An implicit formulation for exact BDD minimization

September 5, 1996

Abstract

This paper addresses the problem of binary decision diagram (BDD) minimization in the presence of don't care sets. Specifically, given an incompletely specified function g and a fixed ordering of the variables, we propose an exact algorithm for selecting f such that f is a cover for g and the binary decision diagram for f is of minimum size. The approach described is the only known exact algorithm for this problem not based on the enumeration of all possible assignments to the points in the don't care set. We also present a proof that this problem is NP-complete, a result that was also recently obtained in an independent way by other authors.

We show that the BDD minimization problem can be formulated as a binate covering problem and solved using implicit enumeration techniques. In particular, we show that the minimum-sized binary decision diagram compatible with the specification can be found by solving a problem that is very similar to the problem of reducing incompletely specified finite state machines. We report experiments of an implicit implementation of our algorithm, by means of which a class of interesting examples was solved exactly. We compare it with existing heuristic algorithms, to measure the quality of the latter.

1 Introduction

A completely specified Boolean function f is a cover for an incompletely specified function g if the value of f agrees with the value of g for all the points in the input space where g is specified. This paper describes an exact algorithm for selecting f such that f is a cover for g and the binary decision diagram (BDD) for f has a minimum number of nodes (complemented edges are not considered here). For a given ordering of the variables, the BDD for f is unique [4] and the problem has a well defined solution.

We show that this minimization problem can be solved by selecting a minimum sized cover for a graph that satisfies some additional closure conditions. In particular, we show that the minimum sized binary decision diagram compatible with the specification can be found by solving a covering problem that is very similar to the covering problem obtained using exact algorithms for the reduction of incompletely specified finite state machines (ISFSM) [8]. This similarity makes it possible to use implicit enumeration techniques developed for the purpose of ISFSM reduction [10] to solve efficiently the BDD minimization problem. The manipulation of the characteristic functions of the sets of compatibles and prime compatibles, represented with ROBDDs [2], allows the generation of very large sets that cannot be enumerated explicitly, as it is demonstrated in the experiments.

The transformation presented in this paper and the algorithms developed for the solution are important for practical and theoretical reasons.

From a practical point of view, there are applications in learning and logic synthesis where an high-quality solution is of paramount importance. This requires an exact algorithm to find those solutions or at least to validate the quality of heuristic algorithms.

For instance, in inductive learning applications, the accuracy of the inferred hypotheses is strongly dependent on the complexity of the result [1]. One possible and very effective representation scheme for inferred hypotheses are BDDs. However, it was observed [13] that when BDDs are used as the representation scheme, existing heuristic algorithms for BDD minimization find solutions that are so far from the minimum that makes them of little value for this particular application.

The selection of the minimum BDD consistent with an incompletely specified function is important also in logic synthesis applications that use BDDs not only as a tool for representing discrete functions but also to derive implementations that minimize some cost function. For instance, timed Shannon circuits [11] use the structure of the BDD to derive low power implementations and stand to gain from algorithms for the reduction of BDDs. The same holds for DCVS trees and multiplexer-based FPGAs.

An exact algorithm, even though unable to solve large instances, helps to measure the quality of heuristic algorithms by gauging them on instances where an exact solution can be found.

From a theoretical point of view, the transformation presented in this work is an elegant characterization of the problem. We show in Section 3 that the problem is NP-complete, answering a question raised by Shiple et al. in [16].

Several heuristic algorithms for the problem addressed here have been proposed. These algorithms are important in applications where the available degrees of freedom in the functions represented can be used to reduce the memory requirements of BDD based algorithms. The restrict operator [7] and the constrain operator [6] (also known as generalized cofactor [18]) are two heuristics used to assign the don't cares of a BDD. A comprehensive study of heuristic BDD minimization has been presented in [16]. Another heuristic algorithm has been reported in [5].

We are aware also of work for an exact algorithm [14] based on the enumeration of the different covers that can be obtained by all possible assignments of the don't care points. A pruning technique reduces the enumeration process thanks to a result by Shiple that changing the value of a function f of n variables on a minterm (actually on a cube) m cannot change the size of the BDD for f by more than n nodes. The pruning is performed implicitly.

The remainder is organized as follows. Section 2 introduces basic definitions on BDDs and Section 3 has a proof that BDD minimization is NP-complete. Sections 4, 5 and 6 describe respectively the compatibility graph, closed clique covers and the generation of a minimum BDD. Minimization of BDDs is formulated as a variant of FSM minimization in Section 7, while an implicit algorithm to compute a minimum closed cover is presented in Section 8. Results and conclusions are offered respectively in Sections 9 and 10. The appendix contains all the proofs of the lemmas and theorems and describes with an example an application of the algorithm to a concrete case.

2 Preliminaries

A BDD is a rooted, directed, acyclic graph where each node is labeled with the name of one variable. and every non-terminal node n_{i} has one else and one then edge that point to the children nodes, $n_{i}^{\text {else }}$ and $n_{i}^{\text {then }}$, respectively. The terminal nodes are n_{z} and n_{o}. By convention we will draw the else (zero) edge as the edge pointing to left (west), and the then (one) edge as the edge pointing to right (east).

Any minterm m in the input space induces a unique path in a BDD defined in the following way: start at the root and take, at each node, the else or the then edge according to the value assigned by minterm m to the variable that is the label of the current node until a terminal node is reached. A BDD corresponds to the completely specified Boolean function f that has all the minterms in $f_{\text {on }}$ (and only these) inducing paths in the BDD that terminate in n_{o}. A BDD is called reduced if no two nodes exist that branch exactly in the same way, and it is never the case that all outgoing edges of a given node terminate in the same node. For a fixed ordering of the variables, the reduced ordered BDD for a given Boolean function is unique. This implies that reduced ordered BDDs are canonical representations of Boolean functions and we will therefore use the notation n_{i} to denote both the node in the BDD and the Boolean function to which it corresponds. Unless stated otherwise, we will use simply the term BDD when we refer to a reduced ordered BDD.

The level of a node $n_{i}, \mathcal{L}\left(n_{i}\right)$ is the index of the variable tested at that node under the specific ordering used. The level of the terminal nodes is defined as $N+1$, where N is the number of input variables. The maximum level of a set s of nodes, $\mathcal{L}_{\text {max }}(s)$, is the maximum level of all the nodes in s. A BDD is called complete if all edges starting at level i terminate in a node at level $i+1 .{ }^{1}$ The level of a function $h, \mathcal{L}(h)$, is defined as the level of a BDD node that implements h. If n_{i} is a node in the BDD and m a minterm, $n_{i}(m)$ will be used to denote both the value of function n_{i} for minterm m and the terminal node that m reaches when starting at n_{i}. This notation is consistent because the two terminal nodes stand for the constant functions 0 and 1 . The index 0 will be reserved for the root of the BDD. Therefore, if m is a minterm and F is the BDD for $f, n_{0}(m)$ represents the value of f for minterm m.

A 3 Terminal BDD (3TBDD) is defined in the same way as a BDD in all respects except that it has three terminal nodes : n_{z}, n_{o} and n_{x}. A 3TBDD F corresponds to the incompletely specified function f that has all minterms in $f_{\text {off }}, f_{\text {dc }}$ and $f_{\text {on }}$ terminate in n_{z}, n_{x} and n_{o}, respectively.

3 Complexity of the Problem

Consider the problem of minimum BDD identification.

Problem: MINIMUM BDD IDENTIFICATION (MBI)

Instance: A set of minterms, labeled either positive or negative and an integer K .
Question: For a given fixed ordering, is there a BDD with less than K nodes that satisfies all the examples, i.e., a BDD for a function whose on-set covers the positive examples and whose off-set covers the negative ones ?

Takenaga and Yajima [17] proved that this problem is NP-complete, by reduction from graph K-colorability. The problem we address in this paper is the following:

Problem: EXACT BDD MINIMIZATION (EBM)
Instance: BDDs for functions $f_{\text {on }}$ and $f_{\text {dc }}$ and an integer K .
Question: Is there a BDD with less than K nodes that implements a function that is a cover for f ?
Proof that it is in NP (due to Shiple [16]):
Guess a BDD with fewer than K nodes. Check whether the guessed BDD implements a function that is a cover of f. This check can be done in time and space upper bounded by the product of the sizes of the BDDs for $f_{\text {on }}$ and f_{dc} and of the guessed BDD. This product is polynomial in the input size.

Proof that it is NP-hard:

Suppose we could solve this problem in polynomial time with a deterministic algorithm. Then we can also solve the MBI problem. To prove the result we need to prove two facts.

Fact 1. The BDD for a given function f of v variables cannot have more than $n \times v$ internal nodes, where n is the number of minterms in f [14].

Proof of Fact 1: To verify this, consider all the paths through the BDD defined by all the minterms in f. This set of paths has to go through each internal node in the BDD for f at least once. Otherwise, there are nodes other than the constant node 0 in the BDD that are only reached by minterms in the off set of f, thereby implying that the BDD is not reduced. Because a minterm can only traverse v internal nodes, we obtain immediately the above result.

Fact 2. A BDD of a function $f: B^{v} \rightarrow B$ represented by n minterms can be constructed in $O\left(n^{2} v^{2} \log n\right)$ operations.

[^0]Proof of Fact 2: Build the BDD of f from the minterms by doing the following: first OR together each pair of minterms. Then OR the results together, and keep doing this until the final result is computed. The number of such iterations k is logarithmic in n. At iteration i, one needs to perform no more than $n /\left(2^{i}\right)$ operations on BDDs no larger than $v \times 2^{i-1}$ (the latter size is explained by Fact 1 that the BDD for f cannot have more than $n \times v$ internal nodes). Therefore, per iteration one needs no more than $n /\left(2^{i}\right) v 2^{i-1} v 2^{i-1}=n v^{2} 2^{i-2}$ elementary operations, that is upper bounded by $n^{2} v^{2}$, because $i \leq \log n$. Since there are only $\log n$ iterations, the result can be built in time and space $n^{2} v^{2} \log n$.

It follows by Fact 2 that the BDDs for $f_{\text {on }}$ and $f_{\text {off }}$ can be constructed in time polynomial in the size of the input instance of the MBI problem we want to solve. This implies that the BDD for $f_{\text {dc }}$ can also be constructed in polynomial time in the size of the input of the MBI problem because it can be obtained by polynomial time bounded BDD operations. To solve an MBI problem, simply transform it into an EBM problem and solve it. The resulting solution will represent directly the answer to the original problem.

After we reported this result [12], we were informed that an earlier proof had been published in a technical report by Sauerhoff and Wegener [15]. Our result has been obtained independently and provides a different proof. In [15] it is also proved that, under the hypothesis that $\mathrm{NP} \neq \mathrm{P}$, the problem has neither approximation schemes nor polynomial time approximation algorithms yielding solutions larger than the minimum by only a constant factor or a slowly increasing function. Finally, Hirata, Shimozono and Shinohara proved in [9] the related result that MBI is NP-hard (differently from [17]) and that there is a constant $\varepsilon>0$ such that no polynomial algorithm can approximate MBI within the ratio n^{ε} unless $\mathrm{P}=\mathrm{NP}$.

Incidentally, the polynomial time procedure outlined in the proof of Fact 2, together with the results in [15] directly imply the result of Hirata, Shimonozo and Shinonara, as the authors themselves point out in the concluding remarks of [9].

4 The Compatibility Graph

Previous algorithms [14] for this problem used directly the BDD representation of $f_{\text {on }}$ and $f_{\text {off }}$. The exact approach described in this paper uses the 3TBDD F that corresponds to the incompletely specified function $f . F$ is assumed to be complete. If necessary, F is made complete by adding extra nodes that have the then and else edges pointing to the same node. In general, the resulting 3TBDD is no longer reduced. Moreover, we suppose that 3TBDD does not use complemented edges.

Definition 4.1 Two nodes n_{i} and n_{j} in F are compatible $\left(n_{i} \sim n_{j}\right)$ iff no minterm m exists that satisfies $n_{i}(m)=$ $n_{z} \wedge n_{j}(m)=n_{o}$ or $n_{i}(m)=n_{o} \wedge n_{j}(m)=n_{z}$.

This definition implies that n_{o} and n_{z} are not compatible between them and that n_{x} is compatible with any node in a 3 TBDD.

Definition 4.2 Two nodes n_{i} and n_{j} in F are common support compatible ($n_{i} \approx n_{j}$) iff there exists a completely specified function h such that $h \sim n_{i}$ and $h \sim n_{j}$ and $\mathcal{L}(h) \geq \max \left(\mathcal{L}\left(n_{i}\right), \mathcal{L}\left(n_{j}\right)\right)$.

The definition implies that $n_{z} \not \approx n_{o}$ and $n_{x} \approx n_{i}$, for any node n_{i}.
It is important, at this point, to understand the relationship between these two concepts. First, note that the completely specified function h referred in definition 4.2 does not necessarily correspond to any node in F. In fact, in most cases, h will not correspond to any node in F, since most nodes in F correspond to incompletely specified functions.

The relationship between compatibility and common support compatibility (CSC) is given by the following lemma:
Lemma 4.1 If $n_{i} \approx n_{j}$ then $n_{i} \sim n_{j}$.
The reverse implication of lemma 4.1 is not true, in general. Figure 1 illustrates a situation where two nodes are compatible but are not CSC. Nodes n_{i} and n_{j} are compatible because no minterm leads to n_{o} for one of this nodes and to n_{z} to the other. However, n_{i} and n_{j} are not common support compatible because no completely specified function h that only depends on the second variable is compatible with both of them.

However, when two nodes belong to the same level, common support compatibility and compatibility are equivalent:
Lemma 4.2 If $\mathcal{L}\left(n_{i}\right)=\mathcal{L}\left(n_{j}\right)$ then $n_{i} \sim n_{j} \Rightarrow n_{i} \approx n_{j}$.

Figure 1: Nodes n_{i} and n_{j} are compatible but not common support compatible.

The motivation for the definition of common support compatibility can now be made clear. Assume that two nodes belong to different levels and are compatible. In principle, they could be replaced by a new node that implements a function compatible with the functions of each node. In general, this function may depend on variables that are not on the support of the node at the higher level. Assume this node is n_{j}. Later, when we try to build the reduced BDD, edges that are incident into n_{j} will need to go upwards, against the variable ordering of the BDD. On the other hand, if both nodes are common support compatible, then they can be replaced by a node that implements the completely specified function h referred to in definition 4.2. Because this function only depends on the variables common to the supports of both nodes, this problem will not arise.

The concept of common-support compatibility can be extended to sets of nodes in the natural way:
Definition 4.3 The nodes in the set $s_{i}=\left\{n_{1}, n_{2}, \ldots, n_{s}\right\}$ are common support compatible iff there exists a completely specified function h such that $\left(h \sim n_{j}\right)_{j=1, \ldots, s}$ and $\mathcal{L}(h) \geq \mathcal{L}_{\text {max }}\left(s_{i}\right)$.

Definition 4.4 A set of nodes that are common support compatible is called a compatible set or, simply, a compatible.
The definition of a compatible implies that any two nodes that belong to a compatible are pairwise common support compatible. The reverse implication is not true, but the next lemma holds.

Lemma 4.3 Let s_{i} be a set of nodes belonging to the same level. Then, s_{i} is a compatible iff all nodes in s_{i} are pairwise common support compatible.

Definition 4.5 The compatibility graph, $G=(V, E)$, is an undirected graph that contains the information about which nodes in F can be merged. Except for the terminal node n_{x}, each node in F will correspond to one node in V with the same index. The level of a node in G is the same as the level of the corresponding node in F. Similarly, $g_{i}^{\text {else }}$ and $g_{i}^{\text {then }}$ are the nodes that correspond to $n_{i}^{\text {else }}$ and $n_{i}^{\text {then }}$.

Graph G is built in such a way that if nodes n_{i} and n_{j} are common support compatible then there exists an edge between g_{i} and g_{j}. An edge may have labels. A label is a set of nodes that expresses the following requirement: if nodes g_{i} and g_{j} are to be merged, then the nodes in the label also need to be merged. There are three types of labels: e, t and l labels. The following two lemmas justify the algorithm by which graph G is built:

Lemma 4.4 If $\mathcal{L}\left(n_{i}\right)=\mathcal{L}\left(n_{j}\right)$ then $n_{i} \approx n_{j} \Rightarrow\left(n_{i}^{\text {else }} \approx n_{j}^{\text {else }} \wedge n_{i}^{\text {then }} \approx n_{j}^{\text {then }}\right)$.
Lemma 4.5 If $\mathcal{L}\left(n_{i}\right)<\mathcal{L}\left(n_{j}\right)$ then $n_{i} \approx n_{j} \Rightarrow\left(n_{i}^{\text {else }} \approx n_{j} \wedge n_{i}^{\text {then }} \approx n_{j} \wedge n_{i}^{\text {else }} \approx n_{i}^{\text {then }}\right)$.
The previous two lemmas justify the following algorithm to build the compatibility graph.

Algorithm 4.1

1. Initialize G with a complete graph except for edge $\left(g_{z}, g_{o}\right)$ that is removed.
2. If $\mathcal{L}\left(g_{i}\right)=\mathcal{L}\left(g_{j}\right)$ then the edge between g_{i} and g_{j} has two labels: an e label with $\left\{g_{i}^{\text {else }}, g_{j}^{\text {else }}\right\}$ and a tabel with $\left\{g_{i}^{\text {then }}, g_{j}^{\text {then }}\right\}$. (By lemma 4.4.)
3. If $\mathcal{L}\left(g_{i}\right)<\mathcal{L}\left(g_{j}\right)$ edge $\left(g_{i}, g_{j}\right)$ has an l label with $\left\{g_{i}^{\text {else }}, g_{i}^{\text {then }}, g_{j}\right\}$. (By lemma 4.5.)

Figure 2: The 3TBDD F and the compatibility graph G. Nodes g_{5} and g_{x} are not shown on the compatibility graph, since they are common support compatible with every node in the graph.
4. For all pairs of nodes $\left(g_{i}, g_{j}\right)$ check if the edge between nodes g_{i} and g_{j} has a label that contains $\left\{g_{a}, g_{b}\right\}$ and there is no edge between g_{a} and g_{b}. If so, remove the edge between g_{i} and g_{j}. Repeat this step until no more changes take place.

Figure 2 shows an example of the 3TBDD F obtained from f defined by the following sets: $f_{\text {on }}=\{011,111\}$, $f_{\text {off }}=\{010,110,101\}$ and the corresponding compatibility graph.

The existence of an edge in the incompatibility graph is related with common support compatibility and with compatibility between pairs of nodes in the following way:

Lemma 4.6 $n_{i} \approx n_{j} \Rightarrow \exists e \in E$ s.t. $e=\left(g_{i}, g_{j}\right) \Rightarrow n_{i} \sim n_{j}$.
It is important to note that the reverse implications are not true. In particular, the existence of an edge between two nodes in G does not imply that they are common support compatible. Consider the 3TBDD shown in figure 3.

For this 3TBDD the algorithm described above does not remove the edge between nodes g_{0} and g_{5} because there are long range dependencies that can not by found by the simple minded algorithm used to prune away edges. The edge between g_{0} and g_{5} has the following l label: $\left\{g_{5}, g_{1}, g_{2}\right\}$.

Figure 3: Nodes n_{0} and n_{5} are not common support compatible but the compatibility graph does have an edge between the corresponding nodes.

The edge between g_{1} and g_{5} has the l label $\left\{g_{5}, g_{4}\right\}$ and the edge between g_{2} and g_{5} has the l label $\left\{g_{5}, g_{3}\right\}$. Because n_{5} is compatible with both n_{3} and n_{4}, the edge between g_{1} and g_{5} and the edge between g_{2} and g_{5} are never removed. Moreover n_{1} and n_{2} are compatible. Therefore the edge between g_{0} and g_{5} is never removed. However, no function depending only on the last variable can be compatible with n_{0}, and therefore n_{0} and n_{5} are not common support compatible.

5 Closed Clique Covers

A clique of graph G is a completely connected subgraph of G. To any set s of nodes that is a clique of G there are associated class sets. If the nodes in s are to be merged into one, the nodes in its class sets are also required to be in
the same set. Let $s_{i}=\left\{g_{i_{1}}, g_{i_{2}} \ldots g_{i_{w}}\right\}$ be a set of nodes that form a clique in G. The following are the definitions of the e, t and l classes of s_{i}. Notice that for concision we may blur the distinction between the nodes g 's of G and the corresponding nodes n 's of F. Strictly speaking, cliques are defined on sets of g 's and compatibles on sets of n 's.

Definition 5.1 The e class of $s_{i}, C_{e}\left(s_{i}\right)$ is the set of nodes that are in some e label of an edge between a node g_{j} and g_{k} in s_{i} with $\mathcal{L}\left(n_{k}\right)=\mathcal{L}\left(n_{j}\right)=\mathcal{L}_{\max }\left(s_{i}\right)$.

Definition 5.2 The t class of $s_{i}, C_{t}\left(s_{i}\right)$ is the set of nodes that are in some t label of an edge between a node g_{j} and g_{k} in s_{i} with $\mathcal{L}\left(n_{k}\right)=\mathcal{L}\left(n_{j}\right)=\mathcal{L}_{\text {max }}\left(s_{i}\right)$.

Definition 5.3 The l class of $s_{i}, C_{l}\left(s_{i}\right)$ is the set of nodes that are in some label of an edge between a node g_{j} and g_{k} in s_{i} with $\mathcal{L}\left(g_{j}\right) \neq \mathcal{L}\left(g_{k}\right)$

Lemma 5.1 If a set s_{i} of nodes are a clique of G and $C_{l}\left(s_{i}\right) \subseteq s_{i}$, then s_{i} is a compatible set.
Note that a clique of G that does not satisfy the condition in lemma 5.1 is not necessarily a compatible set. For instance, in the example in figure 3 the nodes $\left\{g_{0}, g_{1}, g_{2}, g_{5}\right\}$ are a clique of G but are not a compatible set, because $g_{3} \in C_{l}\left(\left\{g_{0}, g_{1}, g_{2}, g_{5}\right\}\right)$ but $g_{3} \notin\left\{g_{0}, g_{1}, g_{2}, g_{5}\right\}$.

The algorithm that selects the minimum BDD compatible with the original function works by selecting nodes of G that can be merged into one node in the final BDD. If a set s of nodes in G is to be merged into one, the set s has to be a compatible set. Therefore, it has to be a clique of G satisfying definition 5.3. The objective is to find a set of cliques such that every node in G is covered by at least one clique. However, to obtain a valid solution, some extra conditions need to be imposed.

Definition 5.4 A set $S=\left\{s_{1}, s_{2} \ldots s_{n}\right\}$ of sets of nodes in G is called a closed clique cover for G if the following conditions are satisfied:

1. S covers $G: \forall g_{i} \in G \exists s_{j} \in S: g_{i} \in s_{j}$
2. All s_{k} are cliques of $G: \forall g_{i}, g_{j} \in s_{k}:\left(g_{i}, g_{j}\right) \in \operatorname{edges}(G)$
3. S is closed with respect to the e and labels:
$\forall s_{i} \in S \exists s_{j} \in S: C_{e}\left(s_{i}\right) \subseteq s_{j} \bigwedge \forall s_{i} \in S \exists s_{j} \in S: C_{t}\left(s_{i}\right) \subseteq s_{j}$
4. All sets in S are closed with respect to the l labels $: \forall s_{i} \in S: C_{l}\left(s_{i}\right) \subseteq s_{i}$

6 Generation of a Minimum BDD

From a closed clique cover for G, a reduced $\mathrm{BDD} R$ is obtained by the following algorithm:

Algorithm 6.1

1. For each s_{i} in S, create a BDD node in R, r_{i}, at level $\mathcal{L}_{\max }\left(s_{i}\right)$.
2. Let the nodes in R that correspond to sets s_{i} containing nodes that correspond to terminal nodes in F be the new corresponding terminal nodes of R.
3. Let the else edge of the node r_{i} go to the node r_{j} that corresponds to a set s_{j} such that $C_{e}\left(s_{i}\right) \subseteq s_{j}$.
4. Let the then edge of the node r_{i} go to the node r_{j} that corresponds to a set s_{j} such that $C_{t}\left(s_{i}\right) \subseteq s_{j}$.

Lemma 6.1 R is an Ordered BDD compatible with F.
Now, the main result follows. Let \mathcal{B} be the set of all BDDs that represent functions compatible with the incompletely specified function f. Then, the following result holds:

Theorem 6.1 The $B D D$ induced by a minimum closed cover for G is the $B D D$ in \mathcal{B} with minimum number of nodes.
Proof: see appendix.
As an example, $S=\left\{\left\{g_{0}, g_{1}, g_{2}\right\},\left\{g_{4}\right\},\left\{g_{3}, g_{5}, g_{z}\right\},\left\{g_{o}\right\}\right\}$ is a closed cover for the example depicted in figure 2 and induces the BDD R shown on the right side of figure 4 .

Figure 4: The 3TBDD F, the compatibility graph G and a solution R. Node g_{5} was arbitrarily included in compatible $\left\{g_{3}, g_{z}, g_{5}\right\}$.

7 Formulation of BDD Minimization as FSM Reduction

The definition of a closed cover is very similar to the standard definition of a closed cover used in the minimization of finite state machines (FSMs). If the graph of a 3 TBDD is viewed as the state transition graph of an FSM, the algorithms developed for the minimization of FSMs can be used with some modifications. The two important differences to consider are:

1. The definition of the e and t classes and the closure requirement in point 3 of definition 5.4 are different from the definitions used in standard FSM minimization. In BDD minimization, only nodes at the highest level in some compatible define the e and t classes, while in standard FSM minimization all nodes in a compatible set are involved in the definition of these classes.
2. The requirement in point 4 of definition 5.4 means that some sets of nodes that satisfy the definition of a compatible set in the FSM case do not satisfy the conditions for BDD minimization.

These two changes can be incorporated into existing algorithms for FSM minimization. In particular, the closure conditions with respect to the e and t labels are similar to the closure conditions imposed in standard FSM minimization. The restriction imposed by condition 4 in definition 5.4 simply eliminates some cliques of the compatibility graph from consideration and can be implemented by a filtering step. The transformation from BDD minimization to FSM reduction is shown in the appendix and its correctness is argued.

8 Implicit Computation of a Minimum Closed Cover

We will use the unified implicit framework proposed in [10] ${ }^{2}$. Implicit techniques are based on the idea of operating on discrete sets by their characteristic functions represented by binary decision diagrams (BDDs) [4].

To perform state minimization, one needs to represent and manipulate efficiently sets of sets of states. With n states, each subset of states is represented in positional-set form, using a set of n Boolean variables, $x=x_{1} x_{2} \ldots x_{n}$. The presence of a state s_{k} in the set is denoted by the fact that variable x_{k} takes the value 1 in the positional-set, whereas x_{k} takes the value 0 if state s_{k} is not a member of the set. For example, if $n=6$, the set with a single state s_{4} is represented by 000100 while the set of states $s_{2} s_{3} s_{5}$ is represented by 011010 .

A set of sets of states S is represented in positional notation by a characteristic function $\chi_{S}: B^{n} \rightarrow B$ as: $\chi_{S}(x)=1$ if and only if the set of states represented by the positional-set x is in the set S. A BDD representing $\chi_{S}(x)$ will contain minterms, each corresponding to a state set in S. As an example, Tuple $e_{n, k}(x)$ denotes all positional-sets x with exactly k states in them (i.e. $|x|=k$). For instance, the set of singleton states is $T u p l e_{n, 1}(x)$, the set of state pairs is Tuple $e_{n, 2}(x)$, the set of full states is $\operatorname{Tuple}_{n, n}(x)$, and the set of empty states is Tuple $e_{n, 0}(x)$. An alternative notation for Tuple ${ }_{n, k}(x)$ is Tuple $_{k}(x)$.

Any relation R between pairs of sets S_{1} and S_{2} can be represented by its characteristic function $\mathcal{R}: B^{n} \times B^{m} \rightarrow B$ where $\mathcal{R}(x, y)=1$ if and only if $\chi_{S_{1}}(x)=1, \chi_{S_{2}}(y)=1$ and the element of S_{1} represented by x is in relation R with the element of S_{2} represented by y. A similar definition holds for relations defined over more than two sets. For example, we represent the state transition graph (STG) of an FSM by the characteristic functions of two relations:

[^1]1. the output relation Λ, where input i, present state p and output o are in $\Lambda(i, p, o)$ if there is an edge from p with input/output label i / o, and
2. the next state relation \mathcal{T}, where where input i, present state p and next state n are in relation $\mathcal{T}(i, p, n)$ if there is an edge from p to n with input label i.

8.1 Implicit Generation of Compatibles

It has been shown in Section 7 that given a BDD minimization problem it is possible to generate a companion FSM whose closed covers of compatibles correspond to closed clique covers of the BDD, if:

- FSM compatibles that do not satisfy the L-closure are discarded, and
- FSM compatible closure is replaced by E-closure and T-closure.

Our starting point is the fully implicit algorithm for exact state minimization reported in [10], to which we refer for a complete description of the implicit computations. In the sequel we discuss the modifications needed to generate closed clique covers of the BDD.

8.2 Implicit Computation of L-closure

We compute as in [10] the set of compatibles $\mathcal{C}(c)$, where $\mathcal{C}(c)=1$ iff c is the positional set representing a compatible of the companion FSM. When minimizing an FSM obtained from an instance of BDD minimization one must delete from $\mathcal{C}(c)$ the compatibles c that are not closed with respect to their l-class. The l-class, $\mathcal{C}_{l}(c)$, of a compatible c is the set of nodes that are in some l-label of an edge between nodes g_{j} and g_{k} in c with $\mathcal{L}\left(g_{j}\right)<\mathcal{L}\left(g_{k}\right)$. If $\mathcal{L}\left(g_{j}\right)<\mathcal{L}\left(g_{k}\right)$ then edge $\left(g_{j}, g_{k}\right)$ has the l-label $\left\{g_{j}^{\text {else }}, g_{j}^{\text {then }}, g_{k}\right\}$.

```
\(\mathcal{L}_{0}(p)=r(p)\)
\(k=0\)
do \(\{\)
    \(\mathcal{L}_{k+1}(p)=[n \rightarrow p] \exists p, i\left[\mathcal{L}_{k}(p) \cdot \mathcal{T}(i, p, n)\right]\)
    \(k=k+1\)
\(\}\) until \(\mathcal{L}_{k+1}(p)=\mathcal{L}_{k}(p)\)
```

Figure 5: Computation of array \mathcal{L}.
It is shown next how to capture the information on the level of the nodes. By construction, an FSM obtained by BDD minimization is represented by a direct acyclic STG rooted at the unique reset state r; each node has two successors, except the terminal node that has a self-loop. Fig. 5 illustrates a procedure to build an array $\mathcal{L}(p)$, that partitions the FSM states based on their distance from the root: $\mathcal{L}_{k}(p)$ is the set of states associated to the nodes having a distance k from r. Starting from r and visiting in breadth-first order the STG, one computes iteratively the array elements $\mathcal{L}_{k}(p)$, using the transition relation $\mathcal{T}(i, p, n)$. In fact, state n is a successor of state p iff $\exists i \mathcal{T}(i, p, n)$.

Using the informations stored in $\mathcal{L}(p)$, one defines the order relation $\operatorname{Level}(p, u)$, for each couple of states (p, u) in the FSM. States p and u are in relation $\operatorname{Level}(p, u)$ iff the distance of p from r is less than the distance of u from r, i.e. formally

$$
\begin{equation*}
\operatorname{Level}(p, u)=1 \Leftrightarrow \exists i \exists j\left\{(i<j) \mid \mathcal{L}_{i}(p) \cdot \mathcal{L}_{j}(u)\right\} \tag{1}
\end{equation*}
$$

Fig. 6 illustrates the procedure to compute the global relation $\operatorname{Level}(p, u)$.
A compatible c is pruned from the set of compatibles $\mathcal{C}(c)$ if:

1. c contains states p and u that are in the order relation $\operatorname{Level}(p, u)$,
2. c does not contain all the successors of p.

Hence, the filtered set of compatibles is given by:

$$
\begin{align*}
\mathcal{C}(c)= & \mathcal{C}(c)-\exists p\left\{\exists u\left[\text { Tuple }_{1}(p) \cdot \text { Tuple }_{1}(u) \cdot(c \supseteq p) \cdot(c \supseteq u) \cdot \operatorname{Level}(p, u)\right]\right. \\
& \exists n[\exists i \mathcal{T}(i, p, n) \cdot(c \nsupseteq n)]\} \tag{2}
\end{align*}
$$

```
\(\operatorname{Level}(p, u)=\emptyset\)
for \((i=0 ; i<k ; i++)\{\)
    for each state Tuple \(e_{1}(p) \in \mathcal{L}_{i}(p)\{\)
            for \((j=i ; j<k ; j++)\{\)
            for each state Tuple \(_{1}(u) \in\left([u \rightarrow p] \mathcal{L}_{j}(p)\right)\{\)
                \(\operatorname{Level}(p, u)=\operatorname{Level}(p, u)+\left(\operatorname{Tuple}_{1}(p) \cdot \operatorname{Tupl}_{1}(u)\right)\)
            \}
        \}
    \}
\}
```

Figure 6: Computation of the relation $\operatorname{Level}(p, u)$.

8.3 Implicit Computation of E-closure and T-closure

In standard FSM minimization one requires closure with respect to implied sets. Given a compatible c an implied set under input i is the set of next states from the states in c under i. Instead in the case of BDD minimization one must compute the implied sets only from the states in c of highest level. This requires a change in the computation of the relation of the implied classes $\mathcal{F}(c, i, n)$, which is used by the following procedures:

1. the computation of primes,
2. the set up of the binate clauses in the covering table,
3. the construction of a reduced FSM.

The new computation for $\mathcal{F}(c, i, n)$ is described by the following equation:

$$
\begin{equation*}
\mathcal{F}(c, i, n)=\exists p\left\{\exists c^{\prime}\left[\mathcal{C}(c) \cdot M a x_{-} L e v e l\left(c, c^{\prime}\right) \cdot\left(c^{\prime} \supseteq p\right)\right] \cdot \mathcal{T}(i, p, n)\right\} \tag{3}
\end{equation*}
$$

Subsets of states c and c^{\prime} are in relation Max_Level $\left(c, c^{\prime}\right)$, iff c^{\prime} is the subset of c that contains the states of c of maximum level, i.e. the states having the largest distance from r in the STG of the FSM.

```
Max_Level \(\left(c, c^{\prime}\right)=\emptyset\)
\(\mathcal{C}_{j}(c)=\mathcal{C}(c)\)
for \((j=k-1 ; j=0 ; j--)\{\)
    \(\mathcal{M} \mathcal{L}_{j}\left(c, c^{\prime}\right)=\mathcal{C}_{j}(c) \cdot \exists l\left[\mathcal{L}_{j}(l) \cdot \sum_{n=1}^{N}\left(l_{n} \cdot c_{n}\right)\right] \cdot \prod_{n=1}^{N}\left\{c_{n}^{\prime} \Leftrightarrow\left[c_{n} \cdot \exists l\left(l_{n} \cdot L_{j}(l)\right)\right]\right\}\)
    \(\operatorname{Max} \operatorname{Level}\left(c, c^{\prime}\right)=\operatorname{Max} \operatorname{Level}\left(c, c^{\prime}\right)+\mathcal{M} \mathcal{L}_{j}\left(c, c^{\prime}\right)\)
    \(\mathcal{C}_{j}(c)=\mathcal{C}_{j}(c)-\exists c^{\prime}\left[\mathcal{M} \mathcal{L}_{j}\left(c, c^{\prime}\right)\right]\)
\}
```

Figure 7: Computation of the relation $\mathcal{C}(c)$.Max_Level $\left(c, c^{\prime}\right)$.
The computation of the relation $\mathcal{C}(c)$.Max_Level $\left(c, c^{\prime}\right)$ is based on the availability of $\mathcal{L}(p)$ and is summarized in Fig. 7. For each level j starting from the maximum to the minimum, a relation $\mathcal{M} \mathcal{L}_{j}\left(c, c^{\prime}\right)$ is determined performing N bitwise conjunctions, where N is the number of states. The n-th element of c^{\prime} is 1 iff the n-th element of c is 1 and it has level $j . \mathcal{M} \mathcal{L}_{j}\left(c, c^{\prime}\right)$ represents the pairs $\left(c, c^{\prime}\right)$ such that c is a compatible that contains at least one state at level j and no state at level greater than j, and c^{\prime} has exactly the states of c of level j. Before examining level $j-1$, Max_Level $\left(c, c^{\prime}\right)$ is updated adding the elements in $\mathcal{M} \mathcal{L}_{j}\left(c, c^{\prime}\right)$, and the sets c already in $\mathcal{M} \mathcal{L}_{j}\left(c, c^{\prime}\right)$ are removed from $\mathcal{C}(c)$. Notice that the time complexity of the computation depends only linearly from the explicit parameters N, number of states, and k, number of levels in the STG representation.

9 Results

Starting from the program ISM for implicit state minimization [10] we developed IMAGEM, a new program based on the theory described in this paper for exact BDD minimization. In particular, we transformed the implicit algorithm for exact state minimization in a new algorithm for the implicit computation of a minimum closed cover as described in Section 8.

example	$\#$ orig. states	$\#$ compat.	$\#$ filtered compat.	$\#$ prime compat.	$\#$ red. states	heuristic	IMAGEM CPU time (sec)
dnfa	64	$2.435821 \mathrm{e}+12$	1332186	89	14	16	517.29
dnfb	36	$4.853883 \mathrm{e}+08$	2987	94	6	12	11.85
dnfc	40	$2.291224 \mathrm{e}+08$	2613	102	10	15	12.94
dnfd	93	$1.137739 \mathrm{e}+20$	$9.517899 \mathrm{e}+08$	-	-	23	timeout
dnfe	63	$2.102303 \mathrm{e}+13$	141179	509	6	12	217.29
dnff	62	$2.184367 \mathrm{e}+11$	92027	357	15	22	151.8
xor3	9	179	14	7	6	6	0.1
xor4	17	14975	118	13	6	6	0.43
xor5	24	608255	267	36	9	10	1.37
xor6	40	$3.355914 \mathrm{e}+08$	1329	170	13	20	13.98
xor7	57	$2.791115 \mathrm{e}+11$	3076	640	15	31	88.16
xor8	94	$1.539147 \mathrm{e}+17$	164929	21830	17	45	9041.11
ex.paper	10	575	32	8	4	4	0.17

Table 1: Results on Machine Learning Problems.

To evaluate experimentally the algorithms presented in this paper, we assembled two sets of problems: the first set derives directly from a machine learning application and the second set was obtained from a logic synthesis benchmark. In all the problems, the original ordering specified for the variables was the ordering used.

For the first set of problems, 12 completely specified Boolean functions f_{i} were used as the starting point. For each of these functions, a randomly selected set of minterms was designated as the care set, resulting in a set of incompletely specified Boolean functions g_{i}. The original objective was to identify the set of problems for which it is possible to recover exactly the original functions f_{i} from the incompletely specified functions g_{i}, thereby characterizing the conditions under which it is possible to infer the original function from a training set [13]. For the purposes of this work, the functions g_{i} are used solely as a set of incompletely specified functions. An advantage that exists for this set is that upper bounds on the size of the solution are well defined, because the BDD sizes for the f_{i} are known. Under certain conditions, these upper bounds tend to become tight, with high probability, as the size of the problem increases, providing a welcome check for the results obtained.

The second set of problems was obtained by selecting a subset of the problems that are distributed with Espresso [3], a well known two-level minimizer. More specifically, we included in this set of problems the functions that are the first output from each of the PLAs that are included in the industry subset of the Espresso benchmark suite. From this set, we eliminated all the functions that have a null don't care set, since, for these functions, the problem is trivial.

Table 1 summarizes the results obtained from running the set of machine learning problems and Table 2 the ones from the problems derived from the Espresso benchmark suite. The last entry in table 1 is denoted ex.paper and simply refers to the case that has been presented in the paper to illustrate the theory.

For each example of a 3TBDD the number of states of the companion FSM is reported in the column denoted "\# orig. states". This number is always equal to the number of nodes of the 3TBDD plus one because a new node is added to the STG as explained in Section 7. The following two columns report the number of compatibles of the FSM (i.e. the cardinality of the set $\mathcal{C}(c)$) and the number of compatibles after filtering as per Section 8.2 (i.e. the ones which are closed with respect to their l-class). This step reduces the number of compatibles of many orders of magnitude.

Then, after the number of primes, in column "\# red. states" we report the number of states of the reduced FSM. This number coincides with the number of nodes of the final BDD and represents the exact solution of the BDD minimization problem. Instead, the column denoted with the label "heuristic" presents the solutions obtained using the restrict operator [7], a well-known heuristic algorithm for BDD minimization; equal solutions are obtained using the constrain operator [6] (also known as generalized cofactor [18]) ${ }^{3}$. Therefore, IMAGEM is the first exact algorithm that helps to evaluate the quality of the heuristics for BDD minimization on an interesting set of examples.

[^2]| example | $\begin{array}{r} \hline \# \\ \text { orig. } \\ \text { states } \end{array}$ | compat. | filtered compat. | prime compat. | $\begin{array}{r} \# \\ \text { red. } \\ \text { states } \end{array}$ | heuristic | IMAGEM
 CPU time
 (sec) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| alu1 | 95 | $1.025649 \mathrm{e}+21$ | 841993 | 1204 | 6 | 6 | 7409.97 |
| br1 | 74 | $2.99581 \mathrm{e}+18$ | 799173 | 329 | 6 | 11 | 1313.91 |
| br2 | 51 | $5.937363 \mathrm{e}+14$ | 53687 | 78 | 3 | 8 | 14.59 |
| clpl | 50 | $1.467671 \mathrm{e}+13$ | 7559 | 39 | 3 | 13 | 12.39 |
| dc2 | 46 | $8.277148 \mathrm{e}+10$ | 8831 | 98 | 8 | 12 | 57.66 |
| exp | 54 | $2.695432 \mathrm{e}+11$ | 10638 | 25 | 3 | 3 | 31.34 |
| exps | 71 | $1.8345 \mathrm{e}+10$ | 3810 | 125 | 43 | 44 | 44.79 |
| in0 | 151 | $2.622416 \mathrm{e}+25$ | 1680740 | 1323 | 42 | 44 | 18201.76 |
| in3 | 173 | $5.060229 \mathrm{e}+39$ | 587880 | 12 | 9 | 14 | 1755.21 |
| inc | 35 | $1.119744 \mathrm{e}+07$ | 364 | 26 | 12 | 13 | 3.84 |
| intb | 189 | $4.884137 \mathrm{e}+46$ | $3.891123 \mathrm{e}+14$ | - | - | 69 | spaceout |
| mark1 | 71 | $7.487812 \mathrm{e}+18$ | 8049 | 35 | 4 | 5 | 41 |
| newapla | 52 | $1.24299 \mathrm{e}+12$ | 3252 | 33 | 10 | 11 | 41.5 |
| newapla1 | 57 | $8.766887 \mathrm{e}+14$ | 8733 | 63 | 6 | 6 | 141.66 |
| newapla2 | 19 | 93311 | 137 | 6 | 5 | 5 | 0.49 |
| newbyte | 16 | 20735 | 127 | 9 | 5 | 5 | 0.41 |
| newcond | 165 | $3.825623 \mathrm{e}+31$ | $7.484552 \mathrm{e}+12$ | - | - | 54 | spaceout |
| newcpla2 | 39 | $3.396557 \mathrm{e}+08$ | 477 | 68 | 10 | 21 | 5.72 |
| newcwp | 16 | 10367 | 106 | 10 | 6 | 11 | 0.39 |
| newtpla | 94 | $1.265561 \mathrm{e}+23$ | 411525 | 148 | 7 | 23 | 469.14 |
| newtpla1 | 39 | $6.912 \mathrm{e}+09$ | 1441 | 31 | 4 | 5 | 4.45 |
| newtpla2 | 26 | 3149279 | 158 | 9 | 9 | 9 | 0.9 |
| newxcplal | 39 | $4.470682 \mathrm{e}+09$ | 1473 | 35 | 5 | 10 | 5.13 |
| p82 | 16 | 15551 | 102 | 10 | 7 | 7 | 0.4 |
| prom1 | 65 | $5.189184 \mathrm{e}+09$ | 382 | 77 | 50 | 50 | 30.04 |
| prom2 | 33 | $2.17728 \mathrm{e}+08$ | 446 | 38 | 12 | 12 | 3.33 |
| sex | 28 | $1.679616 \mathrm{e}+07$ | 419 | 16 | 5 | 5 | 1.62 |
| spla | 155 | $1.647427 \mathrm{e}+39$ | $1.401835 \mathrm{e}+12$ | - | - | 8 | spaceout |
| sqn | 41 | $1.05336 \mathrm{e}+07$ | 173 | 43 | 19 | 19 | 9.13 |
| t4 | 68 | $5.108787 \mathrm{e}+14$ | 31775 | 157 | 9 | 11 | 89.98 |
| vg2 | 150 | $3.655064 \mathrm{e}+36$ | $4.038678 \mathrm{e}+07$ | - | - | 14 | timeout |
| wim | 14 | 4319 | 82 | 8 | 6 | 6 | 0.26 |

Table 2: Results on problems from the Espresso benchmark suite

Moreover, as we discussed in Section 1, there are specific applications, as for instance inductive learning, where from one side BDD's are used as very effective representation scheme, but on the other side heuristic algorithms return unsatisfactory solutions. The results reported in table 1 show that IMAGEM returns the exact solution for a class of non trivial problems.

The last column contains the time spent by IMAGEM to find the solution: all run times are reported in CPU seconds on a DEC Alpha (300 Mhz) with 2Gb of memory. For all experiments, "timeout" has been set at 21600 seconds of CPU time and "spaceout" at 2 Gb of memory.

10 Conclusions

This paper addresses the problem of binary decision diagram (BDD) minimization in the presence of don't care sets. Specifically, given an incompletely specified function g and a fixed ordering of the variables, we propose an exact algorithm for selecting f such that f is a cover for g and the binary decision diagram for f is of minimum size. We show that the minimum-sized binary decision diagram compatible with the specification can be found by solving a problem that is very similar to the problem of reducing an ISFSM. The approach described is the only known exact algorithm for this problem not based on the enumeration of the assignments to the points in the don't care set.

We show that this minimization problem can be formulated as a binate covering problem and solved using implicit enumeration techniques. We have implemented this algorithm and performed experiments, by means of which exact solutions for an interesting benchmark set were computed. In particular we could solve exactly some non-trivial examples from the learning literature, where quality of the solution is of paramount importance.

The current bottleneck of our implicit computation is the step from filtered compatibles to prime compatibles. It would be interesting to study new techniques for the implicit computation of prime compatibles or of a superset of them, in order to enlarge the set of examples that can be solved exactly.

11 Acknowledgments

The authors thank Timothy Kam for discussions on the reduction of BDD minimization to FSM state minimization and Thomas Shiple for discussions on BDD minimization and pointers to the literature.

References

[1] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam's razor. Inform. Proc. Lett., 24:377-380, April 1987.
[2] K. Brace, R. Rudell, and R. Bryant. Efficient implementation of a BDD package. In The Proceedings of the Design Automation Conference, pages 40-45, June 1990.
[3] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, 1984.
[4] R. Bryant. Graph based algorithm for Boolean function manipulation. In IEEE Transactions on Computers, pages C-35(8):667-691, 1986.
[5] S.-C. Chang, D.I. Cheng, and M. Marek-Sadowska. Minimizing ROBDD size of incompletely specified multiple output functions. In The Proceedings of the European Design and Test Conference, pages 620-624, March 1994.
[6] O. Coudert, C. Berthet, and J. C. Madre. Verification of sequential machines using functional Boolean vectors. Proceedings of the IFIP International Workshop, Applied Formal Methods for Correct VLSI Design, November 1989.
[7] O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequential machines based on symbolic execution. Proceedings of the Workshop on Automatic Verification Methods for Finite State Systems, vol. 407 of Lecture Notes in Computer Science, pages 365-373, June 1989.
[8] A. Grasselli and F. Luccio. A method for minimizing the number of internal states in incompletely specified sequential networks. IRE Transactions on Electronic Computers, EC-14(3):350-359, June 1965.
[9] K. Hirata, S. Shimozono, and A. Shinoara. On the hardness of approximating the minimum consistent OBDD problem. In The Fifth Scandinavian Workshop on Algorithm Theory, July 1996.
[10] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. A fully implicit algorithm for exact state minimization. In The Proceedings of the Design Automation Conference, pages 684-690, June 1994.
[11] L. Lavagno, P. McGeer, A. Saldanha, and A. L. Sangiovanni-Vincentelli. Timed Shannon Circuits: A PowerEfficient Design Style and Synthesis Tool. In Proceedings of the $32^{\text {th }}$ Design Automation Conference, pages 254-260, June 1995.
[12] A. Oliveira, L. Carloni, T. Villa, and A. Sangiovanni-Vincentelli. Exact minimization of binary decision diagrams using implicit techniques. Tech. Report No. UCB/ERL M96/16, April 1996.
[13] Arlindo L. Oliveira. Inductive Learning by Selection of Minimal Complexity Representations. PhD thesis, University of California, Berkeley, Electronics Research Laboratory, College of Engineering, University of California, Berkeley, CA 94720, December 1994. Memorandum No. UCB/ERL M94/97.
[14] R. Ranjan, T. Shiple, and R. Hojati. Exact minimization of BDDs using don't cares. EE2901s Project Report, May 1993.
[15] M. Sauerhoff and I. Wegener. On the complexity of minimizing the OBDD size for incompletely specified functions. Forschungsbericht Nr. 560, Universität Dortmund, 1994.
[16] T. Shiple, R. Hojati, A. Sangiovanni-Vincentelli, and R. Brayton. Heuristic minimization of BDDs using don't cares. In The Proceedings of the Design Automation Conference, pages 225-231, June 1994.
[17] Yasuhiko Takenaga and Shuzo Yajima. NP-completeness of minimum binary decision diagram identification. Technical Report COMP 92-99, Institute of Electronics, Information and Communication Engineers (of Japan), March 1993.
[18] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit state enumeration of finite state machines using BDD's. The Proceedings of the International Conference on Computer-Aided Design, pages 130-133, November 1990.

Appendix A Proofs of lemmas and examples

The appendix contains some material not included in the paper for reasons of limited space.

A. 1 Proofs of Lemmas

Lemma 4.1 If $n_{i} \approx n_{j}$ then $n_{i} \sim n_{j}$.
Proof: If $n_{i} \not \nsim n_{j}$, then there is a minterm m such that $n_{i}(m) \nsim n_{j}(m)$. Any completely specified function h will assign a unique value to m, and therefore cannot be compatible with both n_{i} and n_{j}. \square

Lemma 4.2 If $\mathcal{L}\left(n_{i}\right)=\mathcal{L}\left(n_{j}\right)$ then $n_{i} \sim n_{j} \Rightarrow n_{i} \approx n_{j}$.
Proof: The completely specified function h required to satisfy definition 4.2 can be obtained by setting $h_{\text {on }}=n_{j_{\text {on }}} \cup n_{\text {ion }}$ and $h_{\text {off }}=\overline{h_{\text {on }}}$. Since h depends only on the variables common to the supports of n_{i} and n_{j}, it can be used in definition 4.2 to show that $n_{i} \approx n_{j}$.

Lemma 4.3 Let s_{i} be a set of nodes belonging to the same level. Then, s_{i} is a compatible iff all nodes in s_{i} are pairwise common support compatible.

Proof: To prove the if direction, note that, by the hypothesis, it can never happen that given a minterm m there are two nodes n_{j} and n_{k} in s_{i} that are CSC and satisfy $n_{j}(m)=n_{z}$ and $n_{k}(m)=n_{o}$. This would violate lemma 4.1. The function h that is needed to prove that s_{i} is a compatible set is the function h that has the value 0 for m if some n_{j} exists that satisfies $n_{j}(m)=n_{z}$ and has the value 1 for m if some n_{k} exists that satisfies $n_{k}(m)=n_{o}$ (the value for minterms not defined in this way can be chosen arbitrarily). Moreover $\mathcal{L}(h)=\mathcal{L}_{\text {max }}\left(s_{i}\right)$, since all nodes of s_{i} are at the same level as h. If one does not assume that all nodes of s_{i} belong to the same level, it is not guaranteed that h satisfies $\mathcal{L}(h) \geq \mathcal{L}_{\text {max }}\left(s_{i}\right)$, and one can build counterexamples to the lemma.

To prove the only if direction, note that if s_{i} is a compatible, then the function h referred to in definition 4.3 is compatible with any pair of nodes in s_{i}, thereby showing that they are pairwise CSC.

Lemma 4.4 If $\mathcal{L}\left(n_{i}\right)=\mathcal{L}\left(n_{j}\right)$ then $n_{i} \approx n_{j} \Rightarrow\left(n_{i}^{\text {else }} \approx n_{j}^{\text {else }} \wedge n_{i}^{\text {then }} \approx n_{j}^{\text {then }}\right)$.
Proof : By contradiction. Since F is complete, the successors are at the same level. Therefore, by lemma 4.2, $n_{i}^{\text {else }} \not \approx n_{j}^{\text {else }} \Rightarrow n_{i}^{\text {else }} \nsim n_{j}^{\text {else }}$ and a minterm m can be selected in such a way that $n_{i}^{\text {else }}(m) \nsim n_{j}^{\text {else }}(m)$ and $m_{\mathcal{L}\left(n_{i}\right)}=0$. The existence of this minterm shows that $n_{i} \not \nsim n_{j}$ and therefore that $n_{i} \not \approx n_{j}$. A similar argument is true for the then branch. Therefore, $n_{i}^{\text {else }} \not \approx n_{j}^{\text {else }} \vee n_{i}^{\text {then }} \not \approx n_{j}^{\text {then }} \Rightarrow n_{i} \not \approx n_{j}$.

Lemma 4.5 If $\mathcal{L}\left(n_{i}\right)<\mathcal{L}\left(n_{j}\right)$ then $n_{i} \approx n_{j} \Rightarrow\left(n_{i}^{\text {else }} \approx n_{j} \wedge n_{i}^{\text {then }} \approx n_{j} \wedge n_{i}^{\text {else }} \approx n_{i}^{\text {then }}\right)$.
Proof: By contradiction. If $n_{i}^{\text {else }} \not \approx n_{j}$ then, for any completely specified functions h at level $\mathcal{L}\left(n_{j}\right)$ or higher a minterm m can be selected in such a way that $n_{i}^{\text {else }}(m) \nsucc h(m)$ and $m_{\mathcal{L}\left(n_{i}\right)}=0$. This minterm shows that $n_{i} \nsim h$, thereby showing that $n_{i} \not \approx n_{j}$. Identically for the then branch. If $n_{i}^{\text {else }} \not \approx n_{i}^{t h e n}$ then by lemma 4.2 there are minterms w and m such that $n_{i}^{\text {else }}(w) \nsim n_{i}^{\text {then }}(w) \wedge w_{\mathcal{L}\left(n_{i}\right)}=0$ and $n_{i}^{\text {else }}(m) \nsim n_{i}^{\text {then }}(m) \wedge m_{\mathcal{L}\left(n_{i}\right)}=1$. These minterms can be chosen to differ only in the value of the variable $x_{\mathcal{L}\left(n_{i}\right)}$ and lead to incompatible terminal nodes. Therefore, n_{i} cannot be compatible with any function h such that $\mathcal{L}(h)>=\mathcal{L}\left(n_{j}\right)$, thereby showing that $n_{i} \not \approx n_{j}$.

Lemma 4.6 $n_{i} \approx n_{j} \Rightarrow \exists e \in E$ s.t. $e=\left(g_{i}, g_{j}\right) \Rightarrow n_{i} \sim n_{j}$.
Proof : The first implication follows from lemmas 4.4 and 4.5 and the algorithm definition. Given this lemmas, the algorithm only removes edges that are between nodes that are not CSC. Let us prove the second implication by contradiction. Now, let $I=\mathcal{L}\left(n_{i}\right)$ and $J=\mathcal{L}\left(n_{j}\right)$ and assume that $n_{i} \nsim n_{j}$ and that $I \leq J$. Then, there exists a minterm m such that $n_{i}(m) \nsim n_{j}(m)$. Let $n_{a_{I}}, n_{a_{I+1}} \ldots n_{a_{N+1}}$ be the sequence of nodes defined by minterm m in the BDD between the level I and $N+1$, starting at n_{i}. Let $n_{b_{J}}, n_{b_{J+1}} \ldots n_{b_{N+1}}$ be the sequence of nodes defined by minterm m between level J and $N+1$ starting at node n_{j}. Then, because $n_{a_{N+1}}$ and $n_{b_{N+1}}$ are the terminal nodes and there is no edge between them, after k steps, the edge between node $g_{a_{N+1-k}}$ and node $g_{b_{N+1-k}}$ will have been removed because of condition 2. This will happen for k such that $N+1-k>=J$. For k such that $N+1-k<J$, the edge between $g_{a_{N+1-k}}$ and $g_{b_{J}}$ will have been removed because of condition 3 .

Lemma 5.1 If a set s_{i} of nodes are a clique of G and $C_{l}\left(s_{i}\right) \subseteq s_{i}$, then s_{i} is a compatible set.

Proof : Let k be the maximum level of any node in s_{i}. The definition of $C_{l}\left(s_{i}\right)$ implies that $C_{l}\left(s_{i}\right)$ includes all the nodes of s_{i} at level k that are descendents of some node in s_{i}. Call these nodes the foundation of s_{i}. Because these nodes are a clique of G (or else they wouldn't be in s_{i}), they are all pairwise compatible, by lemma 4.6. Because they are at the same level, lemma 4.2 implies that they are pairwise CSC. Therefore, by the result of lemma 4.3 these nodes are a compatible set. This implies that there exists a completely specified function h at the level $\mathcal{L}_{\text {max }}\left(s_{i}\right)$ that is compatible with every node in the foundation of s_{i}. To finish the proof, we need to show that this function must be also compatible with every other node in s_{i}. To show this, assume that h is not compatible with some node n_{j} in s_{i}. Then, there must exist a minterm m such that $n_{j}(m) \nsim h(m)$. This minterm defines a path in the BDD that goes through a node n_{k} in the foundation of s_{i}. Since $n_{k}(m) \nsucc h(m), n_{k}$ and h are not compatible, which violates the assumption that h is compatible with every node in the foundation of s_{i}. Therefore h must be compatible with every node in s_{i}, thereby satisfying definition 4.3.

Lemma 6.1 R is an Ordered BDD compatible with F.

Proof : Since the cover is closed, steps 3 and 4 four are always feasible. Any path in F that leads to a 1 or a 0 will lead to the corresponding terminal node in R. Finally, there will never be edges going upward in R because the node that results from a set s_{i} is at the lowest level of all the nodes in s_{i}.

Theorem 6.1 The BDD induced by a minimum closed cover for G is the $B D D$ in \mathcal{B} with minimum number of nodes.
Proof : Given the result in lemma 6.1 it is sufficient to prove that there exists at least one closed cover of cardinality equal to the size of the minimum BDD in B.

Let U be a BDD in \mathcal{B} with minimum number of nodes k. For each node in U, u_{i}, create a set s_{i} such that g_{j} is in s_{i} iff $n_{j} \sim u_{i}$ and $\mathcal{L}\left(n_{j}\right) \leq \mathcal{L}\left(u_{i}\right)$. Let $S=\left\{s_{1}, s_{2} \ldots s_{k}\right\}$. We will show that S satisfies all the conditions in definition 5.4:

1. (S covers G) We show that the assumption that some g_{i} at level l is not in some set of S leads to a contradiction: let m be a minterm that defines a path in F that starts at the root and goes through n_{i}. Let M be the set of all minterms that have the same values as m for $x_{1} \ldots x_{l-1}$. Each one of these minterms will define a path in U that goes through some node u_{j} in U at a level equal or higher than l. Since $n_{i} \nsim u_{j}$ (by the hypothesis) there exists a minterm $m^{\prime} \in M$ such that $u_{j}\left(m^{\prime}\right) \nsim n_{i}\left(m^{\prime}\right)$. For this minterm $m^{\prime}, n_{0}\left(m^{\prime}\right) \nsim u_{0}\left(m^{\prime}\right)$, thereby contradicting the assumption that U is compatible with F.
2. (All $s_{i} \in S$ are cliques of G) Since each node in s_{i} is compatible with a completely specified function $\left(u_{i}\right)$ they satisfy definition 4.3 and therefore, by lemma 4.1, they are a clique of G.
3. (S is closed with respect to the e and t labels) Let u_{i} be a node in $U, u_{a}=u_{i}^{\text {else }}$ and $u_{b}=u_{i}^{\text {then }}$. Let $b_{i}=\left\{g_{j} \in s_{i}: \mathcal{L}\left(g_{j}\right)=\mathcal{L}_{\max }\left(s_{i}\right)\right\}$. For each node $g_{j} \in b_{i}, n_{j} \sim u_{i}$ implies $u_{a} \sim n_{j}^{\text {else }}$ and $u_{b} \sim n_{j}^{\text {then }}$. Therefore, $C_{e}\left(s_{i}\right) \subseteq s_{a}$ and $C_{t}\left(s_{i}\right) \subseteq s_{b}$.
4. (S is closed with respect to the l labels) Suppose $C_{l}\left(s_{i}\right) \not \subset s_{i}$. Then, there must be a node n_{w} such that $g_{w} \in s_{i}$ at level $l<\mathcal{L}\left(u_{i}\right)$ and $g_{w}^{\text {else }} \notin s_{i}$ or $g_{w}^{\text {then }} \notin s_{i}$. Assume the first is true and let $n_{w}^{\text {else }}=n_{a} ; n_{a}$ is not compatible with u_{i} (or else it would be in s_{i}) and depends only on the variables $\left\{x_{l+1} \ldots x_{n}\right\}$. Therefore, there exists a minterm m such that $u_{i}(m) \nsim n_{a}(m)$ and $m_{l}=0$. This minterm shows that $n_{w} \nsim u_{i}$ which contradicts the hypothesis that g_{w} is in s_{i}.

Therefore, S is a closed clique cover for G and it has cardinality k.

A. 2 Transformation of BDD Minimization to FSM Reduction

Let F be the 3TBDD that should be minimized, and consider the FSM with a state transition graph (STG) obtained from F in the following way:

- Initialize the STG with a graph isomorphic to the 3 TBDD , with nodes $S_{0}, S_{1}, \ldots, S_{o}, S_{z}, S_{x}$ each one corresponding to one node in F.
- Add a new node, S_{f}.
- Add transitions from S_{z}, S_{o} and S_{x} to S_{f}, labeled $-/ 0,-/ 1$ and $-/-$, respectively.
- Add a transition from S_{f} to S_{f} labeled $-/-$.

Figure 8: The STG that corresponds to the 3TBDD F defined in figure 2.

As an example, consider the FSM obtained from the 3TBDD in figure 2, shown in figure 8 .
This transformation leads to our final important result. Let M be the incompletely specified FSM with the state transition graph obtained from F by the procedure outlined above and let G^{\prime} be the compatibility graph for this finite state machine built in the following way:

- There is an edge between nodes g_{i}^{\prime} and g_{j}^{\prime} in G^{\prime} if states n_{i}^{\prime} and n_{j}^{\prime} are compatible, in the FSM reduction sense.
- Edges of G^{\prime} are labeled in accordance with algorithm 4.1

Note that the structure of graph G^{\prime} reflects the compatibility between states of M defined as for FSM reduction. Therefore, G^{\prime} can be computed using the standard procedures for FSM minimization. However, this means that G^{\prime} is not isomorphic to G, defined by algorithm 4.1. In particular, any two nodes that are at different levels in G^{\prime} are compatible for FSM reduction, and so G^{\prime} always has an edge between g_{i}^{\prime} and g_{j}^{\prime} if $\mathcal{L}\left(g_{i}^{\prime}\right) \neq \mathcal{L}\left(g_{j}^{\prime}\right)$, and therefore the second implication in lemma 4.6 is not true, in general.

The following lemma establishes that the cliques of G and the cliques of G^{\prime} that are closed with respect to the l class are exactly the same.

Lemma A. 1 A set $s_{i}^{\prime}=\left\{g_{a_{1}}^{\prime} \ldots g_{a_{k}}^{\prime}\right\}$ is a clique of G^{\prime} satisfying $C_{l}\left(s_{i}^{\prime}\right) \subseteq s_{i}^{\prime}$ iff $s_{i}=\left\{g_{a_{1}} \ldots g_{a_{k}}\right\}$ is a clique of G satisfying $C_{l}\left(s_{i}\right) \subseteq s_{i}$.

Proof : Since the edges of G^{\prime} are a superset of the edges of G and the labels are the same, is is clear that to any clique of G containing $C_{l}\left(s_{i}\right)$ there corresponds a clique of G^{\prime} satisfying that condition. To prove the other direction, note that for any two nodes in G^{\prime} at the same level, the presence of an edge in G^{\prime} implies that they are compatible, both in the sense of FSM reduction and according to definition 4.1. Therefore, the rightmost implication of lemma 4.6 is valid for nodes that are at the same level. The proof of lemma 5.1 only uses this implication for nodes at the same level, namely the nodes in the foundation of s_{i} defined in that lemma. Therefore, lemma 5.1 is still true if G is replaced by G^{\prime} implying that any set s_{i}^{\prime} in G^{\prime} that satisfies $C_{l}\left(s_{i}^{\prime}\right) \subseteq s_{i}^{\prime}$ corresponds to a compatible of G^{\prime}, according to definition 4.3. Therefore, the corresponding set s_{i} in G is a clique. Because the labels are the same for any edges common to both G and $G^{\prime}, C_{l}\left(s_{i}\right) \subseteq s_{i}$.

Corollary A.1 A minimum closed cover for M satisfying definition 5.4 when G is replaced by G^{\prime} induces a minimum BDD compatible with F, in accordance with theorem 6.1.

Proof: Since the compatibles that can be part of the cover are the same in both G^{\prime} and G, this result follows directly from theorem 6.1.

A. 3 Example

Figure 8 illustrates the companion FSM obtained from the 3TBDD F shown in figure 2. The FSM has 2 pairs of incompatible states $\left(\left\{S_{3}, S_{4}\right\},\left\{S_{z}, S_{o}\right\}\right)$ while its set $\mathcal{C}(c)$ contains 575 compatibles. After filtering away by means of equation 2 the compatibles c that are not closed with respect to their l-class, 32 sets of compatibles are left:
$\left\{S_{d}\right\},\left\{S_{o}\right\},\left\{S_{o}, S_{d}\right\},\left\{S_{z}\right\},\left\{S_{z}, S_{d}\right\},\left\{S_{x}\right\},\left\{S_{x}, S_{z}\right\},\left\{S_{x}, S_{z}, S_{d}\right\},\left\{S_{x}, S_{o}\right\},\left\{S_{x}, S_{d}\right\},\left\{S_{x}, S_{o}, S_{d}\right\},\left\{S_{5}\right\}$, $\left\{S_{5}, S_{x}\right\},\left\{S_{5}, S_{x}, S_{z}\right\},\left\{S_{5}, S_{x}, S_{z}, S_{d}\right\},\left\{S_{5}, S_{x}, S_{o}\right\},\left\{S_{5}, S_{x}, S_{d}\right\},\left\{S_{5}, S_{x}, S_{o}, S_{d}\right\},\left\{S_{4}\right\},\left\{S_{4}, S_{5}\right\},\left\{S_{3}\right\}$, $\left\{S_{3}, S_{x}, S_{z}\right\},\left\{S_{3}, S_{x}, S_{z}, S_{d}\right\},\left\{S_{3}, S_{5}\right\},\left\{S_{3}, S_{5}, S_{x}, S_{z}\right\},\left\{S_{3}, S_{5}, S_{x}, S_{z}, S_{d}\right\},\left\{S_{2}\right\},\left\{S_{1}\right\},\left\{S_{1}, S_{2}\right\}$, $\left\{S_{1}, S_{4}, S_{5}\right\},\left\{S_{0}\right\},\left\{S_{0}, S_{1}, S_{2}\right\}$.

Using the computation of the implied classes $\mathcal{F}(c, i, n)$ of equation 3 the following 8 primes are identified from the previous 32 compatibles:
$\left\{S_{0}\right\},\left\{S_{0}, S_{1}, S_{2}\right\},\left\{S_{1}\right\},\left\{S_{1}, S_{4}, S_{5}\right\},\left\{S_{2}\right\},\left\{S_{3}, S_{5}, S_{x}, S_{z}, S_{d}\right\},\left\{S_{4}\right\},\left\{S_{5}, S_{x}, S_{o}, S_{d}\right\}$.
Among the 8 primes, there are 2 essential primes:
$\left\{S_{3}, S_{5}, S_{x}, S_{z}, S_{d}\right\},\left\{S_{5}, S_{x}, S_{o}, S_{d}\right\}$
and 6 nonessential primes:
$\left\{S_{0}\right\},\left\{S_{0}, S_{1}, S_{2}\right\},\left\{S_{1}\right\},\left\{S_{1}, S_{4}, S_{5}\right\},\left\{S_{2}\right\},\left\{S_{4}\right\}$.
After solving the binate covering problem, 2 nonessential primes are chosen:
$\left\{S_{0}, S_{1}, S_{2}\right\},\left\{S_{1}, S_{4}, S_{5}\right\}$.
Hence, the final reduced FSM has the following 4 states:

$$
\begin{aligned}
& R_{0} \leftarrow\left\{S_{0}, S_{1}, S_{2}\right\} \\
& R_{1} \leftarrow\left\{S_{1}, S_{4}, S_{5}\right\} \\
& R_{z} \leftarrow\left\{S_{3}, S_{5}, S_{x}, S_{z}, S_{d}\right\} \\
& R_{o} \leftarrow\left\{S_{5}, S_{x}, S_{o}, S_{d}\right\}
\end{aligned}
$$

and is described by the following state transition table:
$0 R_{0} R_{z}-$
$1 R_{0} R_{1}-$
$0 R_{1} R_{z}-$
$1 R_{0} R_{o}-$

- $R_{z} R_{z} 0$
- $R_{o} R_{o} 1$

This state transition table induces the BDD R shown on the right side of figure 4. R is an exact solution of the BDD minimization problem.

[^0]: ${ }^{1}$ A complete BDD will not, in general, be reduced.

[^1]: ${ }^{2} \exists x(\mathcal{F})(\forall x(\mathcal{F}))$ denotes the existential (universal) quantification of function \mathcal{F} over variables $x ; \Rightarrow$ denotes Boolean implication; \Leftrightarrow denotes XNOR; \neg denotes NOT.

[^2]: ${ }^{3}$ Notice that the sizes of the BDD obtained by the heuristic algorithms have been measured without considering complemented edges.

