 and R-25, we check that apps do not naively
verify host names and certificates (e.g., they do not verify the
host name at all or they trust all certificates). For rule R-26, we
check that the default host name verifier is not replaced to avoid
host name verification, e.g., in Java by creating sockets3.

B. Constant Values
The checking procedure of Fig. 3 (b) verifies if a parameter

of a crypto class is constant or not. For instance, for rule R-05
we need to ensure that applications do not use static encryption
keys that are hard-coded in the app. Ideally, the keys should be
generated with a proper random generator. To verify the rules
in this category, we examine the logs of two executions of the
same application and check that the values that are found in one
of the execution log is not present in the other and vice versa.
For example, for rule R-05 we check the following:

R-05: { SymmEncryption.key }1 \
{ SymmEncryption.key }2 = ;

where we used { }1 to indicate the values collected in the
first log and { }2 the values collected in the second log. In a
similar way, we check the rules R-07, R-10, R-17, and R-23 with
the values of SymmEncryption.iv, KeyDerivation.salt,
RandomGenerator.seed, and KeyStorage.pass.

C. Badly-derived Values
The checking procedure reported in Fig. 3 (c) verifies if a

value is truly random or not. For rule R-06, for example, we
need to guarantee that the application uses encryption keys that
have enough randomness. To verify the rules of this type, we
collect all the values of the relevant parameter and we make the
following three checks sequentially (box random? of Fig. 3 (c)):

1. if the value is obtained from RandomGenerator with alg
= ‘Secure’, then we consider it a legit value;

2. if the value is obtained from RandomGenerator with alg
6= ‘Secure’, then we consider it a bad value;

3. otherwise we apply the NIST tests for randomness [49] and
if at least one test fails we consider it a bad value.

3Android SSL: https://developer.android.com/training/articles/security-ssl.

The first two checks try to determine the origin of the value, i.e.,
if it has been generated by RandomGenerator (parameter out).
If the origin cannot be determined, e.g., the value is generated in
some other ways by the application, then we use the NIST tests.
For each NIST test we have three possible outcomes: (i) failure,
(ii) success, or (iii) skipped because there are not enough bits to
apply the specific test. We consider that an app violates a rule if
at least one NIST test fails. This policy can be easily changed
by the user. We apply this procedure to rules R-06 and R-08.
Verifying the randomness of values is a challenging task. While
this test does not ensure that the values that pass the check are
truly random, it finds obvious sources of non-randomness. Static
approaches do not typically check these types of rules.

D. Reused Values

The checking procedure of Fig. 3 (d) checks if a value or a
combination of values of a parameter of a crypto class is reused
across the executions of an application. For instance, for rule R-
09, we have to ensure that the same pair (key, IV) is never reused
to encrypt different messages. The checking procedure collects
all the values from the log and checks if there are duplicates:

R-09: containsDuplicates(
{ (SymmEncryption.key,

SymmEncryption.iv) }) = False

We used this checking procedure for the rules R-09 and R-12.
Static approaches do not typically check these types of rules.

VI. IMPLEMENTATION OF CRYLOGGER FOR ANDROID

We implemented CRYLOGGER to detect crypto misuses in
Java and Android apps by instrumenting classes of the Java
Cryptography Extension (JCE) and the Java Cryptography Archi-
tecture (JCA), which are part of the Java standard library4. These
classes provide a common interface for crypto algorithms to all
Java apps. This interface is then implemented by ‘providers’, i.e.,
specific crypto libraries, e.g., SunJCE, BouncyCastle, etc. Thus,
they are the perfect place to detect crypto misuses in Android (as
well as Java) apps. TABLE II reports the mapping of the classes
of Section IV (Crypto Classes in the table) to the Java classes
that we instrumented. In some cases, a single crypto class, e.g.,
RandomGenerator, is mapped to multiple Java classes, e.g.,
Random and SecureRandom. In the appendices (TABLE III) we
report for each class the member methods that we instrumented
and the parameters that we collected for each Java class.

A. Automated Testing of Android Apps

We ran CRYLOGGER on 1780 Android apps from the official
Google Play Store. These are the most popular free apps of 33
different categories (Section IX). In this section, we discuss how
we automated the testing for such a large number of apps.

We implemented a Python script to perform the following
nine steps. Step (S1) starts an Android emulator, whose Java
library has been instrumented with CRYLOGGER (or we can use
a real device). (S2) downloads the chosen app from the Google

4Documentation about JCA and JCE can be found here: https://docs.oracle.
com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html (Java 7).

Crypto Classes Java Classes

MessageDigest java.security.MessageDigest
SymmEncryption javax.crypto.Cipher
AsymmEncryption javax.crypto.Cipher

java.security.Signature
KeyDerivation javax.crypto.spec.PBEKeySpec

javax.crypto.spec.PBEParameterSpec
RandomGenerator java.util.Random

java.security.SecureRandom
KeyStorage java.security.KeyStore
SSL/TLS/Certif. java.net.URL

java.net.ssl.SSLContext
java.net.ssl.SocketFactory
java.net.ssl.HttpsURLConnection

TABLE II
Mapping from the crypto library of Section IV to the Java standard library.

Play Store market. (S3) configures the user interface (UI) of the
emulator to facilitate random testing (more details below). (S4)
installs the app on the emulator with the android debug bridge
(ADB)5. (S5) uses Monkey to send random events to the UI of
the app (the number of UI events is configurable and Monkey
can be replaced with other tools). We call ‘events’ the actions
that can be performed on the UI of an app, such as scrolling,
touching, inserting text, etc. (S6) collects the crypto log. (S7)
uninstalls the app and deletes its data with ADB. (S8) checks the
crypto rules and reports the rules that have been violated. (S9)
tests another app starting from Step (S4), if it is necessary.

Android apps are UI driven [39]. Therefore to verify an app,
there are two main alternatives: manual tests, where a user needs
to interact with the UI of the app, and automated tests, where the
UI events are generated by a tool [37], e.g., Monkey. Since the
results of any dynamic tool, including CRYLOGGER , are as good
as the UI events used to exercise the app, it is critical to define
how to test the apps to detect crypto misuses. Since we wanted
to fully automate the testing process, we decided to exclude the
option of performing manual tests. We decided to use Monkey
for the experimental results in Sections VIII and IX. Monkey is
the most popular tool for random-based testing and compared
to other tools for random-based generation is known to be the
most effective [37]. The main advantage of Monkey is that it
is fully automated. It is also fully integrated in Android Studio,
and thus supported on all the apps of the Google Play Store and
on different Android versions. In addition, it is fast because to
generate events it does not need to maintain any information
(state) of the app. It has, however, two limitations: (1) random
events generate unintended behaviors, for instance, turning off
Internet or closing the app [39], and (2) poor app coverage since
the events are generated randomly, for example, Monkey cannot
perform complex operations, such as app registration or login.

(1) Unintended Behaviors: To address this problem, we added
Step (S3) mentioned above. This step (i) activates the immersive
mode6, where an app is fixed on the screen and there is no easy
way to return to the home screen, (ii) removes the quick settings,
so that Monkey cannot interact with system configurations, e.g.,
Wi-Fi, and (iii) disables physical buttons, e.g., power and volume,
to focus the attention of Monkey on the app. We observed that

5Android ADB: https://developer.android.com/studio/command-line/adb.
6Immersive: https://developer.android.com/training/system-ui/immersive.

these modifications eliminate most of the unintended behaviors.

(2) Poor App Coverage: To improve the coverage, we evaluated
many tools for test generation, e.g., SmartDroid [28], Droid-
Bot [40], and Dynodroid [41]. Their main drawbacks are that the
support is limited (they work on specific versions of Android)
and they are typically slower than Monkey, as they need to keep
some information about the state of the app and update it to
explore new behaviors (e.g., a control-flow graph [40]). Due to
these limitations, we decided to use Monkey. We noticed that
Monkey is actually capable of triggering many of the crypto
misuses, even if the UI events are completely random. Most of
the functions that we instrumented (TABLE III) are, in fact, used
to initialize some basic, critical crypto classes, and therefore they
are relatively easy to trigger. We observed that Monkey achieves
⇠ 25% of line coverage on average, but it reports as many crypto
misuses as CryptoGuard [6], which employs static analysis
(Section VIII). This choice carries some limitations, i.e., the
possibility of false negatives, because some parts of the apps are
hard to explore (e.g., login). It is worth to mention, however, that
CRYLOGGER can be configured to use any other UI exercisers as
well as manually-written sequences of UI events. For example,
if developers have sequences of events to stimulate their apps, it
can exploit those to obtain higher coverage. In future, we plan
to build our own UI event generator tool specialized for crypto.

B. Details about Crypto Rules Checking
We used the checking procedures explained in Section V to

check the crypto rules for the Android apps, but we made few
adaptations. The functions that we instrumented for rules R-24
and R-25 (TABLE III) take as input some classes for which the
developer of the application has to implement some methods,
e.g., the method verify() to verify the host name. To obtain
the values of the parameters allhost and allcert that are
used by rules R-24 and R-25, during the logging, we pass some
erroneous values, such as NULL or empty strings, to determine
if those functions were implemented naively. For the rules that
require two executions (see Fig. 3 (b)), we obtain the two logs
by running the application on two different instances of the
emulator. We also make sure that if we see a value that is in both
logs, then this is caused by constants hard-coded in the app.

VII. EXPERIMENTAL SETUP AND BENCHMARKS

We evaluated CRYLOGGER on two sets of benchmarks. The
first set consists of Android apps. We downloaded 2148 free
Android apps from the Google Play Store. These cover the
most popular free apps of 33 different categories. We discarded
110 of these apps since they do not use any crypto APIs. We
discarded 258 of these apps as they do not work on the Android
emulator either because they keep crashing or they require
libraries that cannot be installed in the emulator environment.
The results of running CRYLOGGER on the remaining 1780
apps are discussed in Section IX. We used a random subset of
these apps to compare CRYLOGGER against CryptoGuard [6] as
described in Section VIII. The second set of benchmarks is the
CryptoAPI-Bench [26], a set of Java applications that include
crypto misuses. The CryptoAPI-Bench was originally proposed

to compare static approaches. We extended it and then used it to
compare CRYLOGGER against CryptoGuard (see Section VIII).

VIII. RESULTS: COMPARISON WITH CRYPTOGUARD

We compared CRYLOGGER against CryptoGuard [6], one
of the most effective static tools in detecting crypto misuses in
Java-based applications. We could not compare CRYLOGGER

against a dynamic tool because, to the best of our knowl-
edge, CRYLOGGER is the only approach to detect misuses
dynamically for a large number of rules (Section III). We
chose CryptoGuard among many available static tools, e.g.,
CryptoLint [5], CrySL [15], because it has been recently shown
that CryptoGuard is the tool with the lowest false positive
and false negative rates among them [26]. It is also the tool
that supports the largest number of crypto rules. We compared
CRYLOGGER and CryptoGuard by using 2 datasets. The first
consists of 150 Android apps we randomly chose from the set
of 1780 apps (Section VII). For this dataset, we evaluated the
execution times and the number of crypto misuses found by the
two tools. The second dataset is the CryptoAPI-Bench [26], a set
of Java benchmarks that include crypto misuses. For this dataset,
we determined the false positive and the false negative rates of
the two tools. We also extended the CryptoAPI-Bench with more
benchmarks to cover cases relevant to dynamic approaches.

A. Android Apps: Results
We used 150 free Android apps randomly chosen from the

dataset of 1780 apps to compare CRYLOGGER and Crypto-
Guard7. We could not use the entire dataset of 1780 apps of
Section VII because the false positives for CryptoGuard must
be determined manually (see below). For a fair comparison, we
excluded the rules that are supported by CRYLOGGER , but not by
CryptoGuard, and thus we compared the two tools by checking
16 crypto rules. For each rule, we determined the number of apps
that are marked as “vulnerable” by each tool and analyzed the
false positive and false negative rates. We used 3 configurations
for CRYLOGGER where we varied the number of UI events that
are generated with Monkey: we used 10k, 30k and 50k random
events (same random seed) to see how the number of input
events impacts the number of misuses that are identified. In the
following, we refer to the 3 configurations as CRYLOGGER10,
CRYLOGGER30 and CRYLOGGER50, respectively.

The results of the comparison are reported in Fig. 4 and 5.
Each graph is an upset plot [53], [54] for a specific rule. An upset
plot is an alternative to the Venn diagrams to represent sets and
their intersections. In our context, the sets that are represented
are the sets of apps that are considered vulnerable by each
approach (CRYLOGGER10, CRYLOGGER30, CRYLOGGER50
and CryptoGuard). The horizontal bars are used to indicate the
total number of apps that are considered vulnerable by each
approach. For instance, for rule R-03, CryptoGuard found 17
vulnerable apps among the 150 apps that were analyzed, i.e., 17
apps violate R-03, CRYLOGGER50 and CRYLOGGER30 flagged
21 apps as vulnerable, and finally CRYLOGGER10 marked 20
apps as vulnerable. The vertical bars are used to represent the

7https://github.com/franceme/cryptoguard; vers: 03.07.03; commit: ba16c928.

144

6
0

50

100

150

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●
●
●
●

●
●
●

cryptoguard
crylogger50
crylogger30
crylogger10

subsets

144
150
150
150

050100150200

vulnerable apps

rule R−01

tp in subset
total

14

7

2

0

5

10

15

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●
●
●
●

●
●
●
●

cryptoguard
crylogger50
crylogger30
crylogger10

subsets

16
9
9
9

05101520

vulnerable apps

rule R−02

tp in subset
fp in subset
total

16

13

4

0

5

10

15

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●
●
●

●●
●
●
●

cryptoguard
crylogger50
crylogger30
crylogger10

subsets

17
21
21
20

01020

vulnerable apps

rule R−03

tp in subset
fp in subset
total

29

19
16

0

10

20

30

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●
●
●

●
●
●
●

●cryptoguard
crylogger50
crylogger30
crylogger10

subsets

36
50
50
48

0204060

vulnerable apps

rule R−05

tp in subset
fp in subset
total

17 16

4

0

5

10

15

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●
●
●
●

●
●
●

●cryptoguard
crylogger50
crylogger30
crylogger10

subsets

21
35
35
33

010203040

vulnerable apps

rule R−07

tp in subset
fp in subset
total

14

3
1

0

5

10

15

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●
●
●

●
●
●
●

●cryptoguard
crylogger50
crylogger30
crylogger10

subsets

4
17
17
17

05101520

vulnerable apps

rule R−10

tp in subset
total

4

2

1

0

1

2

3

4

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●
●
●

●●
●
●
●

cryptoguard
crylogger50
crylogger30
crylogger10

subsets

3
5
5
5

0246

vulnerable apps

rule R−13

tp in subset
total

16

1
0

5

10

15

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●
●
●

●cryptoguard
crylogger50
crylogger30
crylogger10

subsets

1
16
16
16

05101520

vulnerable apps

rule R−16

tp in subset
total

Fig. 4. (Part 1) Comparison of CRYLOGGER and CryptoGuard [6] on 150 Android apps. Each graph is an upset plot [53]. The horizontal bars indicate the
number of apps flagged as vulnerable by CryptoGuard and CRYLOGGER (that is run with 10k, 30k and 50k stimuli). The vertical bars indicate the number of
apps flagged as vulnerable by a possible intersection of the four approaches (the three largest, non-empty intersections are reported). For example, for R-02: 2
apps are considered vulnerable by all approaches, 14 apps are flagged as vulnerable by CryptoGuard, but not by CRYLOGGER , and finally 7 apps are considered
vulnerable by CRYLOGGER only. The vertical bars distinguish the false positives (fp) obtained by reverse engineering and the true positives (tp) for CryptoGuard.

intersections of the sets of apps that are considered vulnerable
by each approach. Specifically, each vertical bar indicates the
size of the intersection of the sets whose circles below the bar
are black. For example, for rule R-03: the 3 configurations of
CRYLOGGER identified 16 crypto misuses that were not found
by CryptoGuard; CryptoGuard detected 13 misuses that were
not found by the 3 configurations of CRYLOGGER , and finally
all the approaches agree that 4 apps are vulnerable. The vertical
bars for CryptoGuard distinguish the false positives (fp) from
the true positives (tp), because CryptoGuard can produce false
positives. To make this distinction, we reverse engineered the
apps by using APKTool8 and verified if the API calls flagged as
vulnerable by CryptoGuard could actually be called at runtime.
We used a very conservative approach to determine the false
positives. Starting from the flagged API call, we recursively
built the sets of functions that call that API until we obtained a
fixed point. If a function that is part of the package of the app
is in the set, then we considered the API call a true positive
because there is the possibility that it could be called at runtime.
If none of the functions in the set is part of the package of the
app, then we considered the API call a false positive. If the app
was completely obfuscated with ProGuard9, thereby making it
impossible to determine its packages, then we assumed that the
vulnerability flagged by CryptoGuard was a true positive. In
our case 6 apps were completely obfuscated. This process does

8https://github.com/iBotPeaches/Apktool; vers: 2.4.0; commit: 197d4687.
9ProGuard: https://www.guardsquare.com/en/products/proguard.

not guarantee that all false positives are identified because some
paths in the code of the app could still be not executable (dead
code), but it helps to find the obvious sources of false positives.

For most of the rules, excluding some cases (R-01, R-18,
R-22, R-24, R-25 and R-26), we can observe the following:
(1) CryptoGuard detected some crypto misuses that were
not found by CRYLOGGER ; (2) CRYLOGGER detected some
misuses that were not found by CryptoGuard; (3) the number of
misuses detected by CRYLOGGER is higher than CryptoGuard,
considering that the latter produces many false positives (we
discuss some examples of false positives in Section VIII-D). For
some rules (R-01, R-18) we can observe that all the misuses
detected by CryptoGuard were also discovered by CRYLOGGER .
For other rules (R-22, R-24, R-25 and R-26) we can observe
that CryptoGuard found more crypto misuses compared to
CRYLOGGER , but it produced a significant number of false
positives (in some cases the false positive rate is > 50%). These
rules are related to SSL/TLS and they require to evaluate the
security of the actual implementation of some Java functions,
for example, the function verify in the case of rule R-24 or
the functions checkClientTrusted, checkServerTrusted
and getAcceptedIssuers in the case of rule R-25. These
tasks are better suited for static analysis because it is necessary to
prove that some parameters of the functions are never used or the
parameters of the functions do not influence the return value [6].
Overall, these results show that CRYLOGGER can complement
the results that are obtained through static analysis and it can

5

2

1

0

2

4

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●
●
●
●

●
cryptoguard
crylogger50
crylogger30
crylogger10

subsets

5
4

3
2

0246

vulnerable apps

rule R−17

tp in subset
fp in subset
total

141

9
0

50

100

150

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●
●
●
●

●
●
●

cryptoguard
crylogger50
crylogger30
crylogger10

subsets

141
150
150
150

050100150200

vulnerable apps

rule R−18

tp in subset
total

22

2 1
0

5

10

15

20

25

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●
●
●

●
●

●cryptoguard
crylogger50
crylogger30
crylogger10

subsets

1
24
24
22

0102030

vulnerable apps

rule R−19

tp in subset
total

35 34

24

0

10

20

30

40

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●●
●
●
●

●
●
●

cryptoguard
crylogger50
crylogger30
crylogger10

subsets

71
62
60
58

0255075100

vulnerable apps

rule R−22

tp in subset
fp in subset
total

7

4

1

0

2

4

6

8

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●●
●
●
●

●
●
●

cryptoguard
crylogger50
crylogger30
crylogger10

subsets

11
5
5
5

051015

vulnerable apps

rule R−23

tp in subset
fp in subset
total

26

1
0

10

20

30

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

● ●
●
●
●

cryptoguard
crylogger50
crylogger30
crylogger10

subsets

27
1
1
1

0102030

vulnerable apps

rule R−24

tp in subset
fp in subset
total

51

5
1

0

20

40

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●●
●
●
●

●
●

cryptoguard
crylogger50
crylogger30
crylogger10

subsets

56
7
7
6

0204060

vulnerable apps

rule R−25

tp in subset
fp in subset
total

11

1
0

5

10

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●
●
●
●

cryptoguard
crylogger50
crylogger30
crylogger10

subsets

11
1
1
1

051015

vulnerable apps

rule R−26

tp in subset
fp in subset
total

Fig. 5. (Part 2) Comparison of CRYLOGGER and CryptoGuard [6] on 150 Android apps. Each graph is an upset plot [53]. The horizontal bars indicate the
number of apps flagged as vulnerable by CryptoGuard and CRYLOGGER (that is run with 10k, 30k and 50k stimuli). The vertical bars indicate the number of
apps flagged as vulnerable by a possible intersection of the four approaches (the three largest, non-empty intersections are reported). For example, for R-22: 35 apps
are considered vulnerable by all approaches, 34 apps are flagged as vulnerable by CryptoGuard, but not by CRYLOGGER , and finally 24 apps are considered
vulnerable by CRYLOGGER only. The vertical bars distinguish the false positives (fp) obtained by reverse engineering and the true positives (tp) for CryptoGuard.

be helpful in detecting misuses in Android apps. By combining
CRYLOGGER with powerful static tools such as CryptoGuard,
it is possible to detect crypto misuses effectively. We can also
observe that it is sufficient to configure CRYLOGGER to use
30k random UI events to trigger most of the crypto misuses.
We performed the same experiments on the rules that are not
supported by CryptoGuard (see Fig. 9 in the appendices).

B. Android Apps: Execution Time

We measured the average execution time required by the
3 configurations of CRYLOGGER and by CryptoGuard to
analyze the 150 apps used for the comparison. We obtained
that CRYLOGGER10 requires on average 146.4 seconds per
app, CRYLOGGER30 takes 287.4 seconds, and CRYLOGGER50
takes 751.7 seconds to perform dynamic analysis. CryptoGuard
requires 287.6 seconds. Other static tools are usually much
slower. For example, the authors of CryptoLint [5] reported that
22.2% of the apps they analyzed did not terminate in 30 minutes
and 6.5% ran out of memory. This shows that the execution
time of CRYLOGGER is comparable to the time required by
CryptoGuard, confirming that both approaches are scalable.

C. Android Apps: Coverage

We measured the line coverage, the method coverage and
the class coverage of the apps analyzed with the three config-
urations of CRYLOGGER . We used ACVTool [55] to obtain
this information. To calculate the coverage, we considered only
the files that are included in the main packages of the apps,

while excluding the files that belong to the third-party libraries
because they can contain code not callable from the apps. The
average line coverage for CRYLOGGER10, CRYLOGGER30, and
CRYLOGGER50 are 22.8%, 25.3%, and 25.4%, respectively.
The average method coverage are 25.4%, 27.9%, and 27.9%,
respectively. The average class coverage are 32.8%, 35.4%, and
35.7%, respectively. The coverage is relatively low and there are
many lines of code that Monkey could not explore (⇠ 75%).
These results are not surprising because Monkey generates
completely random UI events [39]. However, this shows that
even if the coverage is low, CRYLOGGER can detect misuses as
the crypto APIs are easily triggerable with random events.

D. Android Apps: False Positives

Fig. 4 and 5 show that CryptoGuard can produce many false
positives, especially for rules R-22 (false positives: 22.5%), R-24
(59.3%), R-25 (57.1%) and R-26 (27.2%). In Fig. 11 we report
two concrete examples of false positives that we found. The
first example is for rule R-22. We found that many apps were
flagged as vulnerable by CryptoGuard because they include the
Java class HttpTesting. While violating rule R-22 due to the
use of HTTP instead of HTTPS, this class is meant to be used
for testing and it is not instantiated at runtime by any of the
apps we analyzed. Similarly, for rule R-24, many apps were
flagged because they contain the Java class AdjustFactory10.
The function reported in the second example of Fig. 11 is used

10The code is available at https://github.com/adjust/android sdk.

138 41 19

150 17 24 7
tp tn fn

tp tn fp fn

crylogger

cryptoguard

0 50 100 150 200

fn fp tn tp

Fig. 6. Comparison of CRYLOGGER and CryptoGuard [6] on the CryptoAPI-
Bench*. We report the number of false positives (fp), false negatives (fn), true
positives (tp) and true negatives (tn). “True positive”: there is a crypto misuse
that is caught. “True negative”: there is not a crypto misuse and it is not caught.

only for testing, as its name suggests, and it is never called at
runtime by any of the apps that we analyzed. This function was
flagged as vulnerable by CryptoGuard.

E. CryptoAPI-Bench: Results
We compared CRYLOGGER against CryptoGuard by using the

CryptoAPI-Bench [26]11, a set of Java benchmarks that include
crypto misuses. The CryptoAPI-Bench has been proposed to
compare CryptoGuard and other static approaches. Therefore,
(1) the code is not directly executable, (2) it lacks test cases that
are useful for dynamic approaches, and (3) it misses test cases
for the rules that are not supported by CryptoGuard. We extended
the CryptoAPI-Bench such that (1) the code can be analyzed by
static approaches as well as executed by dynamic approaches,
(2) we added new test cases that are challenging for dynamic
approaches, and (3) we included new test cases for the rules
supported by CRYLOGGER , but not by CryptoGuard. In this
section, we discuss the result of the comparison on the modified
CryptoAPI-Bench that we call CryptoAPI-Bench*. For fairness,
we consider the rules that are supported by both CRYLOGGER

and CryptoGuard. For fairness, we also report the results on the
original CryptoAPI-Bench in Fig. 12 (in the appendices).

CryptoAPI-Bench contains six types of tests: (1) basic: the
crypto misuse is in the function main; (2) miscellaneous:
similar to basic, but the parameters for the API calls are saved
in data structures or go through data type conversions; (3)
interprocedural: the misuse is in a function that is called by
main with 2 or 3 levels of indirection; (4) path sensitive: the
crypto misuse is in a branch that is always evaluated to true at
runtime; (5) field sensitive: the misuse is in a member function
and the relevant parameters are saved in the field of a class; (6)
multiple classes: the relevant parameters of a misuse are passed
from a class to another class to reach the API call. We report
an example of each test in Fig. 10 (in the appendices). Some of
these tests are challenging for a static tool, but they are all the
same from a dynamic tool perspective. Therefore, we decided to
add the following type of test: (7) argument sensitive: the misuse
is triggered only if a specific value is passed as input to main.

Fig. 6 shows the results of the comparison of CRYLOGGER

and CryptoGuard. The bars show the number of true positives
(tp), true negatives (tn), false positives (fp) and false negatives
(fn). In CryptoAPI-Bench* there are 198 tests in total, 157 true
positive tests, i.e., tests in which there is a crypto misuse, and

11https://github.com/CryptoGuardOSS/cryptoapi-bench, commit: ace0945.

41 true negative tests, i.e., tests in which there are no misuses.
CRYLOGGER cannot produce any false positives, but it produces
19 false negatives, all for the tests that are argument sensitive.
CryptoGuard produces both false positives and false negatives.
The false positives are caused by tests that are path sensitive,
and interprocedural tests. The false negatives are caused by the
refinements that are applied by CryptoGuard [6], interprocedural
tests, and tests that are path sensitive. These results confirm that
static tools can be complemented with CRYLOGGER to expose
more misuses as well as reduce the number of false positives.

IX. RESULTS: VULNERABILITIES IN ANDROID

We run CRYLOGGER on the 1780 apps downloaded from
the Google Play Store (Section VII). We stimulated the apps
with 30k random events as this was a good compromise between
running time and number of vulnerabilities found in a subset
of these apps (Section VIII). The experiments took roughly 10
days to run on an emulator running Android 9.0.0 r36, to which
we allocated 6 cores (Intel Xeon E5-2650) and 16 GB of RAM.

Fig. 7 reports the results of the analysis. The graph reports
the total number of apps that violate the 26 crypto rules checked
by CRYLOGGER . A very high number of apps use broken hash
algorithms (R-01, 99.1%) and unsafe random generator (R-18,
99.7%). These results are more alarming than the ones that
were obtained statically in [6], 85.3% and 84.0%, respectively.
CRYLOGGER , similarly to static tools, cannot determine exactly
how hash functions or random numbers are used in the apps by
using rules R-01 and R-18 only. While for R-01 it is challenging
to determine how hash functions are actually used, for R-18
we can check if non-truly random numbers are used as values
for keys and initialization vectors with R-06 and R-08. These
rules are not supported by static tools and they give more precise
information about the use of non-truly random numbers. We
decided to keep rule R-18 to compare CRYLOGGER against
other static tools, but we suggest using rules R-06 and rule R-
08 for a more precise analysis. Other more subtle uses of hash
functions can produce false positives, e.g., when broken hash
functions are used with non-sensitive data or when the property
of collision resistant is not required. For other rules, e.g., R-
03, R-13, and R-22, we obtained results more similar to [6]. A
surprising number of apps reuse the same (key, IV) pairs (R-09,
31.3%), which was never reported before. Many apps also use
badly-generated keys (R-06, 36.1%), badly-generated IVs (R-
08, 6.6%), and reuse salts for different purposes (R-12, 6.6%),
which are rules that were not checked by other tools before. For
rule R-01 we found that 99.0% of the apps that violate R-01 use
SHA1 and 99.7% use MD5 as message digest algorithm. For R-
02, we found that 81.0% of the apps that use broken symmetric
algorithms use DES, while 16.7% still use Blowfish. We found
that 82.8% of the apps that violate R-13 use 3 iterations for
key derivation, which is much lower compared to the suggested
value (1000). For R-14 and R-15 we found that 27.1% of the
apps use “changeit” as password, while 8.5% use “dontcare”.
For RSA, we saw that 97.7% use 1024 bits as key size (2048 is
the suggested value). These results confirm what was obtained

1764
126

219
1076 820 642

707 168
557 175 41

117 64 59 34
152 6

1775
262 16
170

593
48 14
93 14

0
500

1000
1500
2000
2500

R−01
R−02
R−03
R−04
R−05
R−06
R−07
R−08
R−09
R−10
R−11
R−12
R−13
R−14
R−15
R−16
R−17
R−18
R−19
R−20
R−21
R−22
R−23
R−24
R−25
R−26

vu

ln
er

ab
le

 a
pp

s

Fig. 7. Number of vulnerable Android apps for each crypto rule. We analyzed
1780 Android apps with CRYLOGGER configured to generate 30k random
events with Monkey. We downloaded the apps from the official Google Play
Store. The dataset of apps was collected between September and October 2019.

in previous works by using static analysis [5], [6] and show that
CRYLOGGER can analyze a large number of apps automatically.

A. Disclosure of Vulnerabilities
We contacted 306 developers of Android apps and libraries to

disclose the vulnerabilities reported in Fig. 7. We respected the
disclosure policies of the companies we contacted. Starting from
the apps that violate 18 rules (the highest number of violations in
our dataset), we contacted all the apps with � 9 rule violations.
All the apps are popular: they have from hundreds of thousands
of downloads to more than 100 millions. Unfortunately, only
18 developers answered our first email of request and only 8
of them followed back with us multiple times providing useful
feedback on our findings. We also contacted 6 developers of
popular Android libraries and received answers from 2 of them.
The characteristics of the 8 apps and 2 libraries for which we
received feedback are reported in the first table from the left of
Fig. 8. We preferred to anonymize the apps and libraries because
(i) we do not want to associate the feedback we received to the
company of the app or its employers, and (ii) we consider some
of the attacks possible although developers considered them
out-of-scope because they require privilege escalation.

Apps A-01, A-04, and A-07 violate rule R-01. Their developers
told us that MD5 or SHA1 are used for hashing non-sensitive
values. App A-01 violates also rules R-02 (DES) and R-03: the
developers justified the use of broken algorithms saying that
they do not pose concrete risks to their users. A-01, A-05, and
A-07 violate rules related to poor encryption parameters, such as
constant keys (R-05, R-06), IVs (R-07, R-08) and salts (R-10).
The developers adopted poor encryption practices to encrypt data
that are stored locally on the smartphone. They consider these
issues outside of their threat model since privilege escalation
attacks are required to exploit them. A-03 uses repeating (key,
IV) pairs (R-09): the developers agreed that it is a real issue
and they plan to fix it. They reused the same pairs because they
experienced app crashing when using fresh pairs. A-02, A-05,
A-06, and A-08 use constant passwords (R-16, R-23) to encrypt
data. The developers do not plan to fix these problems because a
privilege escalation attack is necessary to access the data. The
developers of A-01, A-04 and A-05 told us that using a short
RSA key (R-19) does not pose concrete risks. L-09 is a popular
library for advertisements. The library uses the same (key, IV)
pairs to store data locally. The same (key, IV) pairs are reused
across different apps, i.e., all the apps using this library end up

using the same sequence of (key, IV) pairs. About 30% of the
apps in our dataset share the same sequence of pairs which are
used to encrypt data in the private folder of each app. The library
developers confirmed this issue, but they classified it as out-of-
scope. Note that this experiments cannot be replicated by static
tools and it is an example of how CRYLOGGER can perform
inter-app analysis. L-10 is a common library for advertisements.
The library employs weak encryption practices to store data
locally. We talked with the library developers. They were aware
of the issue and said that the data are not security critical.

This analysis reveals that the threat model of CRYLOGGER

and all the other static tools is not aligned with the develop-
ers’ threat model. Developers claim that sensitive data can
be encrypted poorly if they are stored only locally because
privilege escalation is required to access them. Unfortunately,
side-channel attacks can also access the data [56]. While we
recommend to always adopt safe crypto practices, one way to
to avoid such types of warnings in CRYLOGGER is to log when
data are stored on the local storage (e.g., in classes such as
File or KeyStore) and discard the corresponding violations.
Developers are also more interested to rules that, if violated, pose
concrete security threats as also reported in [6]. For example,
while setting a minimum size for keys (R-19) is important, the
effects of its violation are hard to assess. Since the feedback we
received from developers is limited to a few apps, we decided to
analyze some apps manually to determine if the vulnerabilities
of Fig. 7 are exploitable.

B. Analysis of Vulnerabilities

We reverse engineered 28 apps with APKTool and JADX12.
We chose half of the apps among the most popular apps of our
dataset (Section VII) with the highest number of violations. We
chose the remaining half randomly. The apps characteristics are
shown in Fig. 8. We performed the following steps for reverse
engineering: (i) we used APKTool and JADX to obtain the Java
code from the binary (apk) of the app, (ii) we analyzed the app
with CRYLOGGER , which we extended to log the stack trace
for each rule violation, and (iii) we manually analyzed the code
starting from the flagged API call to understand its purpose in
the app. We spent on average 6 hours per app for code analysis.

A significant number of these apps (14/28) are vulnerable to
attacks, even though some may be considered out-of-scope by
developers. Most of the rules (22/26) are effective in detecting
at least one vulnerable app. App A-13 violates many rules related
to encryption. This app uses encryption to manage subscriptions
to premium features and users data. The subscription and the
users data are stored locally on the app and attacker can read
the data as well as fake subscriptions. Similarly, apps A-18, A-
20, A-24, A-25, A-33, and A-34 store critical users data (emails,
answers to security questions, etc.) by using weak encryption
algorithms. A-22, A-29, and A-30 store SSL/TLS certificates
with weak password-based encryption. A-14 uses a constant seed
(R-17) to randomly generate keys used for encryption of users
data, so the keys can be easily obtained. Apps A-31,A-32, and

12https://github.com/skylot/jadx; vers: 1.1.0, commit: cc29da8.

DEVELOPERS FEEDBACK REVERSE ENGINEERING

ID Type (#Downloads) Analyzed Violations

A-01 File Manager (100M+) R-02, R-03, R-05, R-07,
R-08, R-09, R-10, R-12,
R-19

A-02 Data Transfer (10M+) R-16, R-23
A-03 Video Streaming (10M+) R-09, R-20, R-22
A-04 Newspaper App (5M+) R-01, R-19, R-20, R-23
A-05 Social & News (5M+) R-05, R-06, R-07, R-08

R-10, R-16, R-19
A-06 Language Learning (1M+) R-16
A-07 Music Streaming (1M+) R-01, R-05, R-06, R-09
A-08 Video Streaming (1M+) R-16, R-23
L-01 Advertisement (N.A.) R-09
L-02 Advertisement (N.A.) R-07, R-08, R-10

ID Type (#Downloads) Analyzed Violations

A-09 Messaging (100M+) R-01
A-10 Entertainment (100M+) R-18, R-22
A-11 Movie Reviews (100M+) R-18, R-19, R-21
A-12 Book Reading (50M+) R-02, R-03, R-05, R-06
A-13 Passw. Manager (50M+) R-02, R-03, R-04, R-05

R-06, R-07, R-08
A-14 Passw. Manager (50M+) R-17
A-15 Screen Utils (10M+) R-01
A-16 File Manager (10M+) R-01
A-17 Video Streaming (10M+) R-04
A-18 Video Streaming (10M+) R-04, R-07, R-08, R-21,

R-23
A-19 Video Streaming (10M+) R-09, R-20, R-22
A-20 Live Events Info (10M+) R-11, R-16
A-21 Video Streaming (10M+) R-11, R-13
A-22 Video Streaming (10M+) R-14, R-15, R-16
A-23 Newspaper App (5M+) R-01, R-19, R-20, R-21

ID Type (#Downloads) Analyzed Violations

A-24 Mail Manager (5M+) R-04, R-05, R-06, R-10
R-12, R-13, R-16

A-25 Video Streaming (5M+) R-19, R-21, R-24, R-25
R-26

A-26 Stocks Manager (5M+) R-22
A-27 Authentication (5M+) R-23
A-28 Video Streaming (1M+) R-10, R-16
A-29 Blog Reading (1M+) R-14, R-15, R-16
A-30 Book Reading (1M+) R-14, R-15, R-16
A-31 Healthcare Info (1M+) R-24, R-25, R-26
A-32 Music Streaming (1M+) R-24, R-25, R-26
A-33 Newspaper App (500K+) R-03, R-05, R-06, R-10

R-13, R-16, R-24, R-25
R-26

A-34 Entertainment (100K+) R-10, R-11, R-13, R-16
A-35 Passw. Manager (100k+) R-13
A-36 Video Streaming (100K+) R-22

Fig. 8. The first table from the left reports the characteristics of the Android apps for which we received feedback from their developers. The other tables report the
characteristics of the apps that we reverse engineered. The rules reported in the last column of each table are those that were analyzed by the developers or by us.

A-33 are vulnerable to man-in-the-middle attacks because they
violate R-24, R-25, and R-26. These apps download copyrighted
videos/music as well as ads, which can be intercepted by
attackers. The other violations can be considered false positives.
Some are caused by ‘imprecise’ rules. For example, on 3 apps
each, rules R-01 and R-18 flag secure uses of hash algorithms
and random number generators for non-sensitive data. Similarly,
R-04 flags 3 apps that use CBC encryption for scenarios different
from client/server. Other violations come from (i) employing
weak encryption schemes to obfuscate non-sensitive data and
(ii) legacy practices such as using PCKS#1 as padding scheme
in SSL/TLS instead of more secure alternatives such as OAEP.

This analysis confirms that the threat model of CRYLOGGER

and all the other static tools does not completely align with the
developers’ threat model and some rules produce false positives.

X. DISCUSSIONS AND LIMITATIONS

In this section, we discuss the advantages of dynamic ap-
proaches over static approaches and our current limitations.

Why a Dynamic Approach? To date, most of the approaches
to detect crypto misuses are based on static analysis, which
provides many benefits. Static analysis can analyze the code
without executing it, and this is especially important for Android
apps since UI test generators are not required. Static analysis can
scale up to a large number of applications and, thanks to recent
improvements [6], it can analyze massive code bases. Static
analysis has, however, some limitations. It can produce false
positives, i.e., alarms can be raised on correct calls to crypto
APIs due to imprecise slicing algorithms. These alarms add up
to those raised on parts of the applications that are not security
critical (see Section IX). This makes it hard to analyze a large
number of applications. Some static approaches [6] also incur in
many false negatives. Some misuses escape detection because
the exploration is pruned prematurely to improve scalability. In
addition, static analysis misses some crypto misuses in the code
that is loaded dynamically. This prevents analyses on critical
code [20]. Also, static analysis can be inherently done on a single
application only. It is not possible to perform inter-application

analysis, as the one we did with CRYLOGGER on an Android
library (Section IX). On the other hand, dynamic analysis is
not a perfect antidote. Dynamic analysis is as good as the test
generator that is used to run the applications. We discuss the
main limitations of dynamic analysis in the next paragraphs.

False Positives. Although dynamic analysis, theoretically,
should avoid false positives, these are possible when detecting
crypto misuses (Section IX). It is hard to distinguish critical
parts of the application, which should obey to the rules, from
less critical parts where the data are not sensitive. In addition,
the threat model adopted by app developers can differ from the
one adopted in the research community. This requires complex
manual analyses. One possible solution is to log additional
information in other classes (e.g., File) to determine if rule
violations can be discarded. This would greatly reduce the false
positives, but it is hard to implement with general solutions.

False Negatives. Crypto misuses escape detection if they
are not exercised during the execution. In Section VIII, we
showed that for many Android apps, CRYLOGGER confirmed the
results reported by CryptoGuard and found misuses missed by
CryptoGuard. In other contexts, it might be harder to trigger the
crypto APIs depending on the specific application. One possible
solution is to complement CRYLOGGER with a static tool in
order to expose the misuses that cannot be triggered at runtime.

XI. CONCLUDING REMARKS

We presented CRYLOGGER , the first tool that detects crypto
misuses dynamically, while supporting a large number of rules.
We released CRYLOGGER open-source to allow the community
to use a dynamic tool alongside static analysis. We hope that
application developers will adopt it to check their applications
as well as the third-party libraries that they use.

ACKNOWLEDGMENTS

This work was supported in part by the NSF (A#: 1527821 and
1764000), a gift from Bloomberg, DARPA HR0011-18-C-0017,
and N00014-17-1-2010.

REFERENCES

[1] “[GitHub] lucapiccolboni/crylogger: CRYLOGGER (Version v1.0),
Zenodo.” [Online]. Available: https://doi.org/10.5281/zenodo.3911285

[2] R. L. Rivest, “Handbook of Theoretical Computer Science,” 1990.
[3] J. C. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,

“HACL*: A Verified Modern Cryptographic Library,” in Proc. of the ACM
Conference on Computer & Communications Security (CCS), 2017.

[4] B. B. Brumley, M. Barbosa, D. Page, and F. Vercauteren, “Practical
Realisation and Elimination of an ECC-Related Software Bug Attack,”
in Cryptographer’s Track at the RSA Conference, 2012.

[5] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An Empirical
Study of Cryptographic Misuse in Android Applications,” in Proc. of the
ACM Conference on Computer & Communications Security (CCS), 2013.

[6] S. Rahaman, Y. Xiao, S. Afrose, F. Shaon, K. Tian, M. Frantz, M. Kantar-
cioglu, and D. Yao, “CryptoGuard: High Precision Detection of Crypto-
graphic Vulnerabilities in Massive-sized Java Projects,” in Proc. of the
ACM Conference on Computer & Communications Security (CCS), 2019.

[7] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, Y. Markov, A. P.
Bianco, and C. Baisse, “The First Collision for Fully SHA-1,” in Proc. of
the International Cryptology Conference (CRYPTO), 2017.

[8] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, “Stack Overflow Considered Harmful? The Impact of Copy Paste
on Android Application Security,” in Proc. of the IEEE Symposium on
Security and Privacy (SP), 2017.

[9] S. Nadi, S. Krger, M. Mezini, and E. Bodden, “Jumping Through Hoops:
Why do Java Developers Struggle with Cryptography APIs?” in Proc. of
the International Conference on Software Engineering (ICSE), 2016.

[10] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and
C. Stransky, “Comparing the Usability of Cryptographic APIs,” in Proc.
of the IEEE Symposium on Security and Privacy (SP), 2017.

[11] I. Muslukhov, Y. Boshmaf, and K. Beznosov, “Source Attribution of
Cryptographic API Misuse in Android Applications,” in Proc. of the Asia
Conference on Computer & Communications Security (ASIA CCS), 2018.

[12] S. Vaudenay, “Security Flaws Induced by CBC Padding - Applications
to SSL, IPSEC, WTLS ...” in Proc. of the International Conference on
the Theory and Applications of Cryptographic Techniques: Advances in
Cryptologyi (EUROCRYPT), 2002.

[13] E. B. Barker and A. L. Roginsky, “Transitions: Recommendation for
Transitioning the Use of Cryptographic Algorithms and Key Lengths,” in
NIST Special Publication 800-131A, 2018.

[14] “Password-Based Cryptography Specification, IETF (RFC 8018),” https:
//tools.ietf.org/html/rfc8018.

[15] S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini, “CrySL: An
Extensible Approach to Validating the Correct Usage of Cryptographic
APIs,” in Proc. of the ACM European Conference on Object-Oriented
Programming (ECOOP), 2019.

[16] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith, “Why Eve and Mallory Love Android: An Analysis of Android
SSL (in)Security,” in Proc. of the ACM Conference on Computer &
Communications Security (CCS), 2012.

[17] S. Krüger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden, F. Göpfert,
F. Günther, C. Weinert, D. Demmler, and R. Kamath, “CogniCrypt:
Supporting Developers in Using Cryptography,” in Proc. of the ACM/IEEE
International Conference on Automated Software Engineering (ASE),
2017.

[18] S. Shuai, D. Guowei, G. Tao, Y. Tianchang, and S. Chenjie, “Modelling
Analysis and Auto Detection of Cryptographic Misuse in Android
Applications,” in Proc. of the International on Dependable, Automatic
and Secure Computing (DASC), 2013.

[19] M. Weiser, “Program Slicing,” in Proc. of the International Conference on
Software Engineering (ICSE), 1981.

[20] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna, “Execute
This! Analyzing Unsafe and Malicious Dynamic Code Loading in Android
Applications,” in Proc. of the Network and Distributed System Security
Symposium (NDSS), 2014.

[21] A. Braga, R. Dahab, N. Antunes, N. Laranjeiro, and M. Vieira, “Under-
standing How to Use Static Analysis Tools for Detecting Cryptography
Misuse in Software,” IEEE Transactions on Reliability, 2019.

[22] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan, “SMV-
HUNTER: Large Scale, Automated Detection of SSL/TLS Man-in-the-
Middle Vulnerabilities in Android Apps,” in Proc. of the Network and
Distributed System Security Symposium (NDSS), 2014.

[23] F. Gagnon, M. F. M. Fortier, S. Desloges, J. Ouellet, and C. Boileau,
“AndroSSL: A Platform to Test Android Applications Connection Security,”
in Proc. of the International Symposium on Foundations and Practice of
Security (FPS), 2015.

[24] J. Li, Z. Lin, J. Caballero, Y. Zhang, and D. Gu, “K-Hunt: Pinpointing
Insecure Cryptographic Keys from Execution Traces,” in Proc. of the ACM
Conference on Computer & Communications Security (CCS), 2018.

[25] Y. Li, Y. Zhang, J. Li, and D. Gu, “iCryptoTracer: Dynamic Analysis on
Misuse of Cryptography Functions in iOS Applications,” in Proc. of the
Network and Distributed System Security Symposium (NDSS), 2014.

[26] S. Afrose, S. Rahaman, and D. Yao, “CryptoAPI-Bench: A Comprehensive
Benchmark on Java Cryptographic API Misuses,” in Proc. of the IEEE
Secure Developement (SecDev), 2019.

[27] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why Don’t
Software Developers Use Static Analysis Tools to Find Bugs?” in Proc. of
the International Conference on Software Engineering (ICSE), 2013.

[28] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou,
“SmartDroid: An Automatic System for Revealing UI-based Trigger
Conditions in Android Applications,” in Proc. of the ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices (SPSM),
2012.

[29] F. Fischer, H. Xiao, C. Kao, Y. Stachelscheid, B. Johnson, D. Razar,
P. Fawkesley, N. Buckley, K. Böttinger, P. Muntean, and J. Grossklags,
“Stack Overflow Considered Helpful! Deep Learning Security Nudges
Towards Stronger Cryptography,” in Proc. of the USENIX Security
Symposium, 2019.

[30] Y. Wang, P. Leon, K. Scott, X. Chen, A. Acquisti, and L. Cranor, “Privacy
Nudges for Social Media: An Exploratory Facebook Study,” in Proc. of
the International Conference on World Wide Web (WWW), 2013.

[31] M. Green and M. Smith, “Developers are Not the Enemy!: The Need for
Usable Security APIs,” IEEE Securityi & Privacy, 2016.

[32] D. C. Nguyen, D. Wermke, Y. Acar, M. Backes, C. Weir, and S. Fahl, “A
Stitch in Time: Supporting Android Developers in Writing Secure Code,”
in Proc. of the ACM Conference on Computer & Communications Security
(CCS), 2017.

[33] S. Ma, D. Lo, T. Li, and R. H. Deng, “CDRep: Automatic Repair of
Cryptographic Misuses in Android Applications,” in Proc. of the Asia
Conference on Computer & Communications Security (ASIA CCS), 2016.

[34] S. Ma, F. Thung, D. Lo, C. Sun, and R. H. Deng, “VuRLE: Automatic
Vulnerability Detection and Repair by Learning from Examples,” in Proc.
of the European Symposium on Research in Computer Security (ESORICS),
2017.

[35] L. Singleton, R. Zhao, M. Song, and H. Siy, “FireBugs: Finding and
Repairing Bugs with Security Patterns,” in Proc. of the International
Conference on Mobile Software Engineering and Systems (MOBILESoft),
2019.

[36] S. Krüger, K. Ali, and E. Bodden, “CogniCryptGEN: Generating Code for
the Secure Usage of Crypto APIs,” in Proc. of the ACM/IEEE International
Symposium on Code Generation and Optimization (CGO), 2020.

[37] S. R. Choudhary, A. Gorla, and A. Orso, “Automated Test Input Generation
for Android: Are We There Yet?” in Proc. of the IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2015.

[38] H. Zheng, D. Li, B. Liang, X. Zeng, W. Zheng, Y. Deng, W. Lam,
W. Yang, and T. Xie, “Automated Test Input Generation for Android:
Towards Getting There in an Industrial Case,” in Proc. of the International
Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP), 2017.

[39] S. Y. Yerima, M. K. Alzaylaee, and S. Sezer, “Machine Learning-based
Dynamic Analysis of Android Apps with Improved Code Coverage,” in
EURASIP Journal on Information Security, 2019.

[40] Y. Li, Z. Yang, Y. Guo, and X. Chen, “DroidBot: A Lightweight UI-Guided
Test Input Generator for Android,” in Proc. of the ACM/IEEE International
Conference on Software Engineering Companion (ICSE-C), 2017.

[41] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An Input Generation
System for Android Apps,” in Proc. of the Joint Meeting on Foundations
of Software Engineering (ESEC/FSE), 2013.

[42] H. Krawczyk, “Cryptographic Extraction and Key Derivation: The HKDF
Scheme,” in Proc. of the International Cryptology Conference (CRYPTO),
2010.

[43] J. Katz and Y. Lindell, Introduction to Modern Cryptography, 2014.
[44] “Cryptographic Message Syntax, IETF (RFC 5652),” https://tools.ietf.org/

html/rfc5652.
[45] T. Jager, S. A. Kakvi, and A. May, “On the Security of the PKCS#1 V1.5

Signature Scheme,” in Proc. of the ACM Conference on Computer &
Communications Security (CCS), 2018.

[46] P. Favre-Bulle, “Security Best Practices: Symmetric Encryption with AES
in Java and Android,” in ProAndroidDev (online), 2018.

[47] D. L. Wheeler, “zxcvbn: Low-Budget Password Strength Estimation,” in
Proc. of the USENIX Security Symposium, 2016.

[48] P. A. Grassi, M. E. Garcia, and J. L. Fenton, “Digital Identity Guidelines,”
in NIST Special Publication 800-63-3, 2017.

[49] L. E. Bassham, “A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications,” in NIST Special
Publication 800-22, 2010.

[50] D. Boneh, A. Joux, and P. Q. Nguyen, “Why Textbook ElGamal and RSA
Encryption Are Insecure,” in Proc. of the International Conference on
the Theory and Applications of Cryptographic Techniques: Advances in
Cryptologyi (ASIACRYPT), 2000.

[51] D. Bleichenbacher, “Chosen Ciphertext Attacks Against Protocols Based
on the RSA Encryption Standard PKCS #1,” in Proc. of the International
Cryptology Conference on Advances in Cryptology (CRYPTO), 1998.

[52] S. Goldwasser and S. Micali, “Probabilistic Encryption & How to Play
Mental Poker Keeping Secret All Partial Information,” in Proc. of the ACM

Symposium on Theory of Computing (STOC), 1982.
[53] A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister, “UpSet:

Visualization of Intersecting Sets,” IEEE Transactions on Visualization
and Computer Graphics (TVCG), 2014.

[54] J. R. Conway, A. Lex, and N. Gehlenborg, “UpSetR: an R Package for
the Visualization of Intersecting Sets and their Properties,” Bioinformatics,
2017.

[55] A. Pilgun, O. Gadyatskaya, S. Dashevskyi, Y. Zhauniarovich, and A. Kush-
niarou, “An Effective Android Code Coverage Tool,” in Proc. of the ACM
Conference on Computer & Communications Security (CCS), 2018.

[56] A. Tang, S. Sethumadhavan, and S. Stolfo, “CLKSCREW: Exposing the
Perils of Security-Oblivious Energy Management,” in Proc. of the USENIX
Security Symposium, 2017.

Package Class Function Logged Data

java.security MessageDigest byte[] digest (void) alg
int digest (byte[], int, int)

javax.crypto Cipher void init (int, Key, SecureRandom) alg, mode,
void init (int, Key, AlgorithmParameters, SecureRandom) pad, key,
void init (int, Key, AlgorithmParameterSpec, SecureRandom) iv
void init (int, Certificate, SecureRandom)

Cipher byte[] doFinal (void) out
int doFinal (byte[], int)
byte[] doFinal (byte[])
byte[] doFinal (byte[], int, int)
int doFinal (byte[], int, int, byte[])
int doFinal (byte[], int, int, byte[], int)
int doFinal (ByteBuffer, ByteBuffer)

java.security Signature void initVerify (PublicKey) alg, key
void initVerify (Certificate)
void initSign (PrivateKey)
void initSign (PrivateKey, SecureRandom)

javax.crypto.spec PBEKeySpec PBEKeySpec (char[]) pass, salt,
PBEKeySpec (char[], byte[], int) iter
PBEKeySpec (char[], byte[], int, int)

javax.crypto.spec PBEParameterSpec PBEParameterSpec (byte[], int) salt, iter
PBEParameterSpec (byte[], int, AlgorithmParameterSpec)

java.security SecureRandom SecureRandom (void) seed, out
SecureRandom (byte[])
void setSeed (byte[])

SecureRandom void nextBytes (byte[])
void setSeed (byte[])

java.util Random Random (void) constructor
Random int next (int) out

void nextBytes (byte[])
java.security KeyStore Key getKey (String, char[]) pass

void load (InputStream, char[])
void load (LoadStoreParameter)
void store (OutputStream, char[])
void store (LoadStoreParameter)

java.net URL URL (String, String, int, String) urlprotl
URL (URL, String, URLStreamHandler)

javax.net.ssl HttpsURLConnection void setHostnameVerifier (HostnameVerifier) allhost
void setDefaultHostnameVerifier (HostnameVerifier) sethost

javax.net.ssl SSLContext void init (KeyManger[], TrustManager[], SecureRandom) allcert
javax.net.ssl SocketFactory SocketFactory getDefault (void) sethost

TABLE III
Java functions that have been instrumented and the parameters that are logged as defined in Fig. 2.

102

2 2
0

30

60

90

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●

●

●

●●

●
crylogger50

crylogger30

crylogger10

subsets

106

104

102

050100150

vulnerable apps

rule R−04

tp in subset
total

60

18

8

0

20

40

60

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●

●

●

●

●

●crylogger50

crylogger30

crylogger10

subsets

86

78

60

0306090

vulnerable apps

rule R−06

tp in subset
total

20

4
1

0

5

10

15

20

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●

●

●

●

●

●crylogger50

crylogger30

crylogger10

subsets

25

24

20

0102030

vulnerable apps

rule R−08

tp in subset
total

51

11
5

0

20

40

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●

●

●

●

●

●crylogger50

crylogger30

crylogger10

subsets

67

62

51

0255075

vulnerable apps

rule R−09

tp in subset
total

2

0

1

2

3

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●

●

●

crylogger50

crylogger30

crylogger10

subsets

2

2

2

0123

vulnerable apps

rule R−11

tp in subset
total

10

2

0

3

6

9

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●

●

●

●crylogger50

crylogger30

crylogger10

subsets

12

10

10

051015

vulnerable apps

rule R−12

tp in subset
total

8

0.0

2.5

5.0

7.5

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●

●

●

crylogger50

crylogger30

crylogger10

subsets

8

8

8

0510

vulnerable apps

rule R−14

tp in subset
total

5

0

2

4

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●

●

●

crylogger50

crylogger30

crylogger10

subsets

5

5

5

0246

vulnerable apps

rule R−15

tp in subset
total

2

0.0

0.5

1.0

1.5

2.0

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●

●

●

crylogger50

crylogger30

crylogger10

subsets

2

2

2

0123

vulnerable apps

rule R−20

tp in subset
total

11

1

0.0

2.5

5.0

7.5

10.0

12.5

vu

ln
er

. a
pp

s
pe

r s
ub

se
t

●

●

●

●

●
crylogger50

crylogger30

crylogger10

subsets

12

12

11

051015

vulnerable apps

rule R−21

tp in subset
total

Fig. 9. Comparison of CRYLOGGER with 10k, 30k and 50k random stimuli on 150 Android apps. Each graph is an upset plot [53], [54]. The horizontal

bars indicate the number of apps flagged as vulnerable by CRYLOGGER with 10k, 30k and 50k stimuli; the vertical bars indicate the number of apps flagged
as vulnerable by a possible intersection of the approaches (the 3 largest, non-empty intersections are reported). For example, for R-08: 20 apps are considered
vulnerable by all the approaches, 4 apps are flagged as vulnerable by using 30k and 50k stimuli only, and 1 app is considered vulnerable by using 50k stimuli only.

Listing 1. Basic
1 public class Test_X {
2 public static void main(String[] args) {
3 String algorithm = "AES/ECB/PKCS5PADDING";
4 Cipher c = Cipher.getInstance(algorithm);
5 }
6 }

Listing 3. Interprocedural
1 public class Test_X {
2 public static void main(String[] args) {
3 String algorithm = "AES/ECB/PKCS5PADDING";
4 method1(algorithm);
5 }
6 public static void method1(String algorithm) {
7 method2(algorithm);
8 }
9 public static void method2(String algorithm) {

10 Cipher c = Cipher.getInstance(algorithm);
11 }
12 }

Listing 5. Field Sensitive
1 public class Test_X {
2 String algorithm;
3 public Test_X(String alg) {
4 algorithm = alg;
5 }
6 public method(String alg) {
7 alg = algorithm;
8 Cipher c = Cipher.getInstance(alg);
9 }

10 public static void main(String[] args) {
11 Test_X x = new Test_X("AES/ECB/PKCS5PADDING");
12 x.method("AES/CBC/PKCS5PADDING");
13 }
14 }

Listing 7. Argument Sensitive
1 public class Test_X {
2 public static void main(String[] args) {
3 if (condition(args)) {
4 algorithm = "AES/CBC/PKCS5PADDING";
5 Cipher c = Cipher.getInstance(algorithm);
6 }
7 }
8 }

Listing 2. Miscellaneous
1 public class Test_X {
2 public static void main(String[] args) {
3 String alg = "AES/ECB/PKCS5PADDING";
4 // Use of a simple data structure
5 DataStructure data = new DataStructure(alg);
6 Cipher c = Cipher.getInstance(data.get());
7 }
8 }

1 public class Test_X {
2 public static void main(String[] args) {
3 String alg = "AES/ECB/PKCS5PADDING";
4 // Conversion to another type
5 Othertype type = ConvertOtherType(alg);
6 Cipher c = Cipher.getInstance(data.get());
7 }
8 }

Listing 4. Path Sensitive
1 public class Test_X {
2 public static void main(String[] args) {
3 int choice = 2;
4 String algorithm = "AES/ECB/PKCS5PADDING";
5 if (choice > 1)
6 algorithm = "AES/CBC/PKCS5PADDING";
7 Cipher c = Cipher.getInstance(algorithm);
8 }
9 }

Listing 6. Multiple Classes
1 public class Test_X {
2 public static void main(String[] args) {
3 method1("AES/ECB/PKCS5PADDING");
4 }
5 public static void method1(String algorithm) {
6 Test_Y y = new Test_Y();
7 y.method(algorithm);
8 }
9 }

10 public class Test_X {
11 public void method2(String algorithm) {
12 Cipher c = Cipher.getInstance(algorithm);
13 }
14 }

Fig. 10. The types of benchmarks that are present in the CryptoAPI-Bench [26]. We highlighted our modifications to make the benchmarks executable (Section VIII).
The first 6 types of benchmarks (basic, miscellaneous, interprocedural, path sensitive, field sensitive, multiple classes) were originally proposed in [26]. We added
argument-sensitive tests so that the CryptoAPI-Bench can be used to evaluate dynamic approaches.

1 package com.google.api.client.testing.http;
2 class HttpTesting {
3 static String SIMPLE_URL = "http://google.com"
4 public HttpTesting() {
5 GenericUrl url = new GenericUrl(SIMPLE_URL);
6 } ...

1 package com.adjust.sdk;
2 class AdjustFactory {
3 public static void useTestConnectionOptions() {
4 con.setHostnameVerifier(new HostnameVerifier() {
5 public boolean verify(String h, SSLSession s)
6 { return true; } ...

Fig. 11. Examples of false positives for rules R-22 and R-24 for CryptoGuard [6].

(a) Original CryptoAPI-Bench [26] (b) Modified CryptoAPI-Bench (c) New Tests

CryptoGuard [6] CRYLOGGER

Rule ID TP TN FP FN TP TN FN

R-01 24 1 4 0 24 5 0
R-02 30 1 5 0 30 6 0
R-03 6 1 1 0 6 2 0
R-05 5 2 1 2 7 3 0
R-07 8 1 1 0 8 2 0
R-10 7 1 1 0 7 2 0
R-13 5 1 1 2 7 2 0
R-16 7 2 1 1 8 3 0
R-17 13 1 2 1 14 3 0
R-18 1 1 0 0 1 1 0
R-19 4 0 1 1 5 1 0
R-22 6 2 1 0 6 3 0
R-23 7 2 1 0 7 3 0
R-24 1 1 0 0 1 1 0
R-25 3 0 0 0 3 0 0
R-26 4 0 0 0 4 0 0

Total 131 17 20 7 138 37 0

CryptoGuard [6] CRYLOGGER

Rule ID TP TN FP FN TP TN FN

R-01 28 1 4 0 24 5 4

R-02 35 1 5 0 30 6 5

R-03 7 1 5 0 6 6 1

R-05 6 2 1 2 7 3 1

R-07 9 1 1 0 8 2 1

R-10 8 1 1 0 7 2 1

R-13 6 1 1 2 7 2 1

R-16 8 2 1 1 8 3 1

R-17 14 1 2 1 14 3 1

R-18 1 1 0 0 1 1 0
R-19 5 0 1 1 5 1 1

R-22 7 2 1 0 6 3 1

R-23 8 2 1 0 7 3 1

R-24 1 1 0 0 1 1 0
R-25 3 0 0 0 3 0 0
R-26 4 0 0 0 4 0 0

Total 150 17 24 7 138 41 19

CRYLOGGER

Rule ID TP TN FN

R-04 4 2 1
R-06 6 2 1
R-08 6 2 1
R-09 6 2 1
R-11 7 2 1
R-12 1 1 1
R-14 7 2 1
R-15 7 2 1
R-20 5 1 1
R-21 5 1 1

Total 54 17 10

Fig. 12. Results for the CryptoAPI-Bench [26]. (a) Comparison of CryptoGuard [6] and CRYLOGGER on the original CryptoAPI-Bench. In this case, we made the
benchmarks executable with a dynamic tool by adding a main to all benchmarks. (b) Comparison of CryptoGuard and CRYLOGGER on our modified version of
the CryptoAPI-Bench. We added tests cases to (i) highlight the problem of false positives (Section IX) and (ii) show the limitations of dynamic approaches in
activating paths that are rarely executed. (c) Benchmarks that we added for the rules supported only by CRYLOGGER on the modified CryptoAPI-Bench.

