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Abstract—As Moore’s Law has slowed and Dennard Scaling
has ended, architects are increasingly turning to heterogeneous
parallelism and domain-specific hardware-software co-designs.
These trends present new challenges for simulation-based perfor-
mance assessments that are central to early-stage architectural
exploration. Simulators must be lightweight to support rich het-
erogeneous combinations of general purpose cores and specialized
processing units. They must also support agile exploration of
hardware-software co-design, i.e. changes in the programming
model, compiler, ISA, and specialized hardware.

To meet these challenges, we introduce MosaicSim, a
lightweight, modular simulator for heterogeneous systems, of-
fering accuracy and agility designed specifically for hardware-
software co-design explorations. By integrating the LLVM
toolchain, MosaicSim enables efficient modeling of instruction
dependencies and flexible additions across the stack. Its modu-
larity also allows the composition and integration of different
hardware components. We first demonstrate that MosaicSim
captures architectural bottlenecks in applications, and accurately
models both scaling trends in a multicore setting and accelerator
behavior. We then present two case-studies where MosaicSim
enables straightforward design space explorations for emerging
systems, i.e. data science application acceleration and heteroge-
neous parallel architectures.

Index Terms—heterogeneity, hardware-software co-design, per-
formance modeling, multi-core architectures, accelerators

I. INTRODUCTION

The last decade has seen a trend of increasing parallelism as

a response to the ending of Moore’s Law and Dennard scaling.

Figure 1 presents microprocessor trends over the past few

decades. As computing frequency (red triangles) has plateaued,

the number of logical cores (blue squares) has increased.

The stagnation in raw computing frequency has also triggered

the usage of specialized systems, including heterogeneous

architectures and hardware-software co-design, to meet the

demands of today’s aggressive performance and power goals.

Designers of modern systems are therefore employing combi-

nations of distinct computation elements, including small, low-

power cores and high-performing hardware accelerators [1–3].

In their Turing award lecture, Hennessy and Patterson

describe a New Golden Age for Computer Architecture,

where future performance improvement opportunities encour-

age vertically-integrated system designs [4]. Such systems

require innovation in programming models, compilers, spe-

cialized hardware, and ISAs. Hence, the system design space

Fig. 1. 42 years of trend data for microprocessor characteristics, graph
recreated using data from [7]

has seen a Cambrian explosion in diversity at all levels of the

stack, necessitating flexible tools for design space exploration.

Well-known simulators, e.g. gem5 [5], offer detailed simu-

lation infrastructures for conventional microarchitectures, but

make it difficult for a designer to explore changes across other

layers of the stack, which have increasing influence in the per-

formance of systems today. Other approaches resort to high-

level simulation (e.g. 1-IPC models or interval simulation [6])

that do not accurately capture critical memory bottlenecks of

many modern data-intensive applications.

We present MosaicSim, a simulation approach that allows

for the exploration of optimizations across the hardware-

software stack, while providing accurate modeling of perfor-

mance bottlenecks and application characteristics. To achieve

these goals, we leverage the LLVM framework [8], which

allows us to utilize a mature compiler infrastructure to capture

instruction dependencies and collect memory traces. Mosaic-

Sim executes LLVM IR, which enables ISA-agnostic sim-

ulation and supports flexible programming models through

compiler passes and specialized instructions. MosaicSim then

simulates the LLVM IR instructions on modular tile models,

which enables straightforward design space exploration of

heterogeneous systems. Furthermore, tile modules support

a flexible communication model, which allows data-supply

hardware-software co-designs to be evaluated.
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Fig. 2. MosaicSim integrates different modules (e.g. CPUs and accelerators)
via the Interleaver, which combines module behaviors into system-wide
performance estimates.

To summarize, MosaicSim is a lightweight, modular sim-

ulator for heterogeneous and hardware-software co-design

systems. Its main contributions are:

• Enabling flexible programming models, compiler tech-

niques and ISAs through integration with LLVM.

• Abstract tile models, which capture key performance

microarchitectural details for a variety of core models

and accelerators.

• A holistic simulation approach that allows for the com-

position of different hardware tiles and communication

structures, allowing for the simulation of complex het-

erogeneous systems.

We evaluate MosaicSim and demonstrate that it:

• Accurately captures trends on existing parallel architec-

tures and accelerators (Section VI).

• Is able to simulate complex heterogeneous systems, illus-

trated through three case studies (Section VII).

II. MOSAICSIM OVERVIEW

This section describes an overview of the MosaicSim sim-

ulation methodology. At a high level, MosaicSim provides

tile-based models of different hardware units, including cores,

accelerators, and caches, with an Interleaver that composes

their behaviors to provide total system estimates.

Tiled System Model: Figure 2 displays the tiled system

model in MosaicSim. The overall design represents an SoC

comprised of CPU and accelerator tiles. Each tile in the

SoC has a model of its events that contribute to the perfor-

mance and power of the entire system, and the Interleaver

coordinates the interactions of events from different tiles.

MosaicSim simulates a simple homogeneous chip multipro-

cessor by instantiating several CPU tiles and allowing the

Interleaver to coordinate their interactions, e.g. coordinating

shared memory hierarchy behavior. Additionally, MosaicSim

can simulate more heterogeneous processors by providing (and

hence, interleaving) more diverse models. As a design process

evolves, accelerators or other specialized hardware can be in-

corporated as Section IV describes. The direct linkage with an

LLVM-based compiler allows straightforward decomposition

into models for different units.

As an early-stage tool that targets design space exploration

for hardware-software co-design, MosaicSim focuses on ker-

nel simulation. This allows for modeling compute or memory

bottlenecks in order to provide hardware designers with the

necessary insight to make design decisions (e.g. employing

accelerators) accordingly. MosaicSim is not restricted to kernel

modeling and can simulate arbitrary codes as long as LLVM-

IR can be obtained. However, full application simulation

requires performance models that are often only available in

later design stages, e.g. filesystem I/O and system calls.

Timing Integration: Distinct tiles may use different notions

of execution timing and are modeled to operate concurrently.

The Interleaver queries tiles to advance them through the

next time unit of execution. Tiles may run at different clock

speeds, so the Interleaver queries and coordinates their events

accordingly. To communicate, tiles create inter-tile events and

enqueue them for the Interleaver to manage. The Interleaver is

then responsible for sending a transaction to its destination tile

at the right time; it does so by explicitly invoking a destination

tile to receive and process message events.

Compiler and Software-Hardware Interface: MosaicSim

uses LLVM IR as its ISA, so it is closely integrated with a

mature and open-source compiler framework. Wide support

for LLVM frontends allows the compiler to take inputs from

a variety of languages. While MosaicSim’s most developed

front-end is C/C++ through Clang [9], we also have proto-

type support for Python (via Numba [10]) and performance

modeling for TensorFlow Keras [11]. The compiler allows

further programmer directives to guide hardware components

to simulate. For example, the programmer can utilize an accel-

erator API with common functions (e.g. matrix multiplication)

to invoke an accelerator model for specific compute tasks,

thus allowing the exploration of design performance trade-offs.

New instructions, programming paradigms, and pragmas can

be straightforwardly added as functions calls identified through

LLVM passes. Relevant parameters can then be relayed to the

simulator through traces. The compiler generates dependency

graphs of LLVM IR that the simulator can map onto distinct

tiles or analyze for lightweight performance estimation.

A. Lightweight Tile Models using Dependence Graphs

Tile models begin as abstract models based on data de-

pendence graphs derived from LLVM IR. Namely, from a

full software application written in a compatible language, the

compiler can identify kernels for which to perform dependence

analysis to create a graph-based model. Section III describes

how such models can account for different hardware charac-

teristics to reflect issue width, in- or out-of-order execution,

and other processor attributes.

Execution Modeling: In graph-based tile models, a node
corresponds to a static operation (instruction) and keeps track
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of its dependents and parents1. Dependence analysis is per-

formed to identify basic blocks, which are single-entry, single-

exit collections of static instructions in LLVM [12]. Each basic

block can have many dynamic instances (e.g. when a basic

block is executed repeatedly in a for loop), so we call such

instances Dynamic Basic Blocks (DBBs). In a for loop, the

basic block remains the same each iteration, but the iteration

variable maps to different values, creating different DBBs.

Terminator nodes, or exit points (e.g. jump instructions), have

edges to DBBs that could be executed next.

In order to perform dependence analysis, MosaicSim relies

on (1) a Static Data Dependency Graph (DDG) Generator and

(2) a Dynamic Trace Generator (DTG). Both tools operate on

compiled source code with the kernel annotated. The static

DDG Generator uses a series of LLVM passes to capture

static inter-instruction dependencies and provide a graphical

representation of the source code. This representation can in-

volve many DBBs. Figure 3 illustrates MosaicSim’s execution

modeling for a core to run a non-speculative example. Nodes

in DBBs correspond to instructions, while edges capture data

and control flows within and across DBBs.

Since memory dependencies and control flow paths cannot

be completely determined statically, the DTG uses an LLVM

pass to create an instrumented x86 executable that, when run,

writes two trace files: (1) a control flow trace that records the

dynamic control flow decisions; and (2) a memory trace that

records the addresses for each memory access. Following the

native run on the host machine, MosaicSim uses these trace

files in the core model, allowing cycle-driven simulation of

different execution possibilities (e.g. in-order vs. out-of-order).

Data Dependencies: The DTG outputs information on all

addresses accessed, but address aliasing can occur until the

program actually resolves the addresses. Thus, MosaicSim

implements a Memory Address Orderer (MAO), to ensure

that true memory dependencies (i.e. Read-After-Write depen-

dencies) are respected. The MAO is populated with memory

operations in program order, and can be instantiated with

various parameters, e.g. to model a traditional Load-Store

Queue (LSQ) in core models (see Section III).

Before a store instruction executes, it checks the MAO to

ensure that there exists no incomplete older memory access

with a matching or unresolved address. A load only needs

to ensure that there exists no incomplete older store with a

matching or unresolved address. If these conditions are not

met, the memory operation and its dependent instructions stall.

Control Flow Dependencies: MosaicSim serially launches

DBBs based on the control flow path trace and the amount

of resources devoted to the core model (see Section III-A).

Since multiple tiles each run multiple DBBs, the Interleaver

coordinates event timing and communication among tiles

(detailed in Section II-C) and with the memory hierarchy.

The DTG provides a list of basic block IDs in execution

order. For each ID in the list, MosaicSim launches a new

DBB based on the corresponding static basic block. A DBB

1We use node and instructions interchangeably.

becomes live, or is launched, only after the terminator node

that branches to it has completed. Instructions cannot execute

unless the DBB they belong to has been launched. Note,

however, that despite the serial launching of DBBs, MosaicSim

can have multiple live DBBs at a given time because a

terminator node is not necessarily the last instruction to be

completed. For example, terminator node 16© in Figure 3 can

be reached in just 5 cycles, but it may take longer to reach node
12©. Thus, new DBBs for a particular basic block are launched

when the terminator node has been reached regardless of

whether the current DBB has finished. This leads to a variable

number of in-flight DBBs per static basic block.

In summary, MosaicSim enforces the following rules to

respect data and control flow dependencies:

1) An instruction cannot be issued unless its DBB has been

created and all of its parent nodes have completed.

2) When an instruction completes, MosaicSim attempts

to issue its dependents, while also decreasing the de-

pendents’ count of uncompleted parents. Dependents

with no additional uncompleted parents can be issued

(subject to hardware resource constraints, as discussed

in Section III-A).

3) When a terminator node completes and if resource limits

have not been reached, the Interleaver launches the next

DBB based on the control flow path trace from the DTG.

B. Task to Tile Mappings

A tile executes a kernel, which is given as a specially named

LLVM function. Different kernels can be mapped to different

tiles if distinct DDGs and traces are generated.

Currently, MosaicSim provides a single program, multiple

data (SPMD) approach. That is, the user writes one kernel

function K and queries a unique tile ID and number of

tiles from the execution environment. This provides a familiar

and general parallel programming model, similar to MPI and

CUDA. The user specifies the number of tiles T at compile

time and the DDG generates T graphs of K. The compiler

then creates a native binary that executes K with T threads

using OpenMP, generating the necessary traces.

Accelerator tiles (further detailed in Section IV) can be

invoked via an API of common accelerated functions, e.g.

SGEMM. The DDG captures the accelerator call and the DTG

records the relevant parameters, e.g. matrix dimensions. Dur-

ing simulation, the accelerator node in the DDG is matched

with the trace parameters and the accelerator model is invoked.

Sections VII highlights examples of accelerator use.

C. Inter-Tile Communication

Tiles operate alongside each other, each being called upon

by the Interleaver (Figure 2) to take a single-cycle step.

Tiles can communicate through a traditional shared memory

hierarchy, in which memory instructions (i.e. loads and stores)

are dispatched to a memory model (discussed in Section V).

Two tiles can additionally communicate with each other

through generic messages, which can be stored in internal tile

buffers. This is realized through a simple message passing
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Fig. 3. MosaicSim’s Execution Modeling Flow

API (i.e. send, recv). The Interleaver buffers all send
instructions issued. When the receiving tile issues a recv in-

struction, the Interleaver matches it with the buffered message.

This model is simple, generic, and can be used to build more

complicated and specialized inter-tile communication models.

Section VII-A discusses how these features can be used to

implement a Decoupled Access/Execute system [13].

III. FAST ABSTRACT TILE MODELS IN MOSAICSIM

As previously described, MosaicSim can simulate various

tile models that estimate the performance and power costs of

a region of LLVM IR. Analysis of the LLVM IR dependence

graphs can be shaped to accurately reflect the resource con-

straints of different tile design choices. This section describes

the modeling of different execution scenarios that correspond

to microarchitectural resource limits for different tile models.

A. Microarchitectural Resource Limits

In order to be instantiated, a core tile model requires several

microarchitectural resource parameters, such as issue width,

RoB size, LSQ size, and the number of functional units. Based

on these limits, MosaicSim manages resources to accurately

model in-order, out-of-order, and accelerator tiles.

Issue Width: MosaicSim models a superscalar issue width

W by maintaining a count of issued instructions and ensuring

that no more than W instructions can issue each cycle.

ROB: To model an ROB, MosaicSim creates IDs for all

instructions that are assigned at DBB creation time. Mosaic-

Sim maintains a sliding instruction window (starts with ID

0 and spans the instruction window size) that only allows

instructions with IDs within the window to issue. When the

oldest issued instruction completes, MosaicSim slides the

instruction window forward to issue a younger instruction.

LSQ Size: To model the LSQ, MosaicSim uses the MAO

(described in Section II-A) to track loads and stores and ensure

that instructions cannot issue if the MAO is full. Memory

operations free up space on the MAO upon completion.

Live DBB Limits: MosaicSim provides the option of limit-

ing the number of live DBBs that can run concurrently for each

basic block. This limit mimics restricting how many replicated

circuits for a loop body appear in a hardware accelerator.

Entire DBBs (and their instructions) cannot be launched if

the live DBB limit for their basic block has been reached.

Functional Unit Limits: MosaicSim can limit the number

of available functional units for each instruction type. It

maintains a count of all issued, incomplete instructions and

the functional units they utilize. There must be an available

functional unit in order to issue an instruction. When instruc-

tions complete, they free up the functional units they occupied.

B. Instruction Costs

Individual instructions in MosaicSim have both a latency

cost (cycles) and energy cost (Joules). These costs can be pre-

determined (computation instructions) or dynamic (memory

operations). After an instruction with a fixed cost is issued,

MosaicSim ensures that it does not complete until its global

cycle count has progressed through the latency of the instruc-

tion. The fixed energy cost of the instruction is then added to

a running total. For instructions with a dynamic cost (e.g. a

139

Authorized licensed use limited to: Columbia University Libraries. Downloaded on November 20,2020 at 21:01:07 UTC from IEEE Xplore.  Restrictions apply. 



memory instruction), cost values are determined by querying

the memory hierarchy and are subject to factors such as

memory contention and cache misses (detailed in Section V).

C. Speculation

MosaicSim is designed to flexibly explore several opportu-

nities for speculation. MosaicSim models control-flow specu-

lation by adding a misprediction latency whenever a modeled

branch predictor contradicts the pre-determined control flow

path provided by the DTG2. By default, MosaicSim must

wait until it encounters the terminator node of a basic block

before launching a new DBB. However, with speculation,

the next DBB can be launched immediately, which makes

instructions in the newly launched DBB eligible to be issued.

Instructions in a mispredicted path are never executed, as is

similar with other instrumentation-based or direct-execution

simulators (e.g. Sniper [14] or ZSim [15]).

MosaicSim also leverages information from the DTG to

provide an option for perfect memory address alias specula-
tion. Since the trace holds information on all addresses for all

instructions before starting the simulation, MosaicSim knows

if any pair of accesses have aliasing addresses ahead of time.

Hence, it can “perfectly anticipate” aliasing occurrences and

potentially issue memory instructions in the presence of unis-

sued, older instructions with unresolved memory addresses.

IV. ACCELERATOR SIMULATION

As shown in Figure 2, MosaicSim supports the simulation

of heterogeneous SoCs comprised of CPUs and accelerators.

MosaicSim offers two styles of accelerator simulation for

design progressions from high-level to detailed.

Pre-RTL Accelerator Modeling: Early in the design pro-

cess, pre-RTL accelerator modeling can help determine which

accelerators are useful without their RTL designs. For this

purpose, MosaicSim can model accelerators using the same

graph-based approach as previously described for CPUs, but

with different hardware resource constraints. Fixed-function

accelerator models provision hardware resources based on

application-specific factors (e.g. loop unroll length and par-

allelism opportunities). MosaicSim provides knobs to specify

the number of active DBBs per basic block (i.e. hardware-

supported loop unrolling), number of functional units, etc. In

addition, one can use MosaicSim to explore the relaxation of

hardware constraints, such as RoB size and instruction win-

dow. Rather than targeting a specific hardware implementation,

these features enable a high-level exploration of the extent to

which an application can benefit from hardware acceleration.

RTL Accelerator Modeling: Later in the design process,

MosaicSim allows a high-level accelerator model to be re-

placed by a more detailed one based on an actual RTL imple-

mentation of the accelerator. This is essentially a substitution

of one (or several) of the tile models depicted in Figure 2.

2MosaicSim currently supports static branch prediction in addition to per-
fect branch prediction. This is useful for early-stage modeling, e.g. obtaining
upper bounds. However, future work will support more realistic dynamic
branch predictors.

Fig. 4. (a) The accelerator’s modules operate in a pipeline with a multi-
port, multi-bank private local memory. (b) Computation and communication
overlap during the accelerator execution.

A. Accelerator Invocation

When MosaicSim invokes an accelerator, the Interleaver

queries the accelerator tile for latency and resource usage

information. For graph-based accelerator modeling, this invo-

cation is similar to that of CPU models.

For detailed RTL accelerator modeling, MosaicSim provides

an interface tailored to such evaluations. The Interleaver runs

a C++ performance model of the accelerator tile, which takes

as input two sets of parameters: (1) a standard set of generic

system parameters, e.g. technology node, maximum memory

bandwidth, number of accelerator instances to be invoked

in the system; and (2) a set of accelerator configuration

parameters, e.g. number of inputs, input and output sizes.

When queried, the accelerator tile model returns to the In-

terleaver a set of performance estimates, e.g. clock cycles,

bytes of memory accessed, and average power consumption.

This accelerator data is then included in the final performance

results reported by MosaicSim. Individual accelerator tiles

can be implemented in various ways as long as they abide

by the Interleaver’s interface. We next describe our primary

methodology for generating the accelerator tile models.

B. RTL Accelerator Model Design

The RTL accelerator modeling approach focuses on acceler-

ators with predictable memory access patterns, i.e. independent

accesses. However, the overall MosaicSim approach is more

general and can support tile models with any access patterns.

In this modeling approach, accelerators are designed by

leveraging the accelerator design flow of the open-source

ESP project [16–18], which eases the design effort by using

templates to automatically generate most of the accelerator

source code. Accelerators are first designed in SystemC and

then sent through Cadence’s Stratus High-Level Synthesis

(HLS) tool to produce an RTL implementation. This method-

ology is applicable to other languages and tools, for instance

ESP provides accelerator design flows also in C/C++, Keras

TensorFlow, Pytorch and more.

The accelerators generated through this approach have a

pipelined datapath crafted to mask the communication time

as much as possible. Fig. 4 presents an accelerator with three

concurrent modules: a load process to load data from memory,

one or more computation processes, and a store process to send
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data to memory. The modules communicate through a private

local memory, which is a circular or double buffer to enable

pipelining of computation and DMA transfers.

Communication Model: In accelerator tile model develop-

ment, validation of the communication and computation per-

formance characteristics with respect to the expected hardware

is key. Both the SystemC and the HLS-generated RTL imple-

mentation of an accelerator can be verified in simulation with a

SystemC testbench. We augmented the testbench infrastructure

of the ESP accelerators with a memory model that accounts for

access latency, bandwidth, interconnect bit-width, and average

NoC hops between accelerator and memory interfaces (for

NoC-based SoCs). These parameters can be tuned to match a

target SoC. With this kind of communication model, a designer

can focus on the accelerator design without losing sight of its

interaction with the rest of the system.

Accelerators can interact with the memory hierarchy in

many ways [19, 20]. This work models accelerators as non-

coherent; they communicate directly with main memory, by-

passing the memory hierarchy. This is common for loosely-

coupled accelerators that execute coarse-grained tasks.

Performance Model: MosaicSim has a generic per-

formance model for loosely-coupled, reconfigurable, fixed-

function accelerators. The model abstracts an accelerator as

a set of concurrent modules, where each module executes

one or more loops multiple times. The model can also invoke

accelerators in parallel and, given a maximum memory band-

width, scale execution time and average power consumption

accordingly.

The performance model of a specific accelerator employs

the generic model by providing the following four arguments:

(1) the number of processes; (2) the number of loops per

process, which describes the accelerator structure; (3) the total

latency of all internal loops; and (4) the number of iterations

of each loop, which is function of the configuration parameters

of the accelerator invocation.

The designer needs to provide the average power consump-

tion of the accelerator, which can be measured by logic synthe-

sis tools based on the switching activity recorded during RTL

simulation. Finally, the accelerator designer should provide an

expression to calculate the number of bytes transferred to/from

memory as a function of the accelerator configuration.

Accelerator Instrumentation: The generic performance

model requires the latency of one iteration of the core loops

in each module as input. These are the internal loops, whose

latencies do not depend on the accelerator configuration (e.g.

input size). To aid the collection of these latencies, we aug-

mented the ESP accelerator templates with instrumentation

features, so that the accelerator designer can instrument the

accelerator to collect the required cycle-accurate latencies.

The instrumentation adds an array of signals to each module

and an additional concurrent process, the collector, to collect

and process all instrumentation signals. Each signal is toggled

at every iteration of the corresponding loop. The collector
measures the toggling latency and communicates the results

to the testbench, which ultimately dumps them to a file.

Design Space Exploration: HLS allows for seamless gen-

eration and evaluation of multiple RTL implementations of an

accelerator given a single high-level SystemC specification.

The SoC designer can then choose which specific design

point(s) to instantiate as well as how many copies of the same

accelerator should be present. The very fast system simulation

of accelerators with MosaicSim can greatly help this design-

time decision process.

V. MEMORY HIERARCHY

MosaicSim simulates a memory hierarchy that includes

caches: both private and shared, and support for two different

DRAM models: an in-house model named SimpleDRAM, and

the widely-used DRAMSim2 [21].

A. Cache Model

MosaicSim’s cache model can be utilized as a per-core

private cache or shared cache. Both are independently con-

figurable for size, cache line size, associativity, and access

latency. MosaicSim is a timing simulator and therefore need

not hold actual data in the caches; the address tags suffice.

The cache hierarchy is conventionally write back, write

allocate, and fully-inclusive. Each core tile model maintains

a cache queue ordered with respect to the cache hierarchy.

Memory requests are initially sent to the L1 cache at the front

of the queue and forwarded to the next cache when necessary

(e.g. cache misses or writeback of dirty data). At the end of

the queue, the LLC forwards requests to the DRAM model

(described in Section V-B).

The cache model includes a prefetcher that detects stream-

ing patterns of memory accesses. It simply tracks memory

requests to see if there exists a chain of accesses that are k
words apart. If so, a number of additional requests are gen-

erated by the cache for subsequent cachelines in anticipation

of future memory instructions accessing those cachelines. The

number of cachelines prefetched and the address distance from

the instruction triggering the prefetches can be configured.

MosaicSim’s memory hierarchy model provides a flexible

and straightforward interface to implement more complex or

specialized prefetchers as well.

To coalesce memory requests, caches can utilize an MSHR

whose size can be configured. When a cache receives a request,

it checks the MSHR to see if there exists a pending request to

the same cacheline. If so, it saves the request on the MSHR.

When the pending request is served, the MSHR notifies all

requests waiting on that cacheline.

Precise modeling of NoCs, consistency, and coherence are

currently not implemented in MosaicSim, as this level of

detail is not required by our early-stage modeling. However,

future work aims to provide their support. With MosaicSim’s

modular design, ports can be added to the abstract tile model

to create a message module in order to model NoCs and the

necessary communication for coherence and consistency. A

directory protocol can easily be implemented by treating the

Interleaver as the directory and allowing it to communicate

with the caches.
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TABLE I
EVALUATION SYSTEM DETAILS INTEL XEON E5-2667 V3

Sockets, Cores 2 sockets, 8 cores each
Node Technology and Frequency 22nm, 3200 MHz
L1-I and L1-D 32KB private / 8-way
L2 2MB private / 8-way
LLC 20MB shared / 20-way
DRAM 128GB DDR4 @ 68GB/s

B. DRAM Model

MosaicSim supports two DRAM models: an in-house model

called SimpleDRAM and the widely-used DRAMSim2 [21].

SimpleDRAM ensures that all DRAM requests abide by a

minimum latency and maximum bandwidth. Every DRAM

request is inserted into a priority queue ordered by mini-

mum request completion time (current cycles plus minimum

latency). SimpleDRAM enforces the maximum bandwidth

limit in epochs. Every cycle, it attempts to return as many

requests as possible that have served the minimum latency.

Once the number of requests returned in that epoch has ex-

hausted the maximum bandwidth, SimpleDRAM cannot return

requests until the next epoch, but it can continue receiving

new requests. SimpleDRAM thus models memory bandwidth

contention and throttling due to bandwidth limits.

SimpleDRAM is the default model, but MosaicSim can

be configured to use DRAMsim2 for cycle-accurate DRAM

modeling, albeit this model executes slower has a larger

memory footprint during simulation than SimpleDRAM.

VI. EVALUATION

We make use of our hardware-software toolchain to evaluate

MosaicSim on a variety of benchmarks. The simulator relies

on the compiler to generate the DDG and the DTG to instru-

ment the code and generate memory and control flow path

traces. MosaicSim utilizes the front-end tools in the stack to

quickly and accurately simulate heterogeneous and hardware-

software co-design systems.

A. Accuracy

In order to measure MosaicSim’s ability to accurately

capture and characterize application trends, we perform two

evaluations. First, we utilize the Parboil benchmark suite [22]

to evaluate core and memory hierarchy models. We validate

MosaicSim by running benchmarks on the Intel Xeon E5-

2667 v3 processor (features detailed in Table I) and collect-

ing measurements of our real machine using Intel VTune

Amplifier [23]. By using VTune’s function-level filtering to

isolate profiling information for the kernel, we obtain cycle and

instruction counts to compare against MosaicSim performance

estimates. Second, we evaluate our accelerator tile models

against both RTL simulation as well as FPGA execution.

Application Characterization: Figure 5 displays the ac-

curacy of MosaicSim’s runtime estimates compared to the

measured performance of real hardware. MosaicSim achieves

a geomean accuracy (simulated cycles/real cycles) of 1.099×.

Accuracy discrepancies arise from MosaicSim being ISA-

agnostic; it cannot perfectly capture cases where LLVM IR

instructions do not have a direct, 1-to-1 mapping to ac-

tual ISA instructions. For example, LLVM IR requires two

instructions for loading from an address offset: load and

getelementptr, while the x86 ISA can perform this with

one instruction: MOV. Additionally, a direct comparison of

LLVM IR simulation against a native ISA must take into

account compiler optimizations applied when producing the

binary from the IR (e.g. we have found that using -O3 and

loop unrolling produces a more accurate comparison to an x86

instruction counts). Thus, we expect precise IPC and timing

models to be noisy when compared to the execution of a

concrete ISA. Figure 5 demonstrates this behavior on the Par-

boil suite: although the geomean accuracy is high, individual

benchmark measurements can be inaccurate. We have found

that fine-grained tuning of LLVM IR simulation for concrete

ISAs, e.g. simulating pairs of load and getelementptr
as one instruction for x86, can increase accuracy. However,

MosaicSim aims to be ISA-agnostic and therefore focuses

more on characterization rather than on raw cycle accuracies.

Due to the extra abstraction layer of LLVM IR, it is

difficult to perform raw IPC comparisons without tuning to

a specific ISA. However, we can use the IPCs that MosaicSim

reports to characterize kernels as memory or compute-bound.

A lower IPC indicates that a kernel is memory-bound while

a higher IPC indicates being compute-bound. These results,

e.g. BFS being memory-bound and SGEMM being compute-

bound, match previous characterizations of these common

benchmarks [22, 24].

Scaling Trends: In order to evaluate MosaicSim’s ability

to capture scaling trends, we measure both simulated and real

hardware performance for {1, 2, 4, 8} thread(s). We then

normalize all performance numbers to those with a single

thread and evaluate how benchmark speedups scale with an

increasing number of threads.

Figures 7 - 9 highlight the comparison of scaling trends

for three well-studied benchmarks with different performance

bottlenecks: BFS (latency-bound), SGEMM (compute-bound),

and SPMV (bandwidth-bound), respectively. MosaicSim nearly

perfectly captures the linear scaling trend of SGEMM as the

kernel is compute-bound and exposes data-level parallelism.

SPMV is bandwidth bound, i.e. memory accesses are occa-

sionally throttled, and we accurately capture the resulting

sublinear scaling trend here. MosaicSim is not as accurate on

the latency-bound BFS kernel due to the use of atomic read-

modify-write instructions that are difficult to accurately model

in the memory system (Section V); future work aims to more

accurately model these instructions.

Being ISA-agnostic, MosaicSim demonstrates usefulness as

an early-stage tool goal with its ability to capture performance

bottlenecks and characterizations. Scaling and IPC characteri-

zations are accurate and in line with prior work. If a designer

later requires runtime accuracy for a given ISA, it is possible

to add fine-grained tunings for LLVM IR simulation to help

account for ISA discrepancies.
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Fig. 5. Despite inaccuracies in individual benchmarks due to ISA differences,
MosaicSim achieves a geomean runtime accuracy of 1.099× against an x86
machine.

Fig. 6. MosaicSim accurately characterizes applications with IPC measure-
ments (lower implies more memory-bound while higher implies compute
bound).

Fig. 7. BFS Scaling Trends Fig. 8. SGEMM Scaling Trends Fig. 9. SPMV Scaling Trends

Accelerator Simulation: With the design flow described

in Section IV we created three fixed-function accelerators for

matrix multiplication, saturating histogram, and element-wise

arithmetic. These accelerators support any input size and any

number of inputs per invocation. Using the ESP platform [19,

25], we deployed the accelerators on a Xilinx Ultrascale+

FPGA as part of a many-accelerator SoC capable of running

Linux. Therefore, we were able to validate the accelerators

both with RTL simulation and on FPGA. With HLS we gen-

erated multiple design points for each SystemC specification

of the accelerators. Figures 10a-c shows the execution time

and area of four design points (with varying PLM size) and

four workload sizes. Each design point is a distinct RTL

implementation of the accelerator, whose performance model

can be invoked by MosaicSim.
Fig. 10d shows the execution time accuracy of the models

against RTL simulation of the accelerator and against full

system FPGA emulation. The accuracy of each accelerator

is the average of its accuracies for all the data points and

workload sizes in Figures 10a-c. The average accuracy with

respect to RTL simulation is between 97% and 100%, proving

that our back-annotated generic performance model captures

precisely the behavior of the accelerators. Furthermore, the

models exhibit high accuracy (> 89%) when compared to

a full SoC running on FPGA, validating the communication

model that we added to the ESP accelerator templates.
Recent literature shows that for medium to large workloads

the overhead of the accelerator invocation through a Linux

device driver is negligible [19, 20]. We confirmed these

results by measuring the overhead of invoking the accelerators,

by invoking them on trivial workloads. We found that the

overhead is consistently below 1% of the execution time for

the design points in Fig. 10.
These RTL-based accelerator performance models do not

actually execute the workloads and therefore take nearly

no time to execute. They are several orders of magnitude

faster than both RTL simulation and MosaicSim’s pre-RTL

accelerator modeling. In fact, these performance models are

even faster than FPGA execution of the workloads they model.

B. Using MosaicSim

This section describes practical details of using MosaicSim

as an early-stage design tool for hardware-software co-design.

Designer Effort: MosaicSim provides a comprehensive set

of both core and system configuration files that include a num-

ber of reconfigurable parameters (e.g. ROB size, issue-width,

memory hierarchy details, etc.). These are straightforward to

modify or extend, providing minimal designer effort.

Simulation Speed: MosaicSim has a competitive simulation

speed, achieving a single-threaded speed of up to 0.47 MIPs.

This is comparable to that of Sniper [26] (up to 0.45 MIPS)

and is one order of magnitude better than gem5 [27] (up to

0.053 MIPS). When the simulated system includes coarse-

grained accelerator performance models (see Section IV), the

simulation speed is even higher, as many cycles of accelerator

contributions are derived from a closed form equation (using

parameters obtained from a dynamic trace).

Storage Requirements: As described in Section II-A,

MosaicSim requires both a DDG and memory control flow

traces in order to run. The sizes of the DDG and control

flow traces are typically less than 1 GB, thus we consider

them negligible. However, the memory traces can be several

GB large depending on the kernel. For example, in using the

default datasets in Parboil, BFS takes 1.3 GB, HISTO takes

1.4 GB, and SGEMM takes 99 MB. While these traces can be

large, they are necessary for accurate dynamic modeling of

application behavior. MosaicSim therefore aims to strike an

appropriate balance between space efficiency and accuracy.
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Fig. 10. a,b,c) Design space exploration for multiple workload sizes of 3 reconfigurable fixed-function accelerators. d) Accuracy of RTL-based performance
models with respect to RTL simulation and full-system FPGA emulation.

VII. CASE STUDIES

In addition to across-the-board studies of simulation char-

acteristics and accuracy, we provide three case studies that

demonstrate the value of MosaicSim to model complex het-

erogeneous systems and perform hardware-software co-design.

A. DAE for Latency Tolerance

The Decoupled Access/Execute (DAE) paradigm [13] has

been widely explored as a technique to tolerate memory

latency by dividing a kernel into an access slice and an

execute slice. The access slice performs all memory accesses

and all computation for an access, i.e. address computations

and control flow statements where memory data is involved.

Meanwhile, the execute slice performs value computation.

The access slice performs loads and enqueues their data into

a communication buffer between the access and execute slices.

When the execute slice encounters a load, it simply reads the

data from this buffer. Store instructions work conversely. The

key idea is that if the access slice can run ahead of the execute

slice and produce all of the data required for computation, it

can essentially act as a non-speculative “perfect prefetcher”.

The buffers in DAE are generally proposed in hardware imple-

mentations, leading to a heterogeneous system, consisting of

access and execute cores that execute their respective program

slices concurrently.

Due to MosaicSim’s support for heterogeneity, we can im-

plement and evaluate DeSC [24, 28, 29], a recently proposed

DAE-based system. MosaicSim allows us to evaluate DeSC on

different (multi)core models (out-of-order and in-order), and

perform area-equivalent design space exploration.

Compiler and Simulator Support: DAE program slicing

can be implemented in the LLVM toolchain as a compiler

pass. The pass first creates two copies of the kernel, one

for access and one for execute. On the access slice, each

memory instruction is augmented with a special function to

either (1) push to the buffer for loads or, (2) replace a store

value with a value from the buffer for stores. The execute slice

is transformed similarly.

The DAE simulator support uses MosaicSim’s inter-tile

message-passing capabilities (Section II-C) to provide direct

TABLE II
PARAMETERS FOR DAE CASE-STUDY.

Microarchitecture Parameter Out-of-Order In-Order

Issue Width 4 1
Instruction Window/RoB/LSQ 128/128/128 1
Frequency/Tech 2GHz/22nm 2GHz/22nm

Area (mm2) 8.44 1.01

Memory Parameter Values

L1 32KB / 22nm node / 8-way / 1-cycle latency
L2 2MB / 22nm node / 8-way / 6-cycle latency
DRAM DDR3L / 24GB/s BW / 200-cycle latency
Comm. Buffer Sizes 512 entries / 1-cycle latency

Fig. 11. Speedups of different systems on the graph projections kernel. In
an equal-area comparison of 8 In-Order cores to 1 OoO core (right), DAE
heterogeneity outperforms OoO by nearly 2×, and is a promising approach
for latency tolerance.

communication between the access and the execute cores. The

load buffer is a send from the access slice and a recv
from the compute slice. The store buffer is implemented

conversely. Thus, the Interleaver processes these fine-grained

inter-tile messages naturally. Additionally, the default core

models were extended to include the structures described in

[24], i.e. communication queues, the terminal load buffer, the

store address buffer, and the store value buffer.

Results: We evaluate our DAE implementation on the bipar-

tite graph projection kernel, which has a wide set of use cases
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Fig. 12. Speedups of different systems on the EWSD (left axis) and SGEMM
(right axis) kernels. EWSD benefits from latency tolerant architectures, such
as OoO and DAE systems. SGEMM benefits most from an accelerator.

from recommendation systems [30] to disease association

prediction [31]. This application is memory latency bound;

each pair of edges in the original bipartite graph updates a

projection edge, which creates an irregular memory access.

We consider two base core models: in-order (InO) and out-

of-order (OoO) (see Table II, area measurements are from

McPAT [32]). We augment the in-order model with DAE

components to instantiate a parallel heterogeneous system

where half the cores are access and the other half are execute.

Figure 11 highlights the results of this case study. We

measure the performances of single-core, and homogeneous

and heterogeneous parallel systems, and normalize them to

that of a single InO core. As seen on the left, the OoO core,

equipped with latency tolerance mechanisms, significantly

outperforms the InO core. The right side presents scaling to

2 cores or 1 DAE pair and an OoO area-equivalent scaling

to 8 cores or 4 DAE pairs. We see near-linear scaling for

homogeneous parallelism (green bars), as a linear number

of memory requests are issued in parallel. Finally, we see

that heterogeneous parallelism (yellow bars) yields the highest

speedups (nearly 2×) via asynchronous issuing of memory

requests (proposed by modern DAE systems [24]) and signifi-

cant memory-level parallelism. Thus, MosaicSim has enabled

us to explore a heterogeneous system design as a promising

approach for parallel, latency tolerant architectures.

B. Alternating Sparse-Dense Phases

To further highlight MosaicSim’s ability to simulate com-

plex heterogeneous systems, we explore the architectural de-

sign space for applications which have both dense linear alge-

bra (typically compute-bound) and sparse linear algebra (typ-

ically memory-bound). For example, Sinkhorn Distances [33]

is an algorithm for solving the optimal transportation problem

and is used in computer vision [34] and NLP [35]. The

bottleneck of the application is split between a dense matrix

multiplication (SGEMM) and an element-wise matrix operation

where one operand is sparse and one is dense (EWSD).

Architectures with Multiple Objectives: To study the

architectural design space for these types of applications, we

start with constructing two microbenchmarks: SGEMM alone

and EWSD alone. We simulate the runtime of each microbench-
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Fig. 13. A heterogeneous system executing a combined kernel of both dense
(SGEMM) and sparse (EWSD), with one IO core being the baseline. The most
heterogeneous system has the best performance (DAE with an accelerator).

mark under various system configurations (see Tables II) and

present the results in Figure 12. We use one InO core as

the absolute baseline, as it is the simplest system. Since

SGEMM is a compute-bound kernel, we consider the use of

a fixed-function accelerator. Specifically, we use the matrix

multiplication accelerator introduced in Section VI-A.

The two microbenchmarks have different architectural per-

formance landscapes. An optimal architecture for a kernel that

combines them therefore needs to resolve conflicting demands.

SGEMM sees large improvements from computation resources,

as a fixed function accelerator for SGEMM provides nearly 45×
speedup. Meanwhile, EWSD is memory bound and benefits

from the latency tolerance available in a DAE architecture,

which provides nearly a 6× speedup.

Heterogeneous System Simulation: MosaicSim’s main

strength is simulation support for a complex heterogeneous

system. To demonstrate this, we now construct a combined
benchmark that performs SGEMM and EWSD kernels serially.

We then instantiated them with three different dataset sizes,

where we varied the percentage of the total number of cycles

spent in SGEMM versus EWSD based on their expected number

of cycles on one InO core. This yielded a dense-heavy (75%

SGEMM, 25% EWSD), a sparse-heavy (25% SGEMM, 75%

EWSD), and an equally divided kernel. These combinations

model workloads found in real-world applications [33–35].

Figure 13 summarizes speedups of various architectures.

Depending on the ratio of execution time for each of the two

phases, the optimal architecture for the combined approach is

non-trivial and requires the simulation of both phases using

a variety of tiles that make up a complex heterogeneous

system. Our results show that in the absence of a specialized

accelerator for the dense operation, the combined kernel would

benefit most from 4 DAE pairs if the kernel is sparse-heavy

and 1 OoO core if it is dense-heavy. With an accelerator

however, 4 DAE pairs are the ideal choice for all cases.

MosaicSim allows the exploration of many combinations and

configurations through its lightweight plug-and-play interface.
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C. Performance Modeling of TensorFlow Programs:

To further demonstrate accelerator performance modeling

with MosaicSim, we present an example of simulation support

for Keras TensorFlow programs. Keras [11] is TensorFlow’s

high-level API for designing and training deep learning mod-

els. Applications of interest are therefore composed of multiple

neural network kernels, e.g. convolution, matrix multiplica-

tion, pooling, etc. These kernels are computationally intensive

and significantly contribute to the overall execution time of

deep learning applications. Therefore, they are often deployed

on accelerators. Thus, MosaicSim can generate performance

estimates of a Tensorflow application using accelerator perfor-

mance models.

To demonstrate this, we added a Keras TensorFlow API in

the compiler to recognize Keras function names in the source

code and map them to LLVM accelerator invocation calls when

the application is compiled. These function calls are preserved

as special instructions in MosaicSim, where we add accelerator

performance models for ESP accelerators [16] according to

the design flow described in Section IV-B. These accelerators

provide kernel support for convolution, matrix multiplication,

activation, pooling, etc. The accelerator invocation calls then

appear in the instrumented LLVM that MosaicSim operates

on, so once the application is compiled and executed, the

accelerator invocations are simulated whenever MosaicSim

encounters their function calls. We evaluate MosaicSim’s

TensorFlow application performance modeling with three deep

neural network applications below.

ConvNet is a type of convolutional neural network (CNN)

application. CNNs are used to extract spatial, temporal and

spatiotemporal relationship in data such as images, protein

structure, language, and weather. The ConvNet algorithm

contains an initial convolutional layer followed by a ReLu

nonlinear layer that is regularized by batch normalization. This

is followed by three residual blocks containing convolutional

and residual layers. The final residual block is connected to a

pooling layer and the model ends with a fully connected and

activation layer that outputs a classification prediction.

GraphSage combines graph and neural network algo-

rithms and can be used as a recommendation system [36]. The

objective of the algorithm is to sample graph data through a

random walk and transform this data into a dense vector format

that can be fed into a neural network architecture consisting of

fully connected layers and ReLU layers. The algorithm mimics

the continuous bag of words (CBOW) algorithm where instead

of words, visited nodes are inserted into the input vector.

RecSys is a recommendation system modeled using neural

networks. Training the algorithm takes as input individuals’

preferences out of many available options, where the data

is vectorized and fed into the model in batches. The neural

network itself contains two sequential fully connected layers

with ReLU nonlinear steps which are regularized with batch

normalization and dropout methods. These layers are followed

by a final fully connected layer which outputs new items that

the model recommends.

Fig. 14. Energy-delay improvement comparison between out-of-order cores
and accelerator-oriented SoCs for three DNN applications (ConvNet,
GraphSage, and RecSys).

We simulate and compare the performance of training

of these three applications on two systems: an out-of-order

server core with no accelerators and an SoC integrating 8

accelerators. We measure performance in energy-delay prod-

uct, a metric which combines runtime and energy efficiency.

Figure 14 highlights the comparisons, showing that Convnet,

GraphSage, and RecSys reap 7.22×, 38×, and 282.24×
improvements in energy-delay product, respectively. Note that

we do not have accelerators for backpropagation of con-

volutional layers and therefore the modest improvement for

ConvNet is due to forward propagation acceleration in the

context of the entire training. In addition, GraphSage includes

random walk and embedding steps that are not handled by an

accelerator. RecSys on the other hand is entirely handled by

accelerators and results in its impressive improvement. These

results highlight the performance benefits of accelerators for

compute-bound kernels in DNN applications. MosaicSim sup-

ports detailed accelerator performance modeling suitable for

Keras TensorFlow kernels.

VIII. RELATED WORK

Previous work on simulators, i.e. Graphite [37], Sniper [14],

ZSim [15] and PriME [38], has focused on increasing (1) ac-

curacy through tuned core models and native execution and

(2) simulation scalability by executing simulations on parallel,

multicore host machines. ZSim and PriME were designed to

make many-core, i.e. thousands of cores, simulation practical.

Furthermore, some of these works allow for flexible memory

hierarchies. However, all of these prior works only simulate

homogeneous core systems.

Sniper extended Graphite by providing a more detailed core

model and using interval simulation. However, this results

in a trade-off between accuracy and simulator performance.

This level of abstraction lies in between 1-IPC models and

highly detailed hardware pipelines. MosaicSim also sits at this

abstraction level, but makes use of LLVM IR to create a DDG

for instruction scheduling in cycle-driven simulation. The use

of LLVM IR also allows natural additions of compiler passes

and new instructions (e.g. DAE in Section VII-A).

ZSim is a many-core simulator that instruments a binary

based on every basic block and memory operation. It leverages

the host machine to perform functional simulation and model
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timing, hindering its ability to simulate different types of

cores. MosaicSim also performs code instrumentation and

native execution for memory access behavior and control-

flow resolution, but its modular, tile-based nature allows it

to simulate a variety of tiles in a heterogeneous system.

PriME was designed for many-core system simulation as

well, but focuses on microarchitectural exploration, including

cache hierarchies, coherence protocols, and NoCs. Though it

presents a tile-based architecture like MosaicSim, their tiles

require homogeneity, making it an unsuitable simulator for

modeling accelerator-oriented many-core systems.

Accelerator Simulation: Other works have focused on

simulating accelerator performance. Rogers et al. [39] devised

an LLVM-based accelerator model in gem5 that leverages a

data dependency graph to simplify the simulation of a many-

accelerator system. MosaicSim uses the same front-end, but

is not limited to accelerator modeling; it supports a variety

of other SoC components, including core models (e.g. in-

order and out-of-order). Furthermore, MosaicSim provides

tile-to-tile scratchpad communication, e.g. to support data

communication schemes like DAE. Because it does not rely on

gem5, MosaicSim allows for greater implementation flexibility

and higher simulation speed.

Gem5-Aladdin [20] is another gem5-based approach that

uses Aladdin [2] for fixed-function accelerator design in the

context of an SoC. Gem5-Aladdin measures the impact of

DMA overload in an SoC to design accelerators in a holis-

tic manner rather than in isolation. Additionally, the work

evaluates simple accelerators where normally the input and

output data fit in the local memory of the accelerator. At

each invocation these accelerators execute for a few thousands

of cycles, which is typically less than the overhead of their

invocation from a Linux device driver.

On the other hand, MosaicSim can model accelerators of

any complexity, e.g. accelerators for which: (1) communica-

tion and computation are decoupled and concurrent, (2) input

and output data do not need to fit in the local memory of

the accelerator, they can be of arbitrary size. For this reason,

we were able to evaluate realistic accelerator workloads in

terms of size. If the accelerators are invoked for small tasks,

the invocation overhead dominates the execution time and the

accelerator hardly achieves any speedup with respect to gen-

eral purpose cores. Our measurements of accelerator execution

time on FPGA included the invocation overhead. Furthermore,

MosaicSim considers heterogeneity not only in combining

accelerators with a core model, but also in providing flexible

core models. Its LLVM-based approach allows natural agile

development of programming models, ISA extensions, and

novel architectures.

To the best of our knowledge, MosaicSim is the first sim-

ulation approach for loosely-coupled heterogeneous systems,

offering flexible, early-stage exploration of hardware-software

co-design approaches to design new architectures.

IX. CONCLUSION

This paper presents MosaicSim, a lightweight, modular

simulator to flexibly explore the design space of heteroge-

neous systems via hardware-software co-design. MosaicSim

(1) is tightly integrated with the LLVM framework, providing

agile programming models, enabling full-stack approaches;

(2) provides abstract tile models capturing pragmatic mi-

croarchitectural details and specialized tile-to-tile interactions;

and (3) provides support for accelerator model integration

to create complex heterogeneous systems. MosaicSim is a

timely contribution in the New Golden Age of Computer

Architecture [4], where flexible hardware-software co-design

and heterogeneity are key to performance improvements.
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