An implicit formulation for exact BDD minimization

September 5, 1996

Abstract

This paper addresses the problem of binary decision diagram (BDD) minimization in the presence of don’t care
sets. Specifically, given an incompletely specified function g and a fixed ordering of the variables, we propose an
exact algorithm for selecting f such that f is a cover for g and the binary decision diagram for f is of minimum
size. The approach described is the only known exact algorithm for this problem not based on the enumeration of all
possible assignmentsto the points in the don’t care set. We also present a proof that this problem is NP-complete, a
result that was also recently obtained in an independent way by other authors.

We show that the BDD minimization problem can be formulated as a binate covering problem and solved using
implicit enumeration techniques. In particular, we show that the minimum-sized binary decision diagram compatible
with the specification can be found by solving a problem that is very similar to the problem of reducing incompletely
specified finite state machines. We report experiments of an implicit implementation of our algorithm, by means
of which a class of interesting examples was solved exactly. We compare it with existing heuristic algorithms, to
measure the quality of the latter.

1 Introduction

A completely specified Boolean function f isacover for an incompletely specified function g if thevalue of f agrees
with thevalue of ¢ for dl the pointsintheinput space where ¢ is specified. This paper describes an exact agorithm for
selecting f suchthat f isacover for g and the binary decision diagram (BDD) for f has a minimum number of nodes
(complemented edges are not considered here). For a given ordering of the variables, the BDD for f isunique[4] and
the problem has awell defined solution.

We show that thisminimization problem can be sol ved by selecting a minimum sized cover for agraph that satisfies
some additional closure conditions. In particular, we show that the minimum sized binary decision diagram compatible
with the specification can be found by solving a covering problem that is very similar to the covering problem
obtained using exact agorithms for the reduction of incompletely specified finite state machines (ISFSM) [8]. This
similarity makesit possibleto use implicit enumeration techniques devel oped for the purpose of ISFSM reduction [10]
to solve efficiently the BDD minimization problem. The manipulation of the characteristic functions of the sets of
compatibles and prime compatibl es, represented with ROBDDs[2], allowsthe generation of very large setsthat cannot
be enumerated explicitly, asit is demonstrated in the experiments.

The transformation presented in this paper and the algorithms devel oped for the solution are important for practical
and theoretical reasons.

From a practical point of view, there are applicationsin learning and logic synthesiswhere an high-quality solution
is of paramount importance. Thisrequires an exact algorithm to find those solutions or at least to validate the quality
of heuristic algorithms.

For instance, in inductive learning applications, the accuracy of the inferred hypothesesis strongly dependent on
the complexity of the result [1]. One possible and very effective representation scheme for inferred hypotheses are
BDDs. However, it was observed [13] that when BDDs are used as the representation scheme, existing heuristic
algorithmsfor BDD minimization find solutionsthat are so far from the minimum that makes them of little value for
this particular application.

The selection of the minimum BDD consistent with an incompletely specified function is important aso in
logic synthesis applications that use BDDs not only as a tool for representing discrete functions but also to derive
implementations that minimize some cost function. For instance, timed Shannon circuits[11] use the structure of the
BDD to derive low power implementations and stand to gain from agorithms for the reduction of BDDs. The same
holdsfor DCV S trees and multiplexer-based FPGAS.

An exact agorithm, even though unableto solvelargeinstances, hel psto measure thequality of heuristicalgorithms
by gauging them on instances where an exact solution can be found.

From a theoretica point of view, the transformation presented in this work is an elegant characterization of the
problem. We show in Section 3 that the problem is NP-complete, answering a question raised by Shipleet al. in[16].

Severa heuristic agorithms for the problem addressed here have been proposed. These agorithms are important
in applicationswhere the available degrees of freedom in the functions represented can be used to reduce the memory
requirements of BDD based agorithms. The restrict operator [7] and the constrain operator [6] (also known as
generalized cofactor [18]) are two heuristics used to assign the don't cares of a BDD. A comprehensive study of
heuristic BDD minimization has been presented in [16]. Another heuristic a gorithm has been reported in [5].

We are aware also of work for an exact algorithm [14] based on the enumeration of the different covers that can be
obtained by &l possible assignments of the don’t care points. A pruning technique reduces the enumeration process
thanksto aresult by Shiplethat changing the value of afunction f of n variables on aminterm (actually on acube) m
cannot change the size of the BDD for f by more than n nodes. The pruning is performed implicitly.

The remainder is organized as follows. Section 2 introduces basi ¢ definitionson BDDs and Section 3 has a proof
that BDD minimization is NP-complete. Sections 4, 5 and 6 describe respectively the compatibility graph, closed
clique covers and the generation of a minimum BDD. Minimization of BDDs is formulated as a variant of FSM
minimization in Section 7, while an implicit a gorithm to compute a minimum closed cover is presented in Section 8.
Results and conclusions are offered respectively in Sections 9 and 10. The appendix contains al the proofs of the
lemmas and theorems and describes with an example an application of the algorithm to a concrete case.

2 Preiminaries

A BDD is a rooted, directed, acyclic graph where each node is labeled with the name of one variable. and every
non-terminal node n; has one else and one then edge that point to the children nodes, % and n'"®", respectively. The
terminal nodesare n, and n,. By convention we will draw the el se (zero) edge as the edge pointing to left (west), and
the then (one) edge as the edge pointing to right (east).

Any minterm m in the input space induces a unique path in a BDD defined in the following way: start at the root
and take, at each node, the else or the then edge according to the value assigned by minterm m to the variable that is
thelabel of the current node until aterminal nodeisreached. A BDD correspondsto the completely specified Boolean
function f that has al the mintermsin f,, (and only these) inducing pathsin the BDD that terminatein n,. A BDD
is caled reduced if no two nodes exist that branch exactly in the same way, and it is never the case that al outgoing
edges of a given node terminate in the same node. For afixed ordering of the variables, the reduced ordered BDD for
agiven Boolean functionisunique. Thisimpliesthat reduced ordered BDDs are canonical representations of Boolean
functions and we will therefore use the notation n; to denote both the node in the BDD and the Boolean function to
which it corresponds. Unless stated otherwise, we will use ssimply the term BDD when we refer to areduced ordered
BDD.

Thelevel of anoden;, £(n;) istheindex of the variable tested at that node under the specific ordering used. The
level of the terminal nodesisdefined as N + 1, where N is the number of input variables. The maximum level of a
set s of nodes, Lmax(s), isthe maximum level of al thenodesin s. A BDD iscalled completeif al edges starting at
level i terminatein anode at level i + 1.1 Thelevel of afunction A, £(h), is defined as the level of aBDD node that
implements . If n; isanodein theBDD and m aminterm, n; (m) will be used to denote both the value of function
n; for minterm m and the termina node that m reaches when starting a n;. This notation is consistent because the
two terminal nodes stand for the constant functions 0 and 1. The index O will be reserved for the root of the BDD.
Therefore, if m isaminterm and 7' isthe BDD for f, ng(m) representsthevalue of f for minterm m.

A 3 Termina BDD (3TBDD) is defined in the same way asaBDD in al respects except that it has three terminal
nodes: n., n, and n,. A 3TBDD F' corresponds to the incompletely specified function f that has al mintermsin
fott s fac and fon terminatein n, n, and n,, respectively.

3 Complexity of the Problem

Consider the problem of minimum BDD identification.
Problem: MINIMUM BDD IDENTIFICATION (MBI)
Instance: A set of minterms, |abeled either positive or negative and an integer K.

Question: For a given fixed ordering, is there a BDD with less than K nodes that satisfies all the examples, i.e., a
BDD for afunction whose on-set covers the positive examples and whose off-set covers the negative ones ?

Takenaga and Yajima[17] proved that this problem is NP-complete, by reduction from graph K-colorability. The
problem we address in this paper isthe following:

Problem: EXACT BDD MINIMIZATION (EBM)
Instance: BDDsfor functions fon and fqc and an integer K.
Question: Istherea BDD with less than K nodes that implements a function that is a cover for f ?

Proof that it isin NP (dueto Shiple[16]):

Guess a BDD with fewer than K nodes. Check whether the guessed BDD implements afunction that isa cover of
f. This check can be donein time and space upper bounded by the product of the sizes of the BDDsfor fo, and fqc
and of the guessed BDD. This product is polynomial in the input size.

Proof that it isNP-hard:
Suppose we could solve this problem in polynomial time with a deterministic algorithm. Then we can aso solve
the MBI problem. To prove the result we need to prove two facts.

Fact 1. The BDD for agiven function f of v variables cannot have morethan n x v internal nodes, where n isthe
number of mintermsin f [14].

Proof of Fact 1: To verify this, consider al the paths through the BDD defined by all the mintermsin f. This set
of paths hasto go through each internal nodeinthe BDD for f at least once. Otherwise, there are nodes other than the
congtant node 0 in the BDD that are only reached by mintermsin the off set of f, thereby implying that the BDD is not
reduced. Because a minterm can only traverse v internal nodes, we obtain immediately the above result.

Fact 2. A BDD of afunction f : BY — B represented by n minterms can be constructed in O(n?v?logn)
operations.

1A complete BDD will not, in general, be reduced.

Proof of Fact 2: Build the BDD of f from the minterms by doing the following: first OR together each pair of
minterms. Then OR the results together, and keep doing this until the final result is computed. The number of such
iterationsk islogarithmicinn. At iterationi, one needs to perform no morethan n/(2¢) operationson BDDsno larger
than v x 2i~1 (the latter size is explained by Fact 1 that the BDD for f cannot have more than n x v internal nodes).
Therefore, per iteration one needs no more than n/(2)v2i~1y2/=1 = ny22i-2 dlementary operations, that is upper
bounded by n?v?, because i < logn. Since there are only logn iterations, the result can be built in time and space
n?v?logn.

It follows by Fact 2 that the BDDs for fon and fof can be constructed in time polynomia in the size of the
input instance of the MBI problem we want to solve. This implies that the BDD for fq4. can aso be constructed in
polynomial timein the size of the input of the MBI problem because it can be obtained by polynomial time bounded
BDD operations. To solve an MBI problem, simply transform it into an EBM problem and solve it. The resulting
solution will represent directly the answer to the original problem. O

After we reported thisresult [12], we were informed that an earlier proof had been published in a technical report
by Sauerhoff and Wegener [15]. Our result has been obtained independently and providesadifferent proof. In[15] itis
also proved that, under the hypothesisthat NP # P, the problem has neither approximation schemes nor polynomial time
approximation al gorithmsyielding solutionslarger than the minimum by only a constant factor or aslowly increasing
function. Findly, Hirata, Shimozono and Shinohara proved in [9] the related result that MBI is NP-hard (differently
from [17]) and that thereisa constant £ > 0 such that no polynomial algorithm can approximate MBI withintheratio
n® unlessP =NP.

Incidentally, the polynomial time procedure outlinedin the proof of Fact 2, together withtheresultsin [15] directly
imply the result of Hirata, Shimonozo and Shinonara, as the authors themselves point out in the concluding remarks
of [9].

4 The Compatibility Graph

Previous algorithms [14] for this problem used directly the BDD representation of fo, and for. The exact approach
described in this paper uses the 3TBDD F' that corresponds to theincompletely specified function f. F' isassumed to
be complete. If necessary, F' is made complete by adding extranodes that have the then and el se edges pointing to the
same node. In generd, the resulting 3TBDD is no longer reduced. Moreover, we suppose that 3TBDD does not use
complemented edges.

Definition 4.1 Two nodes n; and n; in F' are compatible (n; ~ n;) iff no mintermm exists that satisfies n; (m) =
n, Anj(m) = n, of n;(m) = n, An;(m) =n,.

This definitionimpliesthat n, and n, are not compatible between them and that n,, is compatible with any node
ina3TBDD.

Definition 4.2 Two nodes n; and n; in £ are common support compatible (n; ~ n;) iff there exists a completely
specified function ~ such that & ~ n; and h ~ n; and £(h) > max(L(n;), L(n;)).

The definitionimpliesthat n, % n, and n, = n;, for any node n;.

It is important, at this point, to understand the relationship between these two concepts. First, note that the
completely specified function h referred in definition 4.2 does not necessarily correspond to any nodein F. In fact,
in most cases, h will not correspond to any node in F', since most nodesin F' correspond to incompletely specified
functions.

The rel ationshi p between compatibility and common support compatibility (CSC) isgiven by thefollowinglemma:

Lemma4.l If ny X n; then ng ~ nj.

The reverse implication of lemma 4.1 is not true, in general. Figure 1 illustrates a situation where two nodes are
compatible but are not CSC. Nodes n; and n; are compatible because no minterm leadsto n,, for one of thisnodes and
to n, to the other. However, n; and n; are not common support compatible because no completely specified function
h that only depends on the second variable is compatible with both of them.

However, when two nodes bel ong to the samelevel, common support compatibility and compatibility are equival ent:

Lemma4.2 Ifﬁ(nl) = E(TL]) then n; ~ n; = N; X N;.

Figure 1: Nodesn; and n; are compatible but not common support competible.

The motivation for the definition of common support compatibility can now be made clear. Assume that two nodes
belong to different levels and are compatible. In principle, they could be replaced by a new node that implements a
function compatible with the functions of each node. In generd, this function may depend on variables that are not
on the support of the node &t the higher level. Assume thisnodeisn ;. Later, when we try to build the reduced BDD,
edges that are incident into n; will need to go upwards, against the variable ordering of the BDD. On the other hand,
if both nodes are common support compatible, then they can be replaced by a node that implements the compl etely
specified function h referred to in definition 4.2. Because this function only depends on the variables common to the
supports of both nodes, this problem will not arise.

The concept of common-support compatibility can be extended to sets of nodesin the natura way:

Definition 4.3 Thenodesintheset s; = {n1, na, ..., n, } arecommon support compatible iff there existsacompletely
specified function i such that (A ~ n;);=1,. s, and L(h) > Lmax(si).

Definition 4.4 A set of nodesthat are common support compatibleiscalled acompatible set or, simply, a compatible.

The definition of a compatible implies that any two nodes that belong to a compatible are pairwise common support
compatible. The reverseimplicationis not true, but the next lemma holds.

Lemma4.3 Let s; be a set of nodes belonging to the same level. Then, s; isa compatible iff all nodesin s; are
pai rwise common support compatible.

Definition 4.5 The compatibility graph, G = (V, E), is an undirected graph that contains the information about
which nodesin F' can be merged. Except for the terminal node n,;, each nodein F will correspond to one nodein V'
with the sameindex. Thelevel of anodein G isthe same asthe level of the corresponding nodein F. Smilarly, g§'s¢
and gt*¢" are the nodes that correspond to n$'*¢ and nt”¢".

Graph G isbuiltin such away that if nodes »; and n; are common support compatible then there exists an edge
between g; and g;. An edge may have labels. A label isa set of nodes that expresses the following requirement: if
nodes g; and ¢; are to be merged, then the nodesin the [abel also need to be merged. There are three types of labels:
e tand | labels. Thefollowing two lemmas justify the a gorithm by which graph G isbuilt:

Lemma4.4 If L(n;) = L(n;) thenn; & n; = (n{"*® & nf'*e Anthen s pihen),
Lemmad45 If £(n;) < £(n;) thenn; = nj = (n*e ~ nj A nthe" ~ n; A ngl*e ~ nthen),

The previoustwo lemmas justify the following algorithmto build the compatibility graph.
Algorithm 4.1

1. Initialize G with a complete graph except for edge (¢.,9,) that isremoved.

2. 1f L(g;) = L(g;) then the edge between g; and g; hastwo labels: an e label with {g5"*¢, g5} and a t label
with {gi"e”, gthen}. (By lemma 4.4.)

K3

3. 1f £(g:) < L(g;) edge (g:,9;) hasan | label with {g'*¢, gt g,}. (By lemma 4.5.)

Figure2: The3TBDD F' and the compatibility graph G. Nodes g5 and g, are not shown on the compatibility graph,
since they are common support compatible with every nodein the graph.

4. For all pairsof nodes (g;, g;) check if the edge between nodes g; and g, has a label that contains {¢., g, } and
there is no edge between g, and g,. If so, remove the edge between ¢; and g;. Repeat this step until no more
changes take place.

Figure 2 shows an example of the 3STBDD F obtained from f defined by the following sets. fon = {011, 111},
fort = {010, 110, 101} and the corresponding compatibility graph.

The existence of an edge in the incompatibility graph is related with common support compatibility and with
compatibility between pairs of nodes in the following way:

Lemmad.6 n; ~xn; = Je € Este= (gi,9;) = n;~n;.

It isimportant to notethat the reverse implicationsare not true. In particular, the existence of an edge between two
nodesin GG does not imply that they are common support compatible. Consider the 3STBDD shown in figure 3.

For this3TBDD the algorithm described above does not remove the edge between nodes go and g5 because there
are long range dependencies that can not by found by the smple minded algorithm used to prune avay edges. The
edge between go and g5 has thefollowing!/ label: {gs,91,92}.

do0
91
o “
Ug, 9o

Figure3: Nodesng and ns are not common support compatibl e but the compatibility graph does have an edge between
the corresponding nodes.

The edge between g1 and g5 hasthe! label {gs,94} and the edge between ¢, and g5 hasthe! 1abel {gs,93}. Because
ns is compatible with both n3 and n4, the edge between ¢, and g5 and the edge between g, and g5 are never removed.
Moreover n1 and n, are compatible. Therefore the edge between g and g5 is never removed. However, no function
depending only on the last variable can be compatible with ng, and therefore ng and ns are not common support
compatible.

5 Closed Clique Covers

A clique of graph G is a completely connected subgraph of G. To any set s of nodes that is a clique of G there are
associated class sets. If the nodesin s are to be merged into one, the nodes in its class sets are aso required to be in

the same set. Let s; = {g:,, 9i,-.-9:,, } Pe aset of nodes that form acliquein G. The following are the definitions of
thee, t and | classes of s;. Notice that for concision we may blur the distinction between the nodes ¢'s of G and the
corresponding nodes n’s of F'. Strictly speaking, cliques are defined on sets of ¢'s and compatibles on sets of n's.

Definition 5.1 Thee classof s;, C.(s;) istheset of nodes that are in some e label of an edge between a node g; and
gk in Si with ﬁ(nk) = E(TL]) = Emax(Si)-

Definition 5.2 Thet class of s;, C:(s;) isthe set of nodes that are in some ¢ label of an edge between a node ¢; and
9k in S with E(nk) = [,(77,]) = [,max(si).

Definition 5.3 The! classof s;, C(s;) isthe set of nodes that are in some { label of an edge between a node ¢; and
gk ins; With £(g;) # L(gx)

Lemmab.l If aset s; of nodesareacliqueof G and C(s;) C s;, then s; isa compatibleset.

Note that a clique of GG that does not satisfy the condition in lemma 5.1 is not necessarily a compatible set. For
instance, in the example in figure 3 the nodes {go, g1, 92, g5} are a clique of G but are not a compatible set, because

93 € Ci({g0, 91, 92, g5}) but g3 & {go, 91, 92, g5}
The agorithm that selects the minimum BDD compatible with the original functionworks by selecting nodes of ¢

that can be merged into one nodein thefinal BDD. If aset s of nodesin G isto be merged into one, the set s has to be
acompatible set. Therefore, it hasto be acliqueof G satisfying definition 5.3. The objectiveisto find a set of cliques
such that every nodein G is covered by at least one clique. However, to obtain a valid solution, some extra conditions
need to be imposed.

Definition 5.4 A set S = {s1, s2...s, } Of sets of nodesin G is called a closed clique cover for G if the following
conditionsare satisfied:

1 ScoversG:Vg; €G3s; €5 1g; €5
2. All s, arecliquesof G : Vg;,9; € sk : (9i,9;) € edges(G)

3. Sisclosed withrespect tothee and ¢ labels:
Vs; € 538]' €S :CS(SZ') - S; /\ Vs; € 538]' €S :Ct(si) - S;

4. All setsin S are closed with respect to the !/ labels: Vs; € S : Ci(s;) C s;

6 Generation of aMinimum BDD

From a closed clique cover for (G, areduced BDD R is obtained by the following algorithm:
Algorithm 6.1
1. For each s; in S, create a BDD nodein R, r;, at level Liax(s;)-

2. Let the nodesin R that correspond to sets s; containing nodes that correspond to terminal nodes in F' be the
new corresponding terminal nodes of R.

3. Let the else edge of the node r; go to the node r; that correspondsto a set s; such that C.(s;) C s;.

4. Let the then edge of the node r; go to the node r; that correspondsto a set s; such that Cy(s;) C s;.
Lemma6.1 Risan Ordered BDD compatiblewith F.

Now, themainresultfollows. Let 3 betheset of al BDDsthat represent functionscompatiblewith theincompletely
specified function f. Then, the following result holds:

Theorem 6.1 The BDD induced by a minimum closed cover for GG isthe BDD in 3 with minimum number of nodes.

Proof: see appendix.
Asan example, S = {{g0, 91, 92}, {94}, {93, 95, 9:}, {9, }} isaclosed cover for the example depicted in figure 2
and induces the BDD R shown on the right side of figure 4.

Figure4: The3TBDD F', the compatibility graph G and asolution R. Node g5 was arbitrarily included in compatible
{93,9:, 95}

7 Formulation of BDD Minimization as FSM Reduction

The definition of a closed cover is very similar to the standard definition of a closed cover used in the minimization
of finite state machines (FSMs). If the graph of a 3TBDD is viewed as the state transition graph of an FSM,
the agorithms developed for the minimization of FSMs can be used with some modifications. The two important
differences to consider are:

1. The definition of the e and ¢ classes and the closure requirement in point 3 of definition 5.4 are different from
the definitions used in standard FSM minimization. In BDD minimization, only nodes at the highest level in
some compatible define the e and ¢ classes, while in standard FSM minimization al nodes in a compatible set
are involved in the definition of these classes.

2. The requirement in point 4 of definition 5.4 means that some sets of nodes that satisfy the definition of a
compatible set in the FSM case do not satisfy the conditionsfor BDD minimization.

These two changes can be incorporated into existing algorithms for FSM minimization. In particular, the closure
conditionswith respect tothe e and ¢ |abel sare similar to the closure conditionsimposed in standard FSM minimization.
The restriction imposed by condition 4 in definition 5.4 simply eliminates some cliques of the compatibility graph
from consideration and can be implemented by afiltering step. The transformation from BDD minimization to FSM
reduction is shown in the appendix and its correctness is argued.

8 Implicit Computation of a Minimum Closed Cover

We will use the unified implicit framework proposed in [10] 2. Implicit techniques are based on the idea of operating
on discrete sets by their characteristic functions represented by binary decision diagrams (BDDs) [4].

To perform state minimization, one needs to represent and manipulate efficiently sets of sets of states. With n
states, each subset of statesis represented in positional-set form, using aset of n Boolean variables, » = z125. .. z,,.
The presence of a state s in the set is denoted by the fact that variable zj takes the value 1 in the positional -set,
wheress z takesthevalue O if state s;, isnot amember of the set. For example, if n = 6, the set with asinglestate s4
isrepresented by 000100 whilethe set of states s,s3s5 s represented by 011010.

A set of sets of states S is represented in positional notation by a characteristic function ys : B* — B as.
xs(z) = Lif and only if the set of states represented by the positional-set z isintheset S. A BDD representing x s (z)
will contain minterms, each corresponding to a state set in S. Asan example, T'uple,, () denotesdl positional-sets
z with exactly k stetesinthem (i.e. |z| = k). For instance, the set of singleton statesis T'uple,, 1(z), the set of stete
pairsis Tuple, »(x), the set of full statesis Tuple,, »(z), and the set of empty statesis T'uple, o). An dternative
notetionfor Tuple,, () isTupleg(z).

Any relation R between pairsof sets.S; and S can berepresented by itscharacteristicfunctionR : B” x B™ — B
where R(z,y) = Lif and only if xs,(z) = 1, xs,(y) = 1 and the element of S; represented by = isin relation R
with the element of .S, represented by y. A similar definition holdsfor relations defined over more than two sets. For
example, we represent the state transition graph (STG) of an FSM by the characteristic functions of two relations:

23z (F) (Vz(F)) denotesthe existential (universal) quantification of function F over variables z;; = denotes Boolean implication; <> denotes
XNOR; — denotesNoT.

1. theoutput relation A, whereinput 7, present state p and output o arein A(z, p, o) if thereis an edge from p with
input/output label /0, and

2. the next state relation 7, where where input 7, present state p and next stete n arein relation 7 (4, p, n) if there
isan edge from p to n with input label i.

8.1 Implicit Generation of Compatibles

It has been shown in Section 7 that given a BDD minimization problem it is possible to generate a companion FSM
whose closed covers of compatibles correspond to closed clique covers of the BDD, if:

e FSM compatiblesthat do not satisfy the L-closure are discarded, and
e FSM compatible closureis replaced by E-closure and T-closure.

Our starting point is the fully implicit algorithm for exact state minimization reported in [10], to which we refer for
a complete description of the implicit computations. In the sequel we discuss the modifications needed to generate
closed clique covers of the BDD.

8.2 Implicit Computation of L-closure

We compute asin [10] the set of compatiblesC(c), whereC(c) = 1 iff cisthe positional set representing acompatible
of the companion FSM. When minimizing an FSM abtained from an instance of BDD minimization one must delete
from C(c) the compatibles c that are not closed with respect to their {-class. The(-class, C;(c), of acompatible c isthe
set of nodes that are in some -label of an edge between nodes g; and g, inc with £(g;) < L(gx). If L(g;) < L(gx)

then edge (g;, gx) hasthe!l-label {gj»lse, g§h€”, gk}

Lo(p) = r(p)

k=0

do {
Liy1(p) = [n — pl3p,i [Li(p) - T (i, p, n)]
k=k+1

buntil L 41(p) = Li(p)

Figure5: Computation of array L.

It is shown next how to capture the information on the level of the nodes. By construction, an FSM obtained
by BDD minimization is represented by a direct acyclic STG rooted at the unique reset state »; each node has two
successors, except the termina node that has a self-loop. Fig. 5 illustrates a procedure to build an array £(p), that
partitionsthe FSM states based on their distancefrom theroot: £ (p) isthe set of states associated to the nodes having
adistance k£ from r. Starting from » and visiting in breadth-first order the STG, one computes iteratively the array
eements Ly (p), using thetransition relation 7 (¢, p, n). Infact, state n isa successor of state p iff 3i 7 (¢, p, n).

Using the informations stored in £(p), one defines the order relation Level(p, u), for each couple of states (p, u)
inthe FSM. States p and u areinrelation Level(p, u) iff the distance of p from r isless than the distance of « from
r,i.e. formaly

Level(p,u) = 1< 335 {(i < j)|Li(p) - L;j(uw)} (1)

Fig. 6 illustrates the procedure to compute the global relation Level (p, u).
A compatible ¢ is pruned from the set of compatiblesC(c) if:

1. ¢ containsstates p and u that are in the order relation Level(p, u),
2. ¢ does not contain al the successors of p.
Hence, thefiltered set of compatiblesis given by:
C() = C(c)—3p{Fu[Tuples(p) - Tuples(u) - (¢ 2 p) - (¢ 2 w) - Level (p, u)]
In 3T (i, p,n)-(c 2 n)]} 2

Level(p,u) =0
for(i=0i < k;i++){
for each state T'uple1(p) € Li(p) {
for(j=4j<kj++){
for each state T'uples (u) € ([u — p]L;(p)) {
Level(p,u) = Level(p, u) + (Tuplei(p) - Tuples(u))

Figure 6: Computation of therelation Level(p, u).

8.3 Implicit Computation of E-closure and T-closure

In standard FSM minimization one requires closure with respect to implied sets. Given acompatible ¢ an implied set
under input 7 isthe set of next states from the statesin ¢ under i. Instead in the case of BDD minimization one must
compute the implied sets only from the states in ¢ of highest level. This requires a change in the computation of the
relation of theimplied classes F (e, i, n), which is used by the following procedures:

1. the computation of primes,
2. the set up of the binate clauses in the covering table,
3. the construction of areduced FSM.
The new computation for F(c, i, n) is described by the following equation:
F(e,i,n) = 3dp{3c [C(c) Max_Level(c,c') - (¢ D p)]-T(i,p,n)} (3)

Subsets of states ¢ and ¢’ are in relation Max_Level(c,c’), iff ¢ isthesubset of ¢ that contains the states of ¢ of
maximum level, i.e. the states having the largest distance from r in the STG of the FSM.

Maz_Level(c,d') = 0
Ci(c) =Cle)
for(j=k—-1,=0j—-—){

N N
MLj(e,e') = Ci(c) - AL (1) D (ln - ea)] - [[{ch © [en - 3U(ln - L;(1))]}
Maz_Level(c,c') = Ma:b_Levgl?g,)+ MEJ-:(lc,)
Ci(c) = Ci(c) = I [ML;(e,)

Figure 7: Computetion of theredation C(c).Max_Level(c,c’).

The computation of therelation C(c). M ax_Level(c, ¢') is based on the avail ability of £(p) and is summarized in
Fig. 7. For each level j starting from the maximum to the minimum, arelation ML (¢, ¢) is determined performing
N bitwise conjunctions, where N is the number of states. The n-th element of ¢’ is1 iff then-th dement of c is1
andithasleve j. ML;(c, ¢’) represents the pairs (c, ¢’) such that c isacompatible that contains at least one stete at
level j and no state at level greater than 7, and ¢’ has exactly the states of ¢ of level j. Before examining level j — 1,
Maz_Level(c, ¢') is updated adding the ements in M L; (¢, ¢’), and the sets ¢ dready in M L; (¢, ¢') are removed
from C(c). Noticethat the time complexity of the computation depends only linearly from the explicit parameters N,
number of states, and k&, number of levelsin the STG representation.

9 Reaults

Starting from the program 1sm for implicit state minimization [10] we developed IMAGEM, a hew program based on
the theory described in this paper for exact BDD minimization. In particular, we transformed the implicit algorithm
for exact state minimization in a new algorithm for the implicit computation of a minimum closed cover as described

in Section 8.

IMAGEM

example | orig. compat. filtered prime red. | heuristic | CPU time
states compat. | compat. | states (sec)

dnfa 64 | 2.435821e+12 1332186 89 14 16 517.29
dnfb 36 | 4.853883e+08 2987 94 6 12 11.85
dnfc 40 | 2.291224e+08 2613 102 10 15 12.94
dnfd 93 | 1.137739%+20 | 9.517899e+08 - - 23 timeout
dnfe 63 | 2.102303e+13 141179 509 6 12 217.29
dnff 62 | 2.184367e+11 92027 357 15 22 151.8
xor3 9 179 14 7 6 6 0.1
xor4 17 14975 118 13 6 6 0.43
xor5 24 608255 267 36 9 10 137
xoré 40 | 3.355914e+08 1329 170 13 20 13.98
xor7 57 | 2.791115e+11 3076 640 15 31 88.16
xor8 94 | 1.539147e+17 164929 21830 17 45 9041.11
ex.paper 10 575 32 8 4 4 0.17

Table 1: Results on Machine Learning Problems.

To evauate experimentally the a gorithms presented in this paper, we assembled two sets of problems: thefirst set
derivesdirectly from amachine |l earning application and the second set was obtai ned fromalogi ¢ synthesisbenchmark.
In all the problems, the original ordering specified for the variables was the ordering used.

For thefirst set of problems, 12 completely specified Boolean functions f; were used asthe starting point. For each
of these functions, arandomly selected set of mintermswas designated as the care set, resulting in a set of incompletely
specified Boolean functions ¢g;. The original objective was to identify the set of problems for which it is possible
to recover exactly the origina functions f; from the incompletely specified functions g;, thereby characterizing the
conditions under which it is possible to infer the original function from a training set [13]. For the purposes of this
work, thefunctions ¢; are used solely as a set of incompletely specified functions. An advantage that existsfor this set
isthat upper bounds on the size of the solution are well defined, because the BDD sizes for the f; are known. Under
certain conditions, these upper boundstend to become tight, with high probability, as the size of the problem increases,
providing a welcome check for the results obtained.

The second set of problemswas obtai ned by sel ecting asubset of the problemsthat are distributedwith Espresso [3],
awedl known two-level minimizer. More specifically, we included in this set of problems the functions that are the
first output from each of the PLAs that are included in the industry subset of the Espresso benchmark suite. From this
set, we eliminated all the functionsthat have anull don’t care set, since, for these functions, the problem istrivial.

Table 1 summarizes the results obtained from running the set of machine learning problems and Table 2 the ones
fromthe problemsderived from the Espresso benchmark suite. Thelast entry intable 1 isdenoted ex.paper and simply
refers to the case that has been presented in the paper to illustrate the theory.

For each example of a 3TBDD the number of states of the companion FSM is reported in the column denoted “#
orig. states’. This number is always equa to the number of nodes of the 3TBDD plus one because a new node is
added to the STG as explained in Section 7. The following two columns report the number of compatibles of the FSM
(i.e. thecardinality of the set C(¢)) and the number of compatibles after filtering as per Section 8.2 (i.e. theoneswhich
are closed with respect to their [-class). This step reduces the number of compatibles of many orders of magnitude.

Then, after the number of primes, in column “# red. states’ we report the number of states of the reduced FSM.
This number coincides with the number of nodes of the fina BDD and represents the exact solution of the BDD
minimization problem. Instead, the column denoted with the label “ heuristic’ presents the solutions obtained using
the restrict operator [7], a well-known heuristic algorithm for BDD minimization; equa solutions are obtained using
the constrain operator [6] (also known as generalized cofactor [18]) 3. Therefore, IMAGEM isthe first exact algorithm
that helpsto evaluate the quality of the heuristicsfor BDD minimization on an interesting set of examples.

3Notice that the sizes of the BDD obtained by the heuristic algorithms have been measured without considering complemented edges.

10

IMAGEM

example orig. compat. filtered prime red. | heuristic | CPU time
states compat. | compat. | states (sec)

alul 95 | 1.025649%+21 841993 1204 6 6 7409.97
brl 74 | 2.99581et+18 799173 329 6 11 1313.91
br2 51 | 5.937363et14 53687 78 3 8 14.59
clpl 50 | 1.467671e+13 7559 39 3 13 12.39
dc2 46 | 8.277148e+10 8831 98 8 12 57.66
exp 54 | 2.695432e+11 10638 25 3 3 31.34
exps 71 1.8345e+10 3810 125 43 44 44.79
in0 151 | 2.622416e+25 1680740 1323 42 44 | 18201.76
in3 173 | 5.060229e+39 587880 12 9 14 1755.21
inc 35 | 1.119744e+07 364 26 12 13 384
intb 189 | 4.884137e+46 | 3.891123et+14 - - 69 | spaceout
mark1 71 | 7.487812e+18 8049 35 4 5 41
newapla 52 | 1.24299%e+12 3252 33 10 11 415
newaplal 57 | 8.766887e+14 8733 63 6 6 141.66
newapla2 19 93311 137 6 5 5 0.49
newbyte 16 20735 127 9 5 5 041
newcond 165 | 3.825623e+31 | 7.484552e+12 - - 54 | spaceout
newcpla2 39 | 3.396557e+08 477 68 10 21 5.72
newcwp 16 10367 106 10 6 11 0.39
newtpla 94 | 1.265561e+23 411525 148 7 23 469.14
newtplal 39 6.912e+09 1441 31 4 5 445
newtpla2 26 3149279 158 9 9 9 0.9
newxcplal 39 | 4.470682e+09 1473 35 5 10 5.13
p82 16 15551 102 10 7 7 04
proml 65 | 5.189184e+09 382 77 50 50 30.04
prom2 33 | 2.17728e+08 446 38 12 12 333
sex 28 | 1.679616e+07 419 16 5 5 1.62
spla 155 | 1.647427e+39 | 1.401835e+12 - - 8 | spaceout
sgn 41 | 1.05336e+07 173 43 19 19 9.13

t4 68 | 5.108787et+14 31775 157 9 11 89.98
vg2 150 | 3.655064e+36 | 4.038678e+07 - - 14 timeout
wim 14 4319 82 8 6 6 0.26

Table 2: Results on problems from the Espresso benchmark suite

11

Moreover, as we discussed in Section 1, there are specific applications, as for instance inductive learning, where
from oneside BDD’sare used as very effective representation scheme, but on the other side heuristic algorithmsreturn
unsatisfactory solutions. The resultsreported in table 1 show that IMAGEM returnsthe exact solution for a class of non
trivial problems.

The last column contains the time spent by IMAGEM to find the solution: all run times are reported in CPU seconds
on a DEC Alpha (300 Mhz) with 2Gb of memory. For al experiments, “timeout” has been set a 21600 seconds of
CPU time and “spaceout” a 2Gb of memory.

10 Conclusions

This paper addresses the problem of binary decision diagram (BDD) minimization in the presence of don’'t care sets.
Specifically, given an incompletely specified function ¢ and a fixed ordering of the variables, we propose an exact
algorithm for selecting f such that f is acover for ¢ and the binary decision diagram for f is of minimum size. We
show that the minimum-sized binary decision diagram compatible with the specification can be found by solving a
problem that is very similar to the problem of reducing an |SFSM. The approach described is the only known exact
algorithm for this problem not based on the enumeration of the assignmentsto the pointsin the don’t care set.

We show that this minimization problem can beformulated as a binate covering problem and solved using implicit
enumeration techniques. We have implemented this algorithm and performed experiments, by means of which exact
solutions for an interesting benchmark set were computed. In particular we could solve exactly some non-trivial
examples from the learning literature, where quality of the solutionis of paramount importance.

The current bottleneck of our implicit computation is the step from filtered compatibles to prime compatibles. It
would be interesting to study new techniques for the implicit computation of prime compatibles or of a superset of
them, in order to enlarge the set of examples that can be solved exactly.

11 Acknowledgments

The authors thank Timothy Kam for discussions on the reduction of BDD minimization to FSM state minimization
and Thomas Shiplefor discussionson BDD minimization and pointersto the literature.

References

[1] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam'’s razor. Inform. Proc. Lett., 24:377-380,
April 1987.

[2] K. Brace, R. Ruddll, and R. Bryant. Efficient implementation of a BDD package. In The Proceedings of the
Design Automation Conference, pages 4045, June 1990.

[3] R.Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic Minimization Algorithmsfor VLS
Synthesis. Kluwer Academic Publishers, 1984.

[4] R. Bryant. Graph based agorithm for Boolean function manipulation. In IEEE Transactions on Computers,
pages C-35(8):667—691, 1986.

[5] S-C.Chang, D.I. Cheng, and M. Marek-Sadowska. Minimizing ROBDD size of incompletely specified multiple
output functions. In The Proceedings of the European Design and Test Conference, pages 620624, March 1994.

[6] O. Coudert, C. Berthet, and J. C. Madre. Verification of sequential machines using functional Boolean vectors.
Proceedings of the IFIP International Workshop, Applied Formal Methods for Correct VLS Design, November
1989.

[7] O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequential machines based on symbolic
execution. Proceedings of the Workshop on Automatic \erification Methods for Finite Sate Systems, vol. 407 of
Lecture Notesin Computer Science, pages 365-373, June 1989.

[8] A. Grassdlli and F. Luccio. A method for minimizing the number of internal states in incompletely specified
sequentia networks. |RE Transactions on Electronic Computers, EC-14(3):350-359, June 1965.

[9] K. Hirata, S. Shimozono, and A. Shinoara. On the hardness of approximating the minimum consistent OBDD
problem. In The Fifth Scandinavian Workshop on Algorithm Theory, July 1996.

12

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. A fully implicit algorithm for exact state mini-
mization. In The Proceedings of the Design Automation Conference, pages 684—690, June 1994.

L. Lavagno, P. McGeer, A. Saldanha, and A. L. Sangiovanni-Vincentelli. Timed Shannon Circuits: A Power-
Efficient Design Style and Synthesis Tool. In Proceedings of the 32!* Design Automation Conference, pages
254260, June 1995.

A. Oliveira, L. Carloni, T. Villa, and A. Sangiovanni-Vincentelli. Exact minimization of binary decision diagrams
using implicit techniques. Tech. Report No. UCB/ERL M96/16, April 1996.

Arlindo L. Oliveira. Inductive Learning by Sdlection of Minimal Complexity Representations. PhD thesis,
University of California, Berkeley, Electronics Research Laboratory, College of Engineering, University of
Cdlifornia, Berkeley, CA 94720, December 1994. Memorandum No. UCB/ERL M94/97.

R. Ranjan, T. Shiple, and R. Hojati. Exact minimization of BDDs using don’t cares. EE290Is Project Report,
May 1993.

M. Sauerhoff and I. Wegener. On the complexity of minimizing the OBDD size for incompletely specified
functions. Forschungsbericht Nr. 560, Universitat Dortmund, 1994.

T. Shiple, R. Hojati, A. Sangiovanni-Vincentdlli, and R. Brayton. Heuristic minimization of BDDs using don’t
cares. In The Proceedings of the Design Automation Conference, pages 225231, June 1994.

Yasuhiko Takenaga and Shuzo Yajima. NP-completeness of minimum binary decision diagram identification.

Technical Report COMP 92-99, Institute of Electronics, Information and Communication Engineers (of Japan),
March 1993.

H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit state enumeration of finite

state machines using BDD'’s. The Proceedings of the International Conference on Computer-Aided Design, pages
130-133, November 1990.

13

Appendix A Proofs of lemmas and examples

The appendix contains some materia not included in the paper for reasons of limited space.

A.1 Proofsof Lemmas

Lemma4.l If ni X n; then ng ~ nj.

Proof : If n; + nj;, then thereisa minterm m such thet n;(m) + n;(m). Any completely specified function A will
assign a unique value to m, and therefore cannot be compatiblewith both n; and n;. O

Lemma4.2 Ifﬁ(nl) = [,(77,]) thenn; ~ n; = N; K N;.

Proof : Thecompletely specified function i required to satisfy definition 4.2 can be obtained by setting A on = n; ,,Un;on

and hoft = hon. Since h depends only on the variables common to the supportsof n; and n 5, it can beused indefinition
4.2 to show that n; ~ n;. O

Lemma4.3 Let s; be a set of nodes belonging to the same level. Then, s; isa compatible iff all nodesin s; are
pai rwise common support compatible.

Proof: To provetheif direction, notethat, by the hypothesis, it can never happen that given aminterm m there are two
nodes n; and ny in s; that are CSC and setisfy n;(m) = n, and ng(m) = n,. Thiswould violatelemma 4.1. The
function A that is needed to prove that s; is a compatible set is the function 4 that has the vaue O for m if some n;
existsthat satisfies n;(m) = n, and hasthevalue 1 for m if some n;, exists that satisfies ny(m) = n, (thevalue for
minterms not defined in thisway can be chosen arbitrarily). Moreover £(h) = Lmaz(s:), Snceal nodes of s; are a
the same level as h. If one does not assume that al nodes of s; belong to the same level, it is not guaranteed that A
satisfies £(h) > Lmaex (si), and one can build counterexamples to the lemma

To prove the only if direction, note that if s; is a compatible, then the function A referred to in definition 4.3 is
compatible with any pair of nodesin s;, thereby showing that they are pairwise CSC. O
Lemmad.4 If L(n;) = L(nj) thenn; = n; = (nflse ~ njlse A nihen nz»he”).
Proof : By contradiction. Since F' is complete, the successors are at the same level. Therefore, by lemma 4.2,
ngte s nSse = nflse oL nsie and a minterm m can be selected in such a way that n§'**(m) o n5"*¢(m) and
mg(n,) = 0. The existence of this minterm showsthat n; £ n; and thereforethat n; % n;. A similar agument istrue
for thethen branch. Therefore, nf*® 4 n§"*¢ v ni"*" & nth* = n; g n;. O

Lemmad4s5 If £(n;) < L£(n;) thenn; = nj = (n'*° ~ nj A nlie" ~ n; Angl*e ~ nthen).

Proof : By contradiction. If n§*¢ % n; then, for any completely specified functions / at level £(n;) or higher a
minterm m can be selected in such away that nf'*¢(m) + h(m) and m,(,,) = 0. Thisminterm showsthat n; ¢ h,
thereby showingthat n; % n;. Identicaly for thethen branch. If ng'*¢ % nt"m then by lemma 4.2 there are minterms
w and m such that n§*®(w) # ni"*" (w) A wein,) = 0and n§*e(m) + ni"*"(m) A mg(,,) = 1. These minterms
can be chosen to differ only in the value of the variable z (., ;y and lead to incompatible terminal nodes. Therefore, n;
cannot be compatiblewith any function ~ such that £(h) >= L(n;), thereby showing that n; % n;. O

Lemmad.6 n; ~xn; = Je € Este= (gi,9;) = n;~n;.

Proof : The first implication follows from lemmas 4.4 and 4.5 and the algorithm definition. Given this lemmas,
the algorithm only removes edges that are between nodes that are not CSC. Let us prove the second implication by
contradiction. Now, let I = £(n;) and J = L(n;) and assume that n; % n; and that I < J. Then, there exists a
minterm m such that n;(m) # n;(m). Let na;,na,y,...nay,, e the sequence of nodes defined by minterm m in
the BDD between thelevel 7 and N + 1, starting at n;. Lét ny,,np,,,...ns,,, be the sequence of nodes defined by
minterm m between level J and N + 1 starting at node n;. Then, because n,,,, and n;, ., are the termina nodes
and there is no edge between them, after & steps, the edge between node g, ,,,,_, and node gy ,,_, Will have been
removed because of condition 2. Thiswill happen for k suchthat N +1—k >= J. Forksuchthaa N +1— £k < J,
the edge between g, ,,_, and g, , will have been removed because of condition 3. O

Lemmab.l If aset s; of nodesareacliqueof G and C(s;) C s;, then s; isa compatibleset.

14

Proof : Let £ be the maximum level of any nodein s;. The definition of C;(s;) impliesthat C;(s;) includesdl the
nodes of s; at level k that are descendents of some nodein s;. Cal these nodes the foundation of s;. Because these
nodes are a clique of GG (or ese they wouldn’t be in s;), they are al pairwise compatible, by lemma 4.6. Because
they are a the same level, lemma 4.2 impliesthat they are pairwise CSC. Therefore, by the result of lemma 4.3 these
nodes are a compatible set. Thisimpliesthat there exists a completely specified function A at the level £ma(s;) that
is compatible with every node in the foundation of s;. To finish the proof, we need to show that this function must
be aso compatible with every other nodein s;. To show this, assume that / is not compatible with some node n; in
s;. Then, there must exist aminterm m such that n; (m) h(m). This minterm defines a path in the BDD that goes
through a node ny, in the foundation of s;. Since ny(m) +# h(m), ny and h are not compatible, which violates the
assumption that A is compatible with every nodein the foundation of s;. Therefore h must be compatible with every
nodein s;, thereby satisfying definition 4.3. O

Lemma6.1 R isan Ordered BDD compatiblewith F.

Proof : Sincethe cover isclosed, steps3 and 4 four are alwaysfeasible. Any pathin F' that leadstoal or aOwill lead
to the corresponding terminal node in R. Finaly, there will never be edges going upward in R because the node that
resultsfrom a set s; isat the lowest level of all thenodesins;. O

Theorem 6.1 The BDD induced by a minimum closed cover for GG isthe BDD in /3 with minimum number of nodes.

Proof : Given the result in lemma 6.1 it is sufficient to prove that there exists at least one closed cover of cardinality
equa to the size of the minimum BDD in B.

Let U beaBDD in B with minimum number of nodes k. For each nodein U, u;, create aset s; suchthat g; isin s;
iff n; ~u; and L(n;) < L(u;). Let S = {s1,s2...5x}. Wewill show that S satisfies all the conditionsin definition
5.4:

1. (S covers) We show that the assumption that some g; at level [isnot in some set of S leads to a contradiction:
let m be a minterm that defines a path in F' that starts at the root and goes through n;. Let M be the set of all
minterms that have the same values as m for z...z;_3. Each one of these minterms will define apath in U that
goes through some node u; in U at alevel equa or higher than{. Sincen; + u; (by the hypothesis) there exists
amintermm’ € M such that u;(m’) n;(m’). For thisminterm m/, no(m’) + uo(m'), thereby contradicting
the assumption that I/ is compatible with F'.

2. (All s; € S arecliquesof () Since each nodein s; is compatiblewith a completely specified function (u;) they
satisfy definition 4.3 and therefore, by lemma 4.1, they areaclique of G.

3. (S is closed with respect to the e and ¢ labels) Let u; be anode in U, u, = uf'*® and u, = ulPe". Let

b, = {gj € s; . [,(gj) = ﬁmax(sl)} For each nodegj € b, n; ~ U; |mp||&sua ~ n;lse and up ~ n;hen_

Therefore, C. (s;) C s, and Cy(s;) C sp.

4. (S isclosed with respect to the! labels) Suppose C(s;) ¢ s;. Then, there must be anode n,, such that g, € s;
alevel [< £(u;) and g's¢ ¢ s; or gthen & s;. Assumethefirstistrueand let n€*¢ = n,; n, isnot compatible
with u; (or else it would be in s;) and depends only on the variables {z;4;...z,}. Therefore, there exists a
minterm m such that u;(m) # n,(m) and m; = 0. This minterm shows that n,, # u; which contradicts the
hypothesisthat g,, isin s;.

Therefore, S isaclosed clique cover for G and it has cardinality £. O

A.2 Transformation of BDD Minimization to FSM Reduction

Let ' bethe 3TBDD that should be minimized, and consider the FSM with a state transition graph (STG) obtained
from F in the following way:

¢ Initidize the STG with a graph isomorphic to the 3STBDD, with nodes Sy, S1, . .., S,, S, Sz €ach one corre-
sponding to onenodein F'.

¢ Add anew node, S;.
¢ Addtransitionsfrom S, S, and S, to Sy, labeled — /0, — /1 and —/—, respectively.
¢ Addatransitionfrom S; to S; labeled —/—.

15

Figure 8: The STG that correspondsto the 3STBDD F' defined in figure 2.

As an example, consider the FSM obtained from the 3TBDD in figure 2, shown in figure 8.

This transformation leads to our fina important result. Let M be the incompletely specified FSM with the state
transition graph obtained from F' by the procedure outlined above and let G’ be the compatibility graph for thisfinite
state machine built in the following way:

e Thereisan edge between nodes g; and g’ in ' if states n; and n’; are compatible, in the FSM reduction sense.

e Edgesof G arelabeled in accordance with algorithm 4.1

Note that the structure of graph G’ reflects the compatibility between states of M defined as for FSM reduction.
Therefore, G’ can be computed using the standard procedures for FSM minimization. However, this means that G
is not isomorphic to G, defined by algorithm 4.1. In particular, any two nodes that are at different levelsin G’ are
compatible for FSM reduction, and so G’ aways has an edge between g; and g; if £(g;) # L(g;), and therefore the
second implicationin lemma 4.6 is not true, in generd.

The following lemma establishes that the cliques of G and the cliques of G’ that are closed with respect to the !
class are exactly the same.

LemmaA.l Asets; = {g,,...9,, } isacliqueof G’ satisfying C(s;) C s; iff s; = {ga,...94,} isacliqueof G
satlsfylng Cl(SZ') C s;.

Proof : Sincethe edges of G’ are a superset of the edges of GG and the labels are the same, isis clear that to any clique
of G containing C)(s;) there corresponds a clique of G’ satisfying that condition. To prove the other direction, note
that for any two nodesin G’ at the same level, the presence of an edge in G’ impliesthat they are compatible, both in
the sense of FSM reduction and according to definition 4.1. Therefore, the rightmost implication of lemma 4.6 isvalid
for nodes that are at the same level. The proof of lemma 5.1 only uses thisimplication for nodes at the same level,
namely the nodes in the foundation of s; defined in that lemma. Therefore, lemma 5.1 is still trueif G isreplaced by
G’ implying that any set s} in G’ that satisfies C;(s) C s} correspondsto a compatible of G, according to definition
4.3. Therefore, the corresponding set s; in G isaclique. Because the labels are the same for any edges common to
both G and G/, Cl(SZ') Cs;. O

Corollary A.1 A minimumclosed cover for M satisfying definition 5.4 when G isreplaced by G’ induces a minimum
BDD compatiblewith F', in accordance with theorem 6.1.

16

Proof: Since the compatibles that can be part of the cover are the samein both G’ and G, thisresult follows directly
from theorem 6.1. O

A.3 Example

Figure 8 illustrates the companion FSM obtained from the 3TBDD F' shown in figure 2. The FSM has 2 pairs of
incompatiblestates ({53, Sa}, {S:, S, }) whileitsset C(c) contains 575 compatibles. After filtering avay by means of
equation 2 the compatibles ¢ that are not closed with respect to their I-class, 32 sets of compatibles are | eft:

{Sd}: {SO}a {Soa Sd}a {SZ}: {SZa Sd}a {Sl‘}a {Sﬂfﬂ SZ}a {Sﬂh Sz, Sd}a {Sl‘a SO}: {SII: Sd}a {Sﬂfﬂ So, Sd}a {55}a
{S5,5:},{S5, 52,52}, {S5, 52,52, 54}, {S5, Sz, S0}, {55, 5z,54},{Ss, Sz, S0, Sa}, {Sa}, {Sa, S5}, {53},
{S3,5z,5.},{S3, Sz,5,Sa}, {53, S5}, {53, S5, Sz, 52}, {53, 55, Sz, Sz, Sat, {S2}, {S1}, {S1, S2},

{51, S4, S5}, {50}, {S0, S1, S2}.

Using the computation of the implied classes F(c, 7, n) of equation 3 the following 8 primes are identified from
the previous 32 compatibl es:
{So0}, {So, S1, S2}, {S1}, {S1, Sa, S5}, {S2}, {53, S5, Si, Sz, Sat, {Sa}, {Ss, Se, So, Sa}
Among the 8 primes, there are 2 essential primes:
{S3, S5, Sz, Sz, Sa}, {Ss, Sz, So, Sa}
and 6 nonessential primes:

{SO}: {SO, Sla 52}: {Sl}: {Sla S4a 55}: {52}: {54}
After solving the binate covering problem, 2 nonessential primes are chosen:

{507 517 52}1 {SL 547 55}
Hence, the final reduced FSM has the following 4 states:

Ro — {So, Sl, Sz}

R1 + {Sl, 54, 55}

Rz — {53, 55, SJ;, Sz, Sd}
Ro — {55, Sx, SO, Sd}

and is described by the following state transition table:

0 RoR, —
1 RoR1 —
0 RiR, —
1 RoR, —
- R;R, O
— R,R, 1

This state transition table induces the BDD R shown on theright side of figure 4. R isan exact solution of the BDD
minimization problem.

17

