
A Heterogeneous Parallel System Running Open MPI on a
Broadband Network of Embedded Set-Top Devices

Richard Neill
Dept. of Computer Science

Columbia University
New York, NY

rich@cs.columbia.edu

Alexander Shabarshin
Cablevision Systems
Bethpage, NY 11714

ashabars@cablevision.com

Luca P. Carloni
Dept. of Computer Science

Columbia University
New York, NY

luca@cs.columbia.edu

ABSTRACT
We present a heterogeneous parallel computing system that
combines a traditional computer cluster with a broadband
network of embedded set-top box (STB) devices. As multiple
service operators (MSO) manage millions of these devices
across wide geographic areas, the computational power of
such a massively-distributed embedded system could be har-
nessed to realize a centrally-managed, energy-efficient paral-
lel processing platform that supports a variety of application
domains which are of interest to MSOs, consumers, and the
high-performance computing research community. We in-
vestigate the feasibility of this idea by building a prototype
system that includes a complete head-end cable system with
a DOCSIS-2.0 network combined with an interoperable im-
plementation of a subset of Open MPI running on the STB
embedded operating system. We evaluate the performance
and scalability of our system compared to a traditional clus-
ter by solving approximately various instances of the Mul-
tiple Sequence Alignment bioinformatics problem, while the
STBs continue simultaneously to operate their primary func-
tions: decode MPEG streams for television display and run
an interactive user interface. Based on our experimental re-
sults and given the technology trends in embedded computing
we argue that our approach to leverage a broadband network
of embedded devices in a heterogeneous distributed system
offers the benefits of both parallel computing clusters and
distributed Internet computing.

Categories and Subject Descriptors
C.5 [Computer System Implementation]: Miscellaneous

General Terms
Design

Keywords
Distributed Embedded Systems, MPI, Set-Top Box, Multi-
ple Service Operators, Multiple Sequence Alignment.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’10, May 17–19, 2010, Bertinoro, Italy.
Copyright 2010 ACM 978-1-4503-0044-5/10/05 ...$10.00.

1. INTRODUCTION
The explosion of broadband as well as mobile device In-

ternet connectivity has led to rapid increases in the number
of consumer embedded devices and applications. Growth of
mobile Internet computing has outpaced similar desktop In-
ternet adoption: e.g, during the first two years since launch
Apple had acquired over 57 million iPhone and iTouch sub-
scribers, more than eight times the number of AOL users for
a similar period [16]. Among the largest providers of con-
sumer embedded devices are traditional multiple service op-
erators (MSO), which in recent years have grown from sup-
pliers of basic subscription TV programming to providers of
rich multi-platform interactive media services available over
both wireless and high-speed broadband networks. Since
2006, MSOs have accelerated the purchase and deployment
of next-generation embedded set-top box (STB) devices to
support the deployment of digital interactive services and
content. According to market research [15], worldwide STB
shipments are projected to grow to over 150 million units in
2010, rising to nearly 201 million units by 2013 (Fig. 1).

Growth in mobile computing and broadband STB com-
puting is largely being driven by two trends: 1) rising con-
sumer demand for personalized, easy-to-navigate, content
services that are portable between devices and accessible
anywhere at any time; 2) emerging social networking ap-
plications that offer connected experiences across multiple
devices and content formats. MSOs are responding to these
trends by developing services such as streamed video-content
delivery over multiple consumer devices and by blending
together interactive TV and mobile Internet applications.
Today, for example, MSOs offer the availability of personal-
ized content search [17], mobile-based video programming of
home digital video recorders, and social-networking applica-
tions that access Twitter, Facebook, and YouTube through
the Internet on a variety of consumer devices. Tomorrow
real-time recommendation and personalization systems for
millions of users will require the processing of vast quanti-
ties of distributed data with sophisticated analytical tech-
niques based on machine learning and parallel data mining.
Furthermore, user-generated content within a social com-
puting application that can be accessed on any device will
require fast transcoding between multiple formats as well as
coordinated distribution of content, two tasks that demand
considerable computation and distributed processing.

In order to meet the growing computation and communi-
cation demands, MSOs will soon need to assemble complex
computing infrastructures which are distributed in nature,
highly heterogeneous —as they consist of both computer

187

Figure 1: Worldwide set-top box unit shipment fore-
cast, 2006-2013 [Source: iSuppli Corp. Aug 2009].

clusters and networked embedded devices— and must be
able to scale to execute concurrent applications across mil-
lions of devices.

In this paper we argue that MSOs have the opportunity to
build on top of their existing infrastructures while leveraging
current trends in both broadband networking and embed-
ded processing to develop a parallel computing system that
can support a mix of application workloads spanning from
social networking and ubiquitous content access to large-
scale distributed processing and even some classes of high-
performance computing (Fig. 2). In particular, the value
of this opportunity stems from the unique property of this
computing system, namely the ability to reach millions of
geographically-distributed embedded-consumer devices with
a dedicated and centrally-managed broadband network.

As the performance of MSO-managed networks continues
to grow and STBs start featuring sophisticated multicore
processors [5], we propose a heterogeneous system archi-
tecture that combines a traditional Unix-based computer
cluster with a broadband network of STB devices. In or-
der to evaluate the potential of this idea we implemented a
complete prototype system which represents a scaled-down
version of the proposed architecture but can fully support a
representative MSO streaming-video service (Section 2). We
also developed an inter-operable subset of Open MPI which
can run on the STB real-time operating system and, there-
fore, can act as the middleware for the heterogeneous sys-
tem integration (Sections 3 and 4). We tested our prototype
system by porting an MPI-implementation of ClustalW, a
computationally-intensive bioinformatics application so that
we could run it on both the computer cluster and the net-
work of STBs (Section 5). Our experimental results show
that it is possible to execute ClustalW efficiently on our
system while the STBs continue simultaneously to operate
their primary functions, i.e. decode MPEG streams for mon-
itor display and run an interactive user interface, without
any perceived degradation (Section 6). Indeed we observe
that content services on the STBs are unaffected by the pres-
ence of parallel computation due to the separation of con-
tent and application processing functions within their micro-
architectures. Major challenges, however, need to be ad-
dressed in order to provide a highly-scalable heterogeneous
runtime and efficient messaging-passing environment for dis-
tributed computation with millions of embedded devices.

In summary, the primary goal that we achieved with our
experiments has been to determine the feasibility, challenges,

Computational Physics

Molecular Biology, Drug Research

Computational Finance

Distributed Multi-Platform Content Distribution

Distributed Multi-Platform Interactive Services

Recommendation & Personalization Systems

Data Mining and Analytics

Social Networking Applications

Ubiquitous On-Demand Content Access

Distributed Mobile/Broadband Internet

Computing

High

Performance

Parallel

Processing

Large Scale

Distributed

Processing

Figure 2: The evolving computational landscape for
MSO-managed broadband STB networks.

and opportunities of utilizing embedded STB devices for
heterogeneous parallel computing and distributed process-
ing. Second, we gained precious insight into issues asso-
ciated with heterogeneous parallel system comprising Unix
systems, distributed embedded devices, and an embedded
messaging-passing framework based on MPI. We believe that
the experience that can be acquired with our current pro-
totype system (and the future generations that we plan to
develop) can help MSOs in the design and implementation
of scalable solutions for distributed computation on their
system infrastructures and may also be of benefit to parallel
computer architects as it pertains to future scaling of run-
time environments for large clusters of multicore systems.

2. SYSTEM ARCHITECTURE
Fig. 3 gives a detailed view of the prototype system that

we designed and implemented as a scaled-down, but com-
plete and representative, version of the heterogeneous paral-
lel computing system that we envision. This is a distributed-
memory, message-passing parallel computer that combines
two functionally-independent clusters: a traditional Unix-
based computing cluster with eight 4200 Sun machines (the
Unix Cluster) and an embedded set-top box cluster with 32
Cisco 4650 devices (the Set-Top Cluster). The two clusters
share a common control server: the MPI Master Host. This
server currently consists of a Sun 4200 processor that is con-
nected to the Unix Cluster and Set-Top Cluster through a
pair of Cisco Gigabit Ethernet network switches. The MPI
Master Host initiates and typically coordinates all MPI pro-
cesses across the clusters. Parallel applications based on
Open MPI can execute on either cluster independently or
on the whole system as a single large heterogeneous cluster.

The backbone network of the Unix Cluster is built using
Gigabit Ethernet. Instead, the Set-Top Cluster requires a
broadband router for converting between the DOCSIS net-
work [12] and the Gigabit Ethernet backbone. DOCSIS is
a standard broadband-network technology for TCP/IP over
Radio Frequency (RF) cable that is described further be-
low. Notice that each broadband router can support over
10,000 STBs, thus providing large scale fan-out from the
Unix Cluster to the Set-Top Cluster.

All 4200 Sun machines of the Unix Cluster are configured
with two 2.8 GHz AMD Opteron dual-core processors, 16GB

188

Figure 3: Block diagram of the complete prototype of the proposed heterogeneous parallel computing system.

of system memory and run the Solaris 10 operating system.
A Sun 5210 network attached storage array (NAS) provides
750GB of disk space using Sun NFS. The NAS system is also
dual-connected using Gigabit Ethernet in the same manner
as the MPI Master Host. This allows for a common direc-
tory structure and file access model for all processing nodes
including the STB devices through a data access proxy sys-
tem. This is particularly important for the execution of
parallel MPI applications because each Open MPI host re-
quires access to a common file system repository.

The Set-Top Cluster consists of 32 Cisco 4650 set-top
boxes that are connected using a RF network for data deliv-
ery using MPEG and DOCSIS transport mechanisms. The
Cisco 4650 is a modern STB that contains a 700MHz MIPS
processor, a dedicated video and graphics processor, 128MB
of expandable system memory and many network transport
interfaces including DOCSIS 2.0, MPEG-2, and DAVIC [13].
Indeed an important architectural feature of modern STBs
is the multiple-processor design which allows the MIPS pro-
cessor, graphics and video processors, as well as network
processors to operate in parallel over independent buses.
For instance, this makes it possible for user-interface appli-
cations to execute efficiently in parallel with any real-time
video processing.

The DOCSIS 2.0 TCP/IP and MPEG-2 transport stream
interfaces are based on quadrature amplitude modulation
(QAM) protocols for transmitting and receiving signals on
North American digital cable systems. DAVIC is a legacy
1.54Mbps interface predating DOCSIS and is used only for
start-up signaling during STB initialization. The DOC-
SIS 2.0 standard provides for an inter-operable RF modem,

based on TDMA protocols organized in a star topology con-
necting the central router and the STB DOCSIS interface.
Devices on DOCSIS share access to the network, as arbi-
trated by the central router, and operate effectively at up
to 38Mbps in the downstream direction (towards the STB)
and 30Mbps in the upstream direction (towards the clus-
ter). The MPEG-2 interface is primarily used for decoding
video programs, but can also receive data delivered via the
“broadcast file system” (BFS) service on a dedicated QAM
frequency. In our prototype system the BFS data delivery
mechanism is used to deliver the embedded runtime envi-
ronment to the STBs. A number of additional devices are
required for STB management, application and data deliv-
ery, as well as video-content distribution. Indeed, the Set-
Top Cluster is part of a scaled-down version of a complete
cable system that consists of two additional subsystems: (1)
a subsystem that provides STB management and control
and (2) a collection of specialized devices for routing, trans-
port, and distribution that support MPEG video and data
delivery and transfer of TCP/IP data between the Gigabit
Ethernet network and the RF set-top DOCSIS network.

As shown in Fig. 3, the management and control subsys-
tem consists of a Sun 880 server, which is responsible for the
initialization, configuration, and delivery of broadcast appli-
cations and data using its BFS carousel. Broadcast appli-
cations are STB executables that are simultaneously avail-
able to all STB devices connected to the dedicated broad-
band network. A STB device tunes to a specific channel
frequency and receives the broadcast application or data of
interest using a proprietary Cisco communications protocol.
The BFS data is sent from the central server, or head-end,

189

Figure 4: STB embedded software stack.

at regular cyclical intervals—hence the term carousel—over
MPEG-2 directly into a QAM device where it is modulated
onto the RF cable plant at a specified frequency for STB re-
ception. For non-broadcast applications, a Sun 4200 is used
as an Apache HTTP server that delivers application exe-
cutables and data in parallel to all requesting STBs through
the DOCSIS TCP/IP broadband network. Basic TCP/IP
network services are provided by a Sun 4200 running DHCP
and TFTP. DHCP is used to assign an Internet address to
each STB. TFTP is the primary method for distributing
configuration information. A video content channel using a
single video source and a MPEG video-output generator is
used for video display on all STBs. Interconnect between the
Set-Top Cluster and the Unix Cluster as well as RF trans-
port for video and data is supported by a number of spe-
cialized devices, including the Cisco 7246 UBR Router. For
transmitting and receiving DAVIC, DOCSIS and MPEG-2
data over the RF cable network, a set of QAM/QPSK mod-
ulators and demodulators is shown along with a RF com-
biner/splitter module that connects all devices together.

In summary, our prototype system is representative
of a real cable system and allows us to test the exe-
cution of high-performance applications on the em-
bedded processors of the set-top boxes under realistic
operations scenarios. For instance, we can run target ap-
plications such as the MSA program described in Section 5
on the embedded processor, while the rest of the components
in the STB, and particularly the MPEG video processing
chain, are busy providing streaming-video content. In fact,
the experimental results for the MSA application described
in Section 6 were obtained while the STBs were simultane-
ously decoding a test set of MPEG videos for display on a
collection of monitors and running an MSO interactive user
interface with no perceived degradation of content display.

3. SOFTWARE AND MIDDLEWARE
Set-Top Box Embedded Software. Each Cisco 4650

set-top device runs a hybrid software environment that con-
sists of Cisco’s PowerTV middleware layered over a em-
bedded real-time operating system (RTOS) which is based
on a Linux kernel (Fig. 4). All applications are written to
run on top of the PowerTV application program interface,
a proprietary Cisco API, and not on top of the Linux ker-
nel. PowerTV itself consists of PowerCore, and Power-
Modules, a set of device-independent libraries. The Pow-

Figure 5: Open MPI component architecture.

erModules libraries provide functionality for communicat-
ing on the network, accessing applications or data from the
BFS, tuning control such as changing channels, managing
MPEG transport streams, encryption services, a widget li-
brary called PowerDraw for writing graphically rich appli-
cations, and a complete ANSI C library. In our prototype
system we used the TCP/IP PowerModule, which is com-
pliant with BSD sockets, to implement the basic MPI send
and receive routines as described in the next section.

While the Linux operating system and PowerCore re-
sides in the FLASH memory, all PowerModules are de-
signed to be independent and downloadable over the network
at boot time or on-demand through dynamic instantiation
much like a dynamic shared library available in Unix. Ad-
ditionally, there are special user-level processes such as the
resident application manager that control all applications
life-cycles associated to user-interface applications, commu-
nications with the central services, as described in the pre-
vious section, and the overall STB user environment.

Open MPI System Software. In the first prototype of
our system we use Open MPI version 1.2. Open MPI is an
open-source implementation of the Message Passing Inter-
face (MPI) standard for developing parallel applications that
execute on distributed memory parallel cluster systems [23].
Open MPI is modular and configurable. It provides an
extensible runtime environment called ORTE and an MPI
middleware APIs to support robust parallel computation on
systems ranging from small mission-critical and embedded
systems to future peta-scale supercomputers [8]. Open MPI
is based on the modular component architecture (MCA), a
lightweight component architecture that allows for on-the-
fly loading of frameworks, component modules, and runtime
selection of features (including network device, OS, and re-
source management support), thus enabling the middleware
to be highly configurable at runtime. Fig. 5 illustrates the
MCA layered component approach [8]. Among all the Open
MPI frameworks, the OMPI and ORTE frameworks are of
primary interest because they support the point-to-point
MPI operations and runtime process execution between the
Unix Cluster and the Set-Top Cluster.

The Open MPI framework (OMPI) includes the actual
MPI API layer as well as the underlying components nec-
essary to implement the APIs. Consistent with the MCA,
the MPI layer is actually built on top of other management
and messaging layers. These, for instance, handle point-to-
point messaging over TCP/IP, which supports the primary

190

MPI APIs used in this work. In Open MPI this is imple-
mented using the point-to-point management layer (PML),
the byte transfer layer (BTL) and the BTL management
layer (BML) [8]. PML handles the upper-level interface to
the MPI API layer as well as message fragmentation, assem-
bly, and re-assembly. BML abstracts the network transport
layer by managing one or more BTL modules that support
actual movement of data over various network interfaces
such as TCP/IP over Gigabit Ethernet, high-performance
Infiniband, or even a shared-memory multiprocessor systems
executing MPI applications.

The Open Run Time Environment (ORTE) framework is
primarily responsible for the MPI environment resource dis-
covery and initialization, process execution, I/O, and run-
time control. The execution of a parallel application is
started by running the mpirun command which activates
an ORTE daemon process. This process contacts each MPI
host in the cluster to initiate a local peer ORTE process.
During startup all ORTE processes participate in a resource
discovery and eventually begin execution of the parallel ap-
plication on all hosts that make up the cluster. ORTE con-
tinues to coordinate the MPI application processes until the
completion of its execution.

4. PORTING OPEN MPI TO STB DEVICES
In order to execute the target parallel application on our

prototype system we developed an interoperable subset of
the Open MPI software infrastructure to run on the Set-
Top Cluster and interact with the full Open MPI 1.2 im-
plementation running on the Unix Cluster. While trends
in embedded computing lead to continue improvements in
computational capabilities with each generation of STBs,
currently these devices are still limited in terms of memory
and processor resources. Hence, an early design consider-
ation was to determine the minimum subset of the Open
MPI API needed for developing a workload that would en-
able meaningful experimentation and performance evalua-
tion with some real parallel applications. After analyzing
the complete MPI specification and selecting the target ap-
plication we determined that only the nine API functions
reported in Table 1 were necessary for our current purposes.
While the first six API functions are often sufficient to sup-
port many applications, the MPI_Pack() and MPI_Unpack()

functions were added because they are required for the target
application, i.e. the MSA program discussed in Section 5.

Leveraging the modularity and configurability of Open
MPI we developed a library and runtime layer that is an
inter-operable, compatible implementation of a subset of the
OMPI and ORTE frameworks to run on the Cisco 4650 STB
embedded software stack illustrated in Fig. 4. We included
the following inter-operable components of the OMPI point-
to-point framework: the MPI layer supporting the nine APIs
listed above, a PML component implementation, and a BTL
component for TCP/IP messaging over either Gigabit Eth-
ernet or the DOCSIS broadband network. None of the other
OMPI component frameworks are currently supported in
our prototype implementation. We combined the implemen-
tation of the API of Table 1 with the OMPI and the Open
MPI ORTE software frameworks into a single PowerTV
application library cv_mpi that is loaded on the STB during
boot time. Parallel applications written for the PowerTV
API running on the STB access this library at runtime in

API Function Description
MPI_Init() Initialize the MPI execution environment
MPI_Finalize() Terminate MPI execution environment
MPI_Send() Basic blocking point to point send operation
MPI_Recv() Basic blocking point to point receive operation
MPI_Wtime() Return elapsed time on the calling processor
MPI_Comm_rank() Return the rank of the calling process in

the communicator
MPI_Comm_size() Return the size of the group associated with

a communicator
MPI_Pack() Pack a datatype into contiguous memory
MPI_Unpack() Unpack a datatype from contiguous memory

Table 1: The set of supported MPI API functions.

a way similar as MPI developers would load the dynamic
shared Open MPI library libmpi.so on a Unix system.

The set-top ORTE module supports the minimum ORTE
protocol transactions to launch, pass command arguments
to, and terminate the given MPI parallel application process.
For instance, when a parallel MPI application built using the
API functions of Table 1 is started on the master Unix Sun
4200 host of our prototype system by running the command
line “mpirun -np 33 <args> <MPI program>”, the ORTE pro-
cess running on the MPI Master Host contacts the 32 ORTE-
compliant processes running on the corresponding 32 STBs.
Each of these processes utilizes the DOCSIS TCP/IP net-
work to download the parallel application on demand. Once
the initialization of the runtime environment is completed,
the MPI application starts its execution in parallel on the
Unix Cluster and the Set-Top Cluster.

Limitations of the Current Implementation. In or-
der to execute the MPI applications launched from the Unix
Cluster, the STB devices require an inter-operable imple-
mentation of the ORTE framework. By analyzing the stan-
dard ORTE framework we identified a number of challenges
in terms of protocol overhead and fault tolerance. ORTE is
a complex framework: a large portion of the implementation
is designed for device discovery, exchange of process environ-
ment, and network information, occurring between all host
devices. This creates scaling issues as the Set-Top Cluster
size increases from thousands to millions of computational
devices. As an illustration of the ORTE runtime overhead,
testing of our experimental implementation revealed that
ORTE requires a minimum of 165 bytes as measured by tcp-

dump per ORTE node-map data structure. This list is sent to
all hosts in the system during the ORTE initialization phase
as part of a group “allgather” operation. This is acceptable
for a typical cluster network of a few hundred or thousand
nodes but it would not scale to a network of five million or
more STBs because over 1GB of information would be sent
to each STB, a quantity that exceeds the memory resources
available in today’s STBs. Hence, for our prototype system,
we implemented a light-weight ORTE framework that relies
on a statically-configured environment and consists of the
minimal protocol that is sufficient to inter-operate with the
full Open MPI environment of the Unix Cluster.

A second challenge to system scalability is the reliable exe-
cution of MPI applications. In many cases, the possible fail-
ure of a single MPI application would result in the termina-
tion of all processes within the process group. A large-scale
system with millions of devices will likely have frequent fail-
ures. Hence, for future development of large-scale systems
based on our architecture we plan to incorporate solutions
such as those proposed as part of Open MPI-FT [18].

191

5. MULTIPLE SEQUENCE ALIGNMENT
To evaluate the feasibility of our heterogeneous paral-

lel system as well as its performance in comparison to a
more traditional computer cluster we chose Multiple Se-
quence Alignment (MSA), one of the most important prob-
lems in bioinformatics [21]. Since MSA is an NP-hard prob-
lem, in practice most of its instances require the use of ap-
proximation algorithms such as the popular ClustalW pro-
gram [27]. There are various parallel versions of ClustalW,
including ClustalW-MPI [19] and Mason (multiple align-
ment of sequences over a network) [2, 4]. We started from
the source code of Mason, which is based on the Mpich
implementation of MPI, and we ported it on our system,
which uses Open MPI, so that we could run it on both
the Unix Cluster and the Set-Top Cluster. This allows us
to run multiple experiments to compare the parallel exe-
cution of different instances of the MSA problem on dif-
ferent system configurations of each cluster as discussed in
Section 6. In all cases, the output of the Mason program
produces a final multiple sequence alignment along with de-
tailed timing measurements for each stage of the computa-
tion. Next, we describe the approximation MSA algorithm
used by ClustalW and its Mason parallel implementation.

Solving MSA with ClustalW. MSA is the problem of
aligning biological sequences, typically DNA sequences or
protein sequences, in an optimal way such that the highest
possible number of sequence elements is matched. Given
a scoring scheme to evaluate the matching of sequence ele-
ments and to penalize the presence of sequence gaps, solv-
ing the MSA problem consists in placing gaps in each se-
quence such that the alignment score is maximized [2]. The
ClustalW approximation algorithm consists of three phases.
Given an input of N sequences, Phase 1 computes the dis-
tance matrix by aligning and scoring all possible pairs of se-

quences. For N input sequences, there are N·(N−1)
2

possible
optimal pair-wise alignments that can be derived with the
dynamic programming algorithm of Needleman and Wun-
sch [22] as modified by Gotoh [9] to achieve a O(n2) per-
formance, where n is the length of the longest sequence.
The resulting distance matrix is simply a tabulation of score
metrics between every pair of optimally-aligned sequences.
Phase 2 of the algorithm processes the distance matrix to
build a guide tree, which expresses the evolutionary relation-
ship between all sequences. The guide tree can be derived
with the neighbor-joining clustering algorithm by Saitou and
Nei [24]. Phase 3 produces the final multiple sequence align-
ment of all N original sequences by incrementally performing
(N − 1) pair-wise alignments in the order specified by the
guide tree (progressive alignment algorithm) [7, 27].

Parallel MPI Implementation of MSA. Mason is
a parallel implementation of ClustalW for execution on
distributed-memory parallel systems using MPI [2, 4]. It
proceeds through nine steps (Fig. 6):
1. The master host processor reads the input file contain-
ing N sequences and allocates an N × N distance matrix
structure that is used to hold all optimal alignment scores
between any two sequences. The master also partitions the
distance matrix by dividing up the sequences among the P
worker processors to distribute the workload, network, and
resource requirements during the alignment step.
2. The master sends all required sequences to the P worker
processors based on the distance matrix partitioning scheme

Figure 6: Parallel execution of ClustalW algorithm.

Figure 7: Alternative partitions of distance matrix.

computed in Step 1. Each processor has a fraction Nf of the
total number of N sequences to align.

3. The P worker processors compute their
Nf ·(Nf−1)

2
align-

ments in parallel using the pairwise alignment dynamic pro-
gramming algorithm.
4. All worker processors send their resulting alignment scores
back to the master in parallel.
5. After receiving all scores and completing the distance
matrix the master builds the guide tree.
6. The master computes and sends an alignment order along
with the respective sequences required for progressive align-
ment to all worker processors.
7. All worker processors perform progressive alignment in
parallel.
8. All worker processors send their partial multiple align-
ments back to the master in parallel.
9. The master progressively aligns the remaining multiple
alignments to produce the final result.

Experimental results by Datta and Ebedes show that 96%
of computational time is spent in the derivation of the dis-
tance matrix, i.e. in the first three steps of Fig. 6, while
the remaining time is split between the other two phases [2].

192

(a) Unix Cluster configurations (b) Set-Top Cluster configurations

Figure 8: Execution time breakdown for each of the four configurations of the two clusters.

Processor Overall Execution Time (Sec) - Floating Point Overall Execution Time (Sec) - Fixed Point
Type # S500-L1100 S100-L1500 S500-L200 S200-L300 Avg. S500-L1100 S100-L1500 S500-L200 S200-L300 Avg.

Sun 4200
1 5129 830 426 162 4666 757 383 146
8 1580 245 157 55 1427 228 146 51

Speedup 3.2 3.4 2.7 2.9 3.1 3.3 3.3 2.6 2.9 3.0

Cisco 4650
8 51989 8185 4256 1769 29732 4924 2575 1090
32 16617 2651 1485 714 9507 1629 908 441

Speedup 3.1 3.1 2.9 2.5 2.9 3.1 3.0 2.8 2.5 2.9

Table 2: Overall execution times and speedups for two different system configurations of each cluster.

While the distance-matrix computation is the main target
for parallelization, maximizing the achievable speedup de-
pends on the strategy that is used to partition the matrix
among the P worker processors. A possible approach con-
sists in sending all N sequences to all processors so that

each processor computes exactly N·(N−1)
2P

pairwise align-
ments. This approach, which is illustrated in Fig. 7(left),
distributes evenly the workload among the processors, but
has the highest message-passing cost since all processors re-
ceive all N sequences, whether they are used or not. Al-
ternative partitioning strategies have been proposed to re-
duce the communication cost [2]. The strategy shown in
Fig. 7(right) assigns a square section of the distance matrix
to most of processors, while some processors receive one of
the smaller sections along the diagonal. This method re-
duces the amount of message passing in exchange for an un-
equal workload distribution. For small input sizes the first
approach outperforms the second because the communica-
tion costs are still relatively low and all processors are fully
utilized [2]. However, for aligning large sets of long DNA
or protein sequences, which consist of perhaps thousands or
even tens of thousands of sequences, the second approach
may be more convenient because the resulting distance ma-
trix can be partitioned such that communication costs and
processor memory resources are minimized.

6. EXPERIMENTAL RESULTS
Using the MSA problem as our target application, we com-

pleted a set of experiments on the prototype system of Fig. 3.
While our system allows us to analyze various combinations
of devices, in these experiments we focused on comparing
different configurations of the Unix Cluster, which consists
only of Sun 4200 nodes, with different configurations of the
Set-Top Cluster, which consists only of Cisco 4650 STBs.
Specifically, we considered four Unix Cluster configurations
with 1, 2, 4 and 8 Sun 4200 acting as worker processors and
four Set-Top Cluster configurations with 8, 16, 24 and 32
STBs acting as worker processors. Every configuration uses
the same Sun 4200 processor as MPI master host. In each
experiment we run Mason on a particular input data set
that consists of a given number of DNA sequences.

Generation of Data Sets. Given an input file that spec-
ifies a set of transition probabilities, the Rose sequence gen-
erator tool returns sets of either protein or DNA sequences

that follow an evolutionary model and, therefore, are more
realistic than purely random-generated sequences [25]. Us-
ing Rose’s standard input settings we generated four sets of
DNA sequences, which present different size and complexity:
• S500-L1100: 500 DNA Sequences with 1100 base pairs.
• S100-L1500: 100 DNA Sequences with 1500 base pairs.
• S500-L200: 500 DNA Sequences with 200 base pairs.
• S200-L300: 200 DNA Sequences with 300 base pairs.

In general, larger sets of longer sequences are computation-
ally more complex than smaller sets of shorter sequences.

The algorithm partitions N sequences into
Npart·(Npart−1)

2
tasks, each requiring the pairwise alignment of Mpart se-
quences. Hence, an upper bound on the computational com-
plexity of MSA is given by O((Npart)

2 ·(Mpart max)2), where
Mpart max denotes the longest sequence in the set of Mpart

sequences making up any given sequence partition Npart. In
our collection the S500-L1100 set is the most computational
complex while the S200-L300 set is the least complex. The
other cases lie somewhere in between.

Floating-Point vs. Fixed-Point. As part of our ex-
periments, we analyzed also the performance impact of con-
verting floating-point operations in Mason to fixed-point
operations for each possible configuration of both clusters.
This analysis is important because current STBs do not fea-
ture a floating-point hardware unit and only support floating
point operations through emulation in software. Hence, to
estimate how much of the current performance gap is due
to the lack of this unit allows us to better extrapolate the
performance that could be obtained when running other al-
gorithms, which necessarily require floating-point precision,
on future clusters of next-generation of embedded devices,
which are expected to contain floating-point units. We fo-
cused our effort on converting to fixed-point operations only
the code in the first phase of the algorithm (distance-matrix
computation) because it accounts for over 90% of the overall
computation time. The conversion was achieved by replac-
ing float variables with long integers and multiplying by a
constant factor sufficient to maintain five digits of precision
in all scoring routines comprising the pairwise-alignment al-
gorithm. Results were converted back to floating point from
fixed-point values by dividing all fixed-point score values by
a constant factor prior to populating the distance matrix. In
terms of accuracy, we found negligible difference in results
beyond five digits of precision.

193

(a) Unix Cluster (float) (b) Set-Top Cluster (float)

Figure 9: Relative parallelization speedup: Unix Cluster vs. Set-Top Cluster (floating-point computation).

(a) Unix Cluster (fixed) (b) Set-Top Cluster (fixed)

Figure 10: Relative parallelization speedup: Unix Cluster vs. Set-Top Cluster (fixed-point computation).

Execution Time Breakdown. Figures 8(a) and 8(b)
report the execution time breakdown of the floating-point
version of Mason with the S500-L1100 input data set for
each of the four configurations of the Unix Cluster and Set-
Top Cluster, respectively. The results for the fixed-point
version as well as for the other data sets are similar. In
both cases, as expected, the distance-matrix computation
accounts for well over 90% of the overall execution time re-
gardless of the number of processors. This number, we re-
call, varies from 1 to 8 for the Unix Cluster and from 8 to
32 for the Set-Top Cluster. These results are in line with
similar results presented in the literature for other parallel
implementations of ClustalW [4, 2, 19] and confirm the
validity of the parallelization efforts discussed in Section 5.

Parallelization Speedup. Table 2 reports the over-
all execution times in seconds obtained running both the
floating-point version and the fixed-point version of Mason
with each input data set on two configurations of the Unix
Cluster (consisting of 1 and 8 Sun 4200 processors respec-
tively) and two configurations of the Set-Top Cluster (con-
sisting of 8 and 32 Cisco 4650 STBs respectively). For in-
stance, for the case of the floating-point version of Mason,
the data set for the hardest problem (S500-L1100) is pro-
cessed in 5129s by a single Sun 4200 while a cluster with
eight Sun 4200 processors takes only 1580s (a speedup of
3.2). Meanwhile, for this problem, a cluster of eight Cisco
4650 devices need 51989s but this time is reduced to 16617s
for a cluster of 32 devices (a speedup of 3.1). The speedup
values are similar across the four data sets and regardless of
the program version (floating-point or fixed-point) with an
approximate average value of 3X for the Unix Cluster and
2.9X for the Set-Top Cluster. Figures 9 and 10 illustrate the
relative speedups due to parallelizations normalized to the
slowest computation time for each data set as we increase
the number of nodes for each of the four configurations of

Data Set 32 STB vs. 1 Sun 4200
(float) (fixed) Gain (%)

S500-L1100 3.24 2.04 37
S100-L1500 3.19 2.15 33
S500-L200 3.49 2.37 32
S200-L300 4.41 3.02 31

Table 3: Comparing a Set-Top Cluster with 32 boxes
to 1 Sun 4200: gain due to fixed-point computation.

the Unix Cluster and Set-Top Cluster for both types of com-
putation, respectively. Notice that while the execution time
does not decrease linearly as we increase the number of Sun
processors (or Cisco devices), an important result is that
across all the various data sets both the Unix Cluster and
Set-Top Cluster exhibit similar scaling and performance im-
provements, with comparable speedup due to parallelization
in both platforms.

How Many Set-Top Boxes to Make a High-Perfor-
mance Processor? The first row of Table 3 reports the
ratio of the execution time of the fastest Set-Top Cluster
configuration (32 Cisco 4650) over the execution time of the
slowest Unix Cluster configuration (1 Sun 4200) for the var-
ious data sets. For instance, this ratio is 16617/5129 = 3.24
when the two clusters run the floating-point version of Ma-
son with the S500-L1100 data set. In other words, 32 STB
devices take 3.24 as much time as a single Sun processor
to perform the same task. Or, again, we could say that
one high-performance processor is equivalent to 104 STB
devices. On the other hand, this ratio drops to 2.04 when
the fixed-point version of Mason is used for both clusters 1,

1
We recall that using the fixed-point computation for the MSA prob-

lem is faster for both clusters, but is relatively better for the Set-
Top Cluster because the STBs do not have a floating-point hardware
unit. Naturally, there are other important scientific problems that
necessarily require floating-point operations. Our approach to paral-
lel computing will be applicable to these problems only when STBs
will feature a floating-point unit, which is expected to happen soon [5].

194

an improvement of 37% as shown in the remaining rows of
Table 3. This translates in a new equivalence gap factor
of 66 STBs per high-performance processor. Finally, notice
that the frequency of the Sun 4200 processor is four times
as fast as the frequency of the embedded processor in the
Cisco 4650 STB. Hence, accounting for this frequency ratio,
the equivalence gap factor would become 16.5.

7. LESSON LEARNT AND NEXT STEPS
Impact of Communication. In comparing the rela-

tive platform speedups we observe that the communication
cost or overhead due to MPI is not a factor on either the
Unix Cluster and Set-Top Cluster for our experimental sys-
tem. This is due to the small size of the experimental broad-
band network and limited number of embedded devices. In a
larger broadband network with many STBs, a key considera-
tion will be assuring ample network bandwidth and minimal
latency to each embedded device. MSOs are currently sup-
porting millions of embedded devices over DOCSIS networks
and plan to continue improving overall network performance
through ongoing protocol enhancements that will include the
following: 1) quality-of-service (QoS) enforcement on a per-
application basis assuring minimum bandwidth allocations;
and 2) increased network performance in both directions to
achieve over 300Mb/s downstream and 120Mb/s upstream
through channel bonding. Channel bonding is part of the
DOCSIS 3.0 standard which increases network performance
by concatenating multiple channels into one larger virtual
channel [10]. Additionally, MSOs are improving the DOC-
SIS broadband network by continuing to reduce the number
of embedded devices per DOCSIS channel. With fewer de-
vices per channel, additional access slots within the TDMA
scheme are available, thus increasing the throughput for all
devices on that channel.

Trends in STB Hardware and Software. An inter-
esting extrapolation is to project the future potential of our
proposed heterogeneous system when using next-generation
embedded STBs by comparing the currently available Cisco
4650 devices with the previous generation Cisco 4200 de-
vices [13]. As illustrated in Fig. 11, during the last two years
the clock frequency of the embedded processor has almost
tripled while the DRAM capacity has grown by a factor of at
least four. Moreover, these improvements in computational
power happened without any cost increase. STBs in the
near future are expected to host even faster, multicore pro-
cessors in the range of 1.5 to 2 GHz with FPU support, larger
DRAM memory, and the addition of 3-D graphics units. For
instance, this trend is confirmed by the recent announce-
ment that STMicroelectronics and ARM have teamed up to
deliver high performance ARM Cortex-A9 MPCore proces-
sors to the STB industry [5]. The ARM Cortex-A9 features
from 1 to 4 cores, L1 and L2 caches, with each core also con-
taining either a media processing unit or FPU with support
for both single and double precision floating-point opera-
tions [26]. Further, these systems will run non-proprietary
operating systems such as Linux and support Java as a ubiq-
uitous programming environment. Assuming similar tech-
nology trends in the embedded space and considering the
power constraints limiting the frequency of today’s highest
performance processors, it is reasonable to expect that in
the near future the next generations of STB devices, along
with other embedded systems, will further narrow the perfor-
mance gap with traditional cluster-blade technology. Con-

Figure 11: Progressive evolution of STB technology.

sequently, we believe that, as this gap continues to close,
heterogeneous systems that take advantage of high-speed
broadband networks and geographically-distributed embed-
ded processors for distributed computation will become an
interesting proposition for MSOs in the realization of cost-
effective, energy-efficient, high-performance computing in-
frastructures.

8. RELATED WORK
While the utilization of large scale networks of embed-

ded devices for heterogeneous computing within a managed,
dedicated system cloud raises new challenges and opportu-
nities in system scalability and performance, the idea of har-
nessing distributed embedded systems, particularly over the
Internet, is not new. A number of initiatives have focused
on utilizing volunteer PC hosts or game consoles for solv-
ing difficult problems such as those found in Computational
Biology. For instance, Folding@Home [11] and GridRepub-
lic [14] were formed to leverage the enormous number of idle
processor cycles available on the Internet. In these projects,
specialized software is downloaded to participating PCs or
game consoles, such as the PlayStation 3 featuring the IBM
Cell multi-core processor, with units of computation dynam-
ically offered by subscribers typically through a screensaver
application or background agent running on the host device.
In this model when the agent is available it receives tasks
assigned by a master server to be processed on a best-effort
basis. Results are sent back to the master server when the
task is completed. This system offers scalability on the or-
der of the number of PCs or game consoles active on the
Internet at any give time. Its success shows the potential
of harnessing distributed embedded devices that are widely
deployed by the tens of millions units today. Still the fact
that the “device participation” is not predictable ultimately
limits throughput guarantees, maximum task concurrency,
and service-level agreement between actors.

Most related works in the area of integrating message-
passing middleware into embedded devices have focused on
reducing the size of the MPI stack. Lightweight MPI (LMPI)
is based on a thin-client model where the MPI API layer is
implemented on top of a thin-client-message protocol which
communicates with a proxy server that supports a full MPI
stack [1]: client requests are routed through the proxy server,
which acts in behalf of one or more MPI thin-client user
processes. A key benefit of the LMPI approach is the elimi-
nation of the need for an operating system on the embedded
device. Other approaches attempt to reduce the size of the
MPI stack through refactoring or are based on a bottom-up

195

implementation of a minimal MPI stack, as in the case of
Embedded MPI (eMPI) [20]. Similarly to eMPI we use a
bottom-up approach to implement the minimal MPI API
set. But in our proposed system each Cisco STB contains a
modern real-time operating system that can support a na-
tive MPI implementation. Also, while previous work in ex-
ecuting MPI on embedded devices has focused on small test
kernels, from an application-viewpoint our work is closer to
the work of Datta [4, 2] and Li [19] because we evaluate our
parallel system with a real workload.

Google designed and deployed a massively-parallel system
comprised of commodity dual-core PCs running Linux com-
bined with the Google-custom Map-Reduce framework for
parallel computing [3]. The Google platform is distributed
across many data-centers and was estimated in size at over
450,000 systems [6]. A possible future large-scale version of
our proposed architecture, which will require to address the
scaling issues discussed in Section 4, would have important
differences with the Google platform, including the use of
a broadband network of embedded devices instead of a net-
work of clusters of PCs and the MPI programming model in-
stead of the Map-Reduce application development platform.
On the other hand, an open research area is to explore the
combination of the Map-Reduce paradigm with a heteroge-
neous parallel computing system featuring a large number
of distributed embedded devices, which may offer interesting
opportunities for such applications as data mining.

9. CONCLUSIONS
We proposed a heterogeneous platform architecture for

distributed computing that leverages traditional Unix clus-
ter technologies in combination with a broadband network
of embedded set-top boxes (STB). We implemented a com-
plete prototype system that fully represents a scaled-down
version of the proposed architecture and developed an inter-
operable subset of Open MPI to integrate and run it on
the heterogeneous devices. We ported a parallel version of
the ClustalW bioinformatics application on our system by
completing the necessary optimizations to reduce the mem-
ory requirements for execution on the STBs and improve
parallel workload data distribution. We established that it
is possible to execute ClustalW efficiently on our prototype
system while the STBs continue simultaneously to operate
their primary functions, i.e. decoding MPEG streams for
monitor display and running an interactive user interface,
without any perceived degradation. Further, our experimen-
tal results show that scaling up the system by adding more
STBs to the embedded cluster gives equivalent performance
gains as scaling up the number of processors in a traditional
Unix cluster. While the proposed platform architecture has
the potential of scaling to millions of units, we identified
critical challenges in the area of protocol overhead and fault
tolerance when implementing the MPI ORTE for embedded
devices. To address these challenges is our next goal. Indeed
we think that the present work opens new important avenues
of research in the area of distributed computing systems.
Given the technology trends in MSO broadband networks
and in hardware/software solutions for STBs, our study
demonstrates that to leverage a broadband network of em-
bedded devices is an interesting proposition to build a low-
cost and energy-efficient computing platform that can sup-
port both computationally-intensive service-provider work-
loads and emerging consumer-driven applications.

Acknowledgments
This work was partially supported by Cablevision Systems.
The authors gratefully acknowledge the help of Serguei Tche-
repanov for the porting of Mason and Satish Marada for the
building of the system prototype.

10. REFERENCES
[1] A. Agbaria et al. LMPI: MPI for heterogeneous embedded

distributed systems. In 12th Intl. Conf. on Parallel and
Distributed Systems, pages 79–86, July 2006.

[2] A. Datta and J. Ebedes. Multiple sequence alignment in
parallel on a workstation cluster. In A. Zomaya, editor,
Parallel Computing for Bioinformatics and Computational
Biology, pages 193–210. J. Wiley & Sons, Oct. 2006.

[3] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. Communications of the ACM,
51(1):107–113, Jan. 2008.

[4] J. Ebedes and A. Datta. Multiple sequence alignment in
parallel on a workstation cluster. Bioinformatics,
20(7):1193–1195, May 2004.

[5] STMicroelectronics and ARM Team Up to Power
Next-Generation Home Entertainment. Press release:
www.arm.com/news/26284.html, Oct. 2009.

[6] C. Evans. Future of Google Earth. Booksurge Llc., 2008.

[7] D. Feng and R. Doolittle. Progressive sequence alignment
as a prerequisite to correct phylogentic trees. J. Mol. Evol.,
25(4):351–360, Aug. 1987.

[8] E. Gabriel et al. Open MPI: goals, concept, and design of a
next generation MPI implementation. In Recent Advances
in Parallel Virtual Machine and Message Passing
Interface, 11th European PVM/MPI Users Group Meeting,
pages 97–104, Sept. 2004.

[9] O. Gotoh. An improved algorithm for matching biological
sequences. J. Mol. Biol., 162(3):705–708, Dec. 1982.

[10] http://en.wikipedia.org/wiki/DOCSIS.

[11] http://folding.stanford.edu.

[12] http://www.cablemodem.com.
[13] http://www.cisco.com.

[14] http://www.gridrepublic.org.
[15] http://www.isuppli.com.

[16] http://www.morganstanley.com.

[17] http://www.multichannel.com.
[18] J.Hursey et al. The design and implementation of

checkpoint/restart process tolerance for Open MPI. In Intl.
Symp. on Parallel and Distributed Processing, pages
415–422, 2007.

[19] K. Li. ClustalW-MPI: ClustalW analysis using distributed
and parallel computing. Bioinformatics, 19(12):1585–1586,
Aug. 2003.

[20] T. McMahon and A. Skjellum. eMPI: Embedded MPI. In
MPI Developers Conference, pages 180–184, July 1996.

[21] D. W. Mount. Bioinformatics: Sequence and Genome
Analysis. CSHL Press, New York, 2001.

[22] S. Needleman and C. Wunsch. A general method applicable
to the search for similarities in the amino acid sequences of
two proteins. J. Mol. Biol., 48(3):443–453, June 1970.

[23] Open MPI. Available at http://www.open-mpi.org.

[24] N. Saitou and M. Nei. The neighbor-joining method: a new
method for reconstructing phylogentic trees. Mol. Biol.
Evol., 4(4):406–425, July 1987.

[25] J. Stoye, D. Evers, and F. Meyer. Rose: generating
sequence families. Bioinformatics, 14(2):157–163, Mar.
1998.

[26] The ARM Cortex-A9 Processors. White paper available at:
www.arm.com/pdfs/ARMCortexA-9Processors.pdf.

[27] J. Thompson et al. ClustalW: improving the sensitivity of
progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix
choice. Nucleic Acids Res., 22(22):4673–4680, Nov. 1994.

196

