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Abstract—The growing complexity of system-on-chip fuels the
adoption of high-level synthesis (HLS) to reduce the design time
of application-specific accelerators. General-purpose processors,
however, are still designed using RTL and logic synthesis. Yet
they are the most complex components of most systems-on-chip.
We show that HLS can simplify the design of processors while
enhancing their customization and reusability. We present HL5
as the first 32-bit RISC-V microprocessor designed with SystemC
and optimized with a commercial HLS tool. We evalute HL5
through the execution of software programs on an experimental
infrastructure that combines FPGA emulation with a standard
RTL synthesis flow for a commercial 32 nm CMOS technology.
By describing the challenges and opportunities of applying HLS
to processor design, our paper aims also at sparking a renewed
interest in HLS research.

Index Terms—High Level Synthesis; RISC-V; Processor
Pipeline.

I. INTRODUCTION

The worldwide market for semiconductor intellectual prop-
erty (IP) blocks is expected to approach 8 billion by 2019 [1].
A growing variety of these IP blocks populates any system-on-
chip (SoC) for embedded systems or Internet-of-Things (IoT)
because SoC architects must find the right mix of components
for the target application domain, while being pressured by
stringent time-to-market constraints.

To cope with design complexity it is necessary to raise
the level of abstraction by embracing system-level design
methods [2], [3]. These include the use of high-level pro-
gramming languages, like C/C++ and SYSTEMC, for design
specification and the application of high-level synthesis (HLS)
for design optimization [4]. The benefits include: (1) the ability
to complete a richer design-space exploration (DSE); (2) larger
portability to various technology platforms, including FPGAs;
(3) and a broader reusability across different target systems,
as each IP-block implementation offers a different trade-off
option between performance and cost (i.e. power or area).

Over the past decade, HLS has been used for thousands of
ASIC tapeouts and FPGA designs [4], particularly to optimize
IP blocks for wireless communication [5] and video decod-
ing/encoding [6]. Meanwhile, researchers have demonstrated
the application of HLS to many other IP blocks such as: ac-
celerators for database analytics [7] and machine learning [8],
the on-chip memory subsystems [9], [10], the memory hier-
archy [11] and the on-chip interconnect, including networks-
on-chip and interfaces for standard bus protocols [12], [13].
Moreover, HLS has been proposed as a key ingredient for

new methodologies that target the problem of heterogeneous
component integration in SoCs [12], [14]–[16].

In this landscape, one particular IP block stands out as a
major exception: the processor core.

As discussed in more detail in Section V, the literature
offers very few examples of papers investigating HLS for
processor design. Commercial HLS tools are very efficient
in synthesizing computationally intensive datapaths, when the
amount of control logic is limited. However, despite recent
advances [17], [18], they still struggle to produce high-
quality RTL for control-dominated branching logic [19]. These
limitations may have prevented researchers from investing
time and resources in applying HLS to processor design. Yet
processor cores are the most complex components of most
SoCs, with the biggest impact on design and verification
costs [20]. Furthermore, as technology trends push designers
towards even more heterogeneity and customization [21], [22],
processor designs must become more configurable so that they
can be optimized for each particular target SoC where they can
be instanced. These considerations motivated our work.

Contributions. We present HL5 as the first 32-bit processor
fully designed and implemented with HLS. HL5 is a pipelined
processor that implements the full RV32IM subset of the
RISC-V instruction set architecture (ISA). The RISC-V ISA,
originally developed at UC Berkeley [23] and now supported
by the RISC-V Foundation [24], has raised broad interest
across academia and industry thanks to the appealing promise
of representing a free and open ISA that could become an
industry standard for a variety of systems, from IoT devices
to datacenter servers [25].

We designed HL5 with the goal of leveraging HLS to
maximize its configurability and minimize design costs. We
derived a concurrent specification for the HL5 design that is
entirely based on the synthesizable subset of SystemC. This
required us to circumvent some limitations of current HLS
tools through clever design choices applied to the high-level
specification, as explained in Section II.

In Section III, we dive into the details of our design. The
latency of the functional units of HL5 can be varied based on
the HLS configuration parameters (aka HLS-knob settings or
knobs). By using latency-insensitive channels [3], [26] as the
main communication mechanism across the processor stages,
the pipeline of HL5 can tolerate latency variations of the
caches, the register file, the functional units and the branch
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Code snippet 1:
typedef struct instruction {
raddr_t rs1, rs2, rd;
func_t func;
ctrl_t ctrl;

} instruction_t;

// Body of the main SystemC SC_CTHREAD
while(true)
{
HLS_PIPELINE_LOOP;

wait(); // Wait on virtual clock edge

pc = npc;
instruction_t inst = decode(imem[pc]);
op1 = regfile[rs1]; op2 = regfile[rs2];
npc = next_pc(pc, inst, op1, op2);

if (check_for_hazards(inst)) { // Stall
npc = pc; continue;

}
if (inst.ctrl.jump) {
if (npc == pc) break; // End of program
else continue; // Jump or branch taken

}
out = execute(pc, inst, op1, op2);

if (inst.ctrl.store) dmem[out] = op2;
else if (inst.ctrl.load) regfile[rd] = dmem[out];
else if (inst.ctrl.writereg) regfile[rd] = out;

}

Figure 1. Naive SYSTEMC description of a pipeline.

logic. These variations can be the results of both customization
decisions at design time (through HLS knobs) and their impact
on the data/instruction flow when executing a given program
at run time. We used Cadence Stratus, a commercial HLS
tool, to process the SystemC specification and synthesize 12
RTL implementations, with clock frequencies ranging from
700 MHz up to 2 GHz.

In Section IV, we describe our experimental infrastructure to
evaluate HL5 with the execution of actual software programs:
this combines FPGA emulation with a standard RTL synthesis
flow for a commercial 32 nm CMOS technology. We compare
our synthesized RTL implementations of HL5 against ZERO-
RISCY, a processor core for IoT that is part of the PULP plat-
form [27] and that was carefully optimized for area occupation
through manual RTL design [28]. Through the design of HL5,
we illustrate a set of guidelines to design processor pipelines
in SystemC. Furthermore, we consider the limitations of this
approach, which can drive future improvements of HLS tools.

II. HLS FOR PROCESSOR DESIGN

In this section, we discuss how to address the current
limitations of HLS for processor design. We show that HLS
can actually reduce the effort to design the pipeline of a
processor compared to hand-written RTL, while still achieving
good quality of results.

First, let us consider the snippet of code in Fig. 1, which
shows the body of a SYSTEMC process of type SC_CTHREAD

that specifies a simple processor pipeline. In the SYSTEMC
simulation engine, the SC_CTHREAD processes are concurrent
threads that are triggered for execution at every edge of a
clock signal. This is often called a virtual clock because a state

transition in SYSTEMC, controlled by its virtual clock, may
correspond to many state transitions in the RTL circuit. For
example, an invocation of function execute() in Fig. 1 does
not cause the SYSTEMC simulation time to advance: the loop
body processes one full instruction consuming zero simulation
time, then suspends the execution of the SC_CTHREAD until
the next virtual-clock edge by calling the wait() function.
The RTL implementation, instead, will consume at least one
physical-clock cycle to execute the logic synthesized for the
execute() function, even in the case of simple instructions.
In general, the virtual-clock abstraction allows a designer to
simply specify the hardware for complex computations in a
loosely-timed fashion, while letting HLS schedule these com-
putations across physical-clock cycles and infer the necessary
finite-state machines (FSM) to control them.

Wouldn’t it be great if we could synthesize the pipeline of a
complete processor from this simple SYSTEMC specifications?

Indeed, we can! State-of-the-art HLS tools can generate
a working RTL implementation from the SYSTEMC speci-
fication of Fig. 1. To the best of our knowledge, however,
from this naive specification no HLS tool is currently capable
of achieving a throughput of one instruction-per-cycle (IPC),
which is the ideal IPC for single-issue processors in absence
of dependencies across instructions. Despite its simplicity, this
code snippet captures most of the key challenges that HLS
faces when the target design is a complex pipeline such as a
processor pipeline.
Loop-Carried Dependencies. The ISA is an abstraction layer
that exposes the processor state (i.e., the content of the pro-
gram counter, the register file, and the memory) to the software
while hiding the details of the hardware implementation (e.g.,
the content of the pipeline registers in a pipelined implemen-
tation). Indeed, the ISA is like a “contract” that allows many
different pipelined hardware implementations as long as they
can run software programs as if each instruction is executed
atomically before the next one starts. The specification of
Fig. 1 reflects this abstraction as each loop iteration may
change the value of the processor state in a way that impacts
the next iterations. Since a pipeline implementation overlaps
the partial execution of instructions, it requires a careful
handing of control and data dependencies to avoid possible
hazards. These dependencies may translate into loop-carried
dependencies (LCDs) that pose significant challenge to any
HLS tool.
Control Feedback. For example, with no control hazard the
computation of the next value npc of the program counter
requires just a simple addition that has typically a delay
smaller than the physical-clock period. However, if a control
hazard is present because the current instruction is a branch,
then its resolution typically takes multiple clock cycles in
any pipelined implementation. Hence, without any additional
information from the designer, a valid scheduling cannot
allow an initiation interval equal to one for a pipeline that
implements the specification of Fig. 1.

Similar considerations apply for data dependencies and,
indeed, for any modification of a state variable in the body
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of a SystemC loop. For example, since the instruction flow
cannot be known at design time, the HLS tool must expect
that an entry in the register file (or in the data memory) that is
written by an instruction at a given iteration could be read by
another as early as in the next iteration. Hence, to synthesize
a classic 5-stage pipeline without any data hazard, the HLS
tool may force the execution of just one instruction every 5
cycles, thus yielding a poor IPC = 0.2. Note that checking
for hazards in the body of the loop prevents that an instruction
with invalid operands commits data into the register file and
the data memory. When the HLS tool analyzes the code,
however, this check does not eliminate intrinsic dependencies
across loop iterations due to array accesses.
Memory Access. In SystemC, memories are naturally speci-
fied with arrays. To map an array to a given memory block,
a HLS tools transforms a simple array indexing into a bundle
of logic for address generation and read/write enable signals.
While accessing an array in SYSTEMC incurs a zero-time
penalty, most memories have latency of one or more clock
cycles, each imposing the injection of at least one state into
the synthesized RTL to schedule the memory access opera-
tion. Combining such latency constraints with LCDs further
complicates the synthesis of pipelined implementations.

Given the above limitations, we now explain how to write
a HLS-friendly specification of a pipeline in SYSTEMC.
Breaking Dependencies with Concurrency. First, we must
prevent HLS from implicitly handling data and control depen-
dencies. Many hazards are read-after-write (RAW) hazards,
which correspond to real data dependencies. Hence, forcing
the HLS tool to ignore them during scheduling requires to
model the pipeline stages with multiple SC_CTHREAD pro-
cesses, such that no SC_CTHREAD is both reading from and
writing to the register file (or the data memory). Fig. 2 shows
a partial specification based on this idea: e.g., Stage 3 may only
access the register file with a write operation, whereas Stage 1
always accesses it with a read operation and Stage 2 operates
without accessing it. In this way, dependencies only exist
across concurrent SC_CTHREAD processes so that the HLS
tool does not have to abide by the C++ semantics to handle
them conservatively. Instead, they are handled explicitly by
the check_for_hazards() function.
Distributed Pipeline Control. The next step is to introduce
a flow-control mechanism ensuring that each stage only pro-
cesses and retires valid data and instructions. We do so through
synchronization primitives across the stages that may block the
caller whenever there is no valid data to process. For instance,
Stage 2 in Fig. 2 calls wait_for_stage_1(), which sus-
pends the execution of the corresponding SC_CTHREAD until
Stage 1 calls signal_stage_2(). The latter is called when
a valid instruction is decoded and all operands are available.
These synchronization functions use latency-insensitive proto-
cols [3], [26], [29] and apply the principles of transaction-
level modeling (TLM) [30], which advocates a separation
between computation and communication. As a result, the
composition of the three processes is correct-by-construction,
independently from the latency and the throughput of the logic

Code snippet 2:
// Stage 1
while(true)
{
HLS_CONSTRAINT_LATENCY;
pc = npc;
instruction_t inst = decode(imem[pc]);

if (check_for_hazards(inst)) { // Stall
wait_for_stage_3(); // May block.

}

op1 = regfile[rs1]; op2 = regfile[rs2];
npc = next_pc(pc, inst, op1, op2);

if (inst.ctrl.jump) {
if (npc == pc) break; // End of program
else continue; // Jump or branch taken

}
signal_stage_2();

}

// Stage 2
while (true) {
HLS_PIPELINE_LOOP;
wait_for_stage_1(); // May block
out = execute(pc, inst, op1, op2);
signal_stage_3();

}

// Stage 3
while (true) {
HLS_CONSTRAINT_LATENCY;
wait_for_stage_2(); // May block
if (inst.ctrl.store) dmem[out] = op2;
else if (inst.ctrl.load) regfile[rd] = dmem[out];
else if (inst.ctrl.writereg) regfile[rd] = out;
signal_stage_1();

}

Figure 2. HLS-friendly specification of a pipeline.

synthesized from each SC_CTHREAD. This enables a richer
DSE by allowing an independent optimization of each pipeline
stage with HLS.
TLM Channels. While the partial SystemC specification in
Fig. 2 shows generic synchronization primitives across the
processes, HLS tools offer libraries of point-to-point (p2p)
channels based on TLM. Usually these channels can be
customized to be blocking, non-blocking, or conditionally-
blocking. In order to implement a pipeline across processes,
the best choice is to use conditionally-blocking channels,
which guarantee maximum throughput when both the sending
and the receiving processes call the synchronization primitive.
A conditionally-blocking channel, on the other hand, enforces
correctness by preventing the receiving process to advance if
no valid data is present on the channel. Note that non-blocking
channels would achieve similar performance but require that
the designer implements all the necessary checks on the
presence of valid data. While these checks complicate the
design, non-blocking channels are useful when implementing
portions of the pipeline that may execute “out-of-order”. In
fact, in order to prevent deadlock when the order of execution
is not predetermined, the designer must be able to check the
state of each channel without blocking the pipeline control
logic. This behavior can be obtained only with non-blocking
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Figure 3. HL5 pipeline: SystemC specification.

channels.
The implementation of conditionally-blocking channels de-

pends on the particular HLS tool. The most common behavior
consists in letting the sending process advance for one or a
few iterations and then suspend it until the receiving process is
ready to consume the data. The number of iterations allowed
before blocking determines the amount of storage necessary to
save the information on the channel and can be considered a
HLS knob to explore trade-offs between area and throughput.
Remarks. While the specification of Fig. 1 cannot be synthe-
sized with good quality-of-results, Fig. 2 shows how minor
code changes can circumvent the limitations of HLS. With
these guidelines, in the span of two months one master student
was able to complete the initial design of HL5 and use
HLS to synthesize several pipelined implementations, each
characterized by a particular trade-off point between area and
performance. In just two more hours another student managed
to introduce data forwarding across stages to improve the
overall IPC. The experience of designing HL5 allowed us to
appreciate the advantage of debugging a complex IP block
at a level where the ISA simulator corresponds to the design
entry point for synthesis, thus eliminating the risk of injecting
bugs while manually translating the initial specification into
RTL. Furthermore, since the control logic of each stage is
abstracted away from the specification, extending the ISA of
HL5 with any standard or custom instruction can be done
without changing the baseline design. The latency-insensitive
p2p channels across the stages, in fact, create a flexible design,
that is tolerant to variations in latency and throughput both at
design time and run time in every stage of the pipeline.

III. HL5 PROCESSORS DESIGN

Fig. 3 illustrates the structure of the synthesizable SystemC
specification of the HL5 pipeline, which consists of three main
stages: fedec, execute, and memwb. Each stage is modeled
with an SC_CTHREAD process as part of an SC_MODULE and
communication is implemented through latency-insensitive
p2p channels and read or write initiators (i.e. get() and
put()). The execute stage is the target of most DSE proce-
dures to optimize the structure of the operations it implements:
e.g. addition, subtraction, multiplication, division. As shown

in Fig. 4, each process is structured with two main sections: a
reset section where initialization and configuration steps are
performed, and an infinite loop where communication and
computation occur. Within this loop, the stage acquires new
data from the previous stage, performs some computation, and
transfers the processed information to the next stage.

Each wait() statement corresponds to a virtual-clock
boundary. The code in a region delimited by two consecutive
wait() statements is typically specified as untimed logic, i.e.
no constraints are imposed on the HLS tool with respect to
the actual timing of the hardware that must be synthesized
to implement this logic. In general, the HLS tools can be
left free to decide how many physical-clock cycles to use
for implementing this logic (which can be seen as implicitly
adding/removing wait() statements during synthesis until
the physical-clock boundaries coincide with the virtual-clock
ones.) These synthesis decisions can be influenced by setting a
variety of HLS knobs, such as loop unrolling or pipelining, to
guide the HLS tools towards synthesizing a particular microar-
chitecture with a specific trade-off in terms of performance
versus area occupation. In general, depending on the specified
settings of the HLS knobs, the synthesized pipeline may
have a different number of stages, which doesn’t necessarily
correspond to the three SC_MODULEs.

Some HLS directives can be used to constrain more the HLS
tool on the desired timing characteristics of a circuit. Among
these, the PROTOCOL_REGION() directive forces a code region
to be interpreted as cycle accurate: this means that the HLS
tool does not add or prune any wait() statement while synthe-
sizing hardware for this region, but, instead, interprets those
that are present as physical-clock boundaries. In particular,
the p2p-channel primitives provide a transparent abstraction
for optimized low-level communication protocols that are
implemented with protocol regions. In summary, the combi-
nation of latency-insensitive p2p channels and SC_CTHREAD

processes provides a clear separation of computation and
communication in a compositional way that makes DSE more
effective.

As an example, the listing in Fig. 5 presents the data struc-
tures and latency-insensitive p2p interfaces for one module.
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Code snippet 3:
void pipeline_stage_cthread() {

{
PROTOCOL_REGION("reset");
from_previous_stage_if.reset_get();
to_next_stage_if.reset_put();
// ... state initialization.
wait();

}
while(true) {

{
PROTOCOL_REGION("input");
din = from_previous_stage_if.get();

}
dout = compute(din); // Relax latency for DSE
{
PROTOCOL_REGION("output");
to_next_stage_if.put(dout);
wait();

}
}

Figure 4. Structure of a pipeline stage process.

The members of each struct are of type sc_bv, which mod-
els a single wire or a bundle (the fields of the exe2memwb_t

structure are omitted in the reported listing). Whenever the
values on these wires must be used for computation, it is
possible to cast them to other types (such as sc_int) that
support the C++ arithmetic and logic operators.

The use of multiple SC_MODULEs was initially intended for
simply keeping the design modular and thus easier to manage.
However, it has an additional advantage over specifying the
three threads within a single module: HLS preserves the
hierarchy, including signals across the stages in this case, thus
these can still be observed when running RTL simulation.
Fedec Stage. Fetch and decode are the first two stages of many
processor pipelines and are typically separated by pipeline
registers. For the design of HL5, however, we combined them
into a single stage due to the HLS limitations discussed in Sec-
tion II. In particular, since scheduling an instruction-memory
access requires at least one cycle and the communication
across two SC_CTHREAD processes consumes another cycle,
splitting fetch and decode would cause an undesirable lower-
bound of three cycles for just fetch and decode.

While the HLS tools automatically map the instruction
memory to a static RAM, the register file is modeled in
SystemC as a simple non-shared array of type sc_bv. The
operations of reading/writing its content both occur at the
beginning of fedec, thus eliminating the problem of loop-
carried dependencies, and allowing for an initiation interval of
one. Besides instruction fetching, fedec may also get input
data from memwb through a feedback path. Hence, at any
given iteration of its main loop it decodes the instruction while
accessing the register file for reading and/or writing operands,
before propagating its output to the execute stage.
Execute Stage. The execute stage is the core stage of the
pipeline, where arithmetic and logical operations are per-
formed. The main loop of its SystemC specification contains
a large switch statement to select the operation that must
be performed on the operands. Generally, the first operand is

Code snippet 4:
/* hl5_datatypes.h */
typedef struct exe2memwb_s {
// ... } exe2memwb_t;

typedef struct memwb2fedec_s{
sc_bv <1> regwrite;
sc_bv <5> regfile_address;
sc_bv <32> regfile_data;

} memwb2fedec_t;

/* memwb.h */

// LIC interfaces
LIC_get_if<exe2memwb_t> memwb_get_if;
LIC_put_if<memwb2fedec_t> memwb_put_if;

// LIC data structures
exe2memwb_t memwb_din;
memwbMa2fedec_t memwb_dout;

Figure 5. Definition of the data structure and p2p interfaces for the memwb
stage.

statically mapped to the first register RS1, while the second
operand may be mapped to register RS2 or consists of the
immediate field of the instruction. All operations, except for
the C++ operators / (division) and % (modulo), are synthesiz-
able by the HLS tool we used. We implemented an optimized
algorithm for the division that we encapsulated in a separate
function, which is called within the switch statement. The
32-bit division algorithm supports the execution of the div,
divu, rem and remu instructions from the RISC-V ISA. Note
that any ISA extension can be similarly implemented with a
simple function call.

The main loop is specified without using
PROTOCOL_REGION() to give maximum freedom to the
HLS tool while we performed our DSE to obtain many
alternative microarchitectural implementations by applying
HLS knobs. In particular:

(1) loop unrolling is applied to increase hardware par-
allelism. For instance, the hardware resources necessary to
implement the divisor can be replicated multiple times in order
to reduce the division latency from 32 clock cycles down to
16, 8, or 4. In traditional RTL synthesis, there is no control
of such kind and loops are always completely unrolled. In
this case, a division which by the definition of the algorithm
takes 32 clock cycles (CC), may be transformed into different
implementations which may take as little as a few clock cycles
to perform the operation. On the down-side the replication of
hardware yields a larger area occupation.

(2) loop pipelining is applied to raise throughput while
keeping the possibility of sharing most resources of multi-
cycle units, thus reducing area occupation. While loop-carried
dependencies prevent this option to be applied to the division,
it can be used to improve a multi-cycle version of the multi-
plier and to automatically implement multiple pipeline stages
within the execute phase.

(3) tool-specific synthesis directives enable fine tuning of the
scheduling by requiring more aggressive synthesis approaches,
such as scheduling operations as-soon-as-possible, or extract-
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ing portions of the logic into separate FSMs that are concurrent
with respect to the rest of the circuit.
Memwb Stage. To avoid the same issue discussed for the
fedec stage, we combined memory and write-back into a
single memwb stage. This accesses data memory for load/store
operations and retires completed instructions while marking
accordingly those that update an entry in the register file.

IV. DESIGN EVALUATION

We synthesized the SystemC specification of HL5 with
the commercial STRATUS HLS tool from Cadence. Through
various combinations of the HLS knobs, we obtained 12
different RTL implementations of the HL5 pipeline, each
corresponding to a different microarchitecture. We compared
these implementations with ZERO-RISCY, a processor core
for IoT that is part of the PULP platform [27], [28]. Both
processors implement the full RV32IM subset of the RISC-V
ISA [24].

Fig. 6 shows the CAD flow we used to implement and
evaluate both HL5 and ZERO-RISCY: the only difference is
in the initial steps for HL5 that consist in simulating the
SystemC program to check functional correctness with respect
to the ISA and in synthesizing the RTL with Stratus HLS. The
RTL implementation is validated again via RTL simulation (for
ZERO-RISCY this is the starting point) before going through
logic synthesis for FPGA. Estimates on area occupation and
maximum clock frequency are also obtained for each imple-
mentation with Synopsys Design Compiler using a commercial
32 nm CMOS technology. The performance of each implemen-
tation is then evaluated by running on the FPGA bare-metal
applications compiled from C software. In particular, each
implementation is packaged as an IP block within the Xilinx
Vivado environment and integrated “as a client processor” with
the dual-core ARM processor on the ZYNQ SoC FPGA. Fig. 7
illustrates the ZYNQ system instantiating either HL5 or ZERO-
RISCY as the device-under-test. Through the AXI interconnect,
we added two SRAM modules that serve as instruction and

Figure 7. IP block system for FPGA emulation.

data memories for both HL5 and ZERO-RISCY. The ARM core
executes a control application to load these memories, start
the target processor, and monitor its execution. A custom core
controller, also implemented with HLS, interfaces the control
application with the processor under test. Additionally, this
module raises an interrupt to the ARM processor when the
execution on the target core is completed and returns the value
of a performance counter, corresponding to the number of
clock cycles taken by the program execution. Notice that every
HL5 implementation can be seamlessly integrated into the
ZYNQ processing system without any edits to the SYSTEMC
code, or to the control application.
Area-Performance Analysis. Fig. 8 reports the performance
of four Pareto-optimal implementations of HL5 normal-
ized against ZERO-RISCY, when executing eight popular
benchmarks: DHRYSTONE, the HISTOGRAM-EQUALIZATION,
AES256, MATRIX MULTIPLICATION, a division-intensive syn-
thetic benchmark, fixed-point FFT, CONVOLUTION, and 2D-
CONVOLUTION. The four HL5 implementations are labeled
based on the chosen HLS-knob settings. For the “Basic”
implementation, we set only default HLS knobs; for the
“ASAP” implementation, we force the HLS tool to schedule
operations as soon as possible, thus trading off some oppor-
tunities for resource sharing; finally, for the implementations
labeled “DIV2” and “DIV4”, we leverage loop unrolling to
speed up sequential units, and in particular the divider. Each
bar with a value above one corresponds to a speedup, while
each of the others corresponds to a slow-down. The speedup
is evaluated as the ratio between the effective latency of
ZERO-RISCY and the effective latency of HL5. This metric
is computed as the product of the cycle count, measured
through the FPGA emulation, and the achievable clock period.
When considering performance, HL5 implementations are
on average comparable with respect to ZERO-RISCY with a
speedup that varies across benchmarks 1.

1HL5 does not support the custom instructions of ZERO-RISCY.
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Figure 8. Performance analysis: HL5 vs ZERO-RISCY.
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HISTOGRAM-EQUALIZATION shows most of the benefits of
applying HLS to automatically trade off resources and clock
period for spatial computation through loop unrolling. Even
though this advantage is clearly application-dependent, in the
context of embedded systems and IoT, the mix of applications
is typically well characterized. Therefore, designers can select
a microarchitecture that performs best with the target workload
without editing the source code of the processor.

Fig. 9 shows the area-speedup trade offs in a bi-objective
space where normalized latency is the y axis and area oc-
cupation is the x axis. Fig. 10, instead, shows a different
bi-objective space where latency is replaced with clock-per-
instruction (1/IPC). This metric is relevant because HLS tools
are currently too pessimistic when calculating the critical path,
thus penalizing some microarchitectural choices which fail the
scheduling step if the target clock period is too stringent.
These results show that HL5 footprint is between 35% and
50% larger than ZERO-RISCY, which was carefully optimized
for area occupation through manual RTL design. On the
other hand, HLS allows us to automatically generate multiple
implementations of HL5 which have comparable performance
and improved IPC with respect to ZERO-RISCY.
Lines of code (LOC). It should be noted that the effort and
time required by the proposed design activity is notably less
than that involved into a traditional RTL design flow. These
aspects are usually hard to measure. We report the number of
lines of code (LOC), which is a commonly used metric for
estimating design effort. The SystemC LOC for HL5 is about
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Figure 10. Clock-per-instruction (1/IPC) vs. area.

2k, while the RTL of ZERO-RISCY consists of more than 6k
LOC.

V. RELATED WORK

SystemC has been used for modeling processors, but there
are no papers on its application to design them with HLS and
synthesize an implementation for FPGA or ASIC flows.

The work by Huang and Despain [31] is the first in a series
of papers that propose processor-specific HLS tools for both
pipeline optimization and compiler generation [32], [33]. In
contrast, we use a commercial general-purpose HLS tool, since
specialized ones have never reached a market large enough to
enable hardware development beyond the research stage.

Skalicky et al. have proposed using a commercial HLS
to improve the performance of a customizable MIPS-like
processor [34]. While they only comment about how pipeline
hazards reduce performance, their approach severely hinders
the achievable throughput, as it is based on a purely sequential
specification. In contrast, we start from a concurrent model of
the processor and achieve better performance because pipeline
hazards are handled up front.

Along different research lines, some researchers started
from a domain-specific model of a processor pipeline and
automatically performed transformations such as bypass and
speculation to increase its throughput [35]–[37]. Some of
these transformations (e.g. speculation) can be automatically
performed by the commercial HLS tool we used, while others
(e.g. register-file or memory bypass) could represent interest-
ing enhancements to any HLS tool.
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Finally, several implementations of RISC-V have been made
in Chisel [38], a Scala-embedded language that allows func-
tional and object-oriented descriptions of hardware circuits.
Chisel, however, “more closely resembles traditional hardware
description languages like Verilog than high-level synthesis
systems”, as recognized by some of its developers [39].

VI. CONCLUDING REMARKS

We presented HL5, which supports the RV32IM subset of
the RISC-V ISA, as the first 32-bit processor fully designed
and implemented using SystemC and HLS. We showed how
the HLS flow can be applied to realize processor pipelines
with performance comparable to that of a manually-optimized
RTL implementation. Despite the limitations of current HLS
tools, the effort to design and optimize HL5 was significantly
smaller compared to traditional RTL flows. Addressing these
limitations represents a research driver for future HLS tools.
We plan to to release HL5 in public domain to serve as a initial
template for the design of future, more complex processors
with HLS.
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