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Abstract

This paper addresses the problem of binary decision diagram (BDD) minimization in the presence of don’t care
sets. Specifically, given an incompletely specified function � and a fixed ordering of the variables, we propose an
exact algorithm for selecting � such that � is a cover for � and the binary decision diagram for � is of minimum
size. The approach described is the only known exact algorithm for this problem not based on the enumeration of all
possible assignments to the points in the don’t care set. We also present a proof that this problem is NP-complete, a
result that was also recently obtained in an independent way by other authors.

We show that the BDD minimization problem can be formulated as a binate covering problem and solved using
implicit enumeration techniques. In particular, we show that the minimum-sized binary decision diagram compatible
with the specification can be found by solving a problem that is very similar to the problem of reducing incompletely
specified finite state machines. We report experiments of an implicit implementation of our algorithm, by means
of which a class of interesting examples was solved exactly. We compare it with existing heuristic algorithms, to
measure the quality of the latter.



1 Introduction

A completely specified Boolean function � is a cover for an incompletely specified function � if the value of � agrees
with the value of � for all the points in the input space where � is specified. This paper describes an exact algorithm for
selecting � such that � is a cover for � and the binary decision diagram (BDD) for � has a minimum number of nodes
(complemented edges are not considered here). For a given ordering of the variables, the BDD for � is unique [4] and
the problem has a well defined solution.

We show that this minimization problem can be solved by selecting a minimum sized cover for a graph that satisfies
some additional closure conditions. In particular, we show that the minimum sized binary decision diagram compatible
with the specification can be found by solving a covering problem that is very similar to the covering problem
obtained using exact algorithms for the reduction of incompletely specified finite state machines (ISFSM) [8]. This
similarity makes it possible to use implicit enumeration techniques developed for the purpose of ISFSM reduction [10]
to solve efficiently the BDD minimization problem. The manipulation of the characteristic functions of the sets of
compatibles and prime compatibles, represented with ROBDDs [2], allows the generation of very large sets that cannot
be enumerated explicitly, as it is demonstrated in the experiments.

The transformation presented in this paper and the algorithms developed for the solution are important for practical
and theoretical reasons.

From a practical point of view, there are applications in learning and logic synthesis where an high-quality solution
is of paramount importance. This requires an exact algorithm to find those solutions or at least to validate the quality
of heuristic algorithms.

For instance, in inductive learning applications, the accuracy of the inferred hypotheses is strongly dependent on
the complexity of the result [1]. One possible and very effective representation scheme for inferred hypotheses are
BDDs. However, it was observed [13] that when BDDs are used as the representation scheme, existing heuristic
algorithms for BDD minimization find solutions that are so far from the minimum that makes them of little value for
this particular application.

The selection of the minimum BDD consistent with an incompletely specified function is important also in
logic synthesis applications that use BDDs not only as a tool for representing discrete functions but also to derive
implementations that minimize some cost function. For instance, timed Shannon circuits [11] use the structure of the
BDD to derive low power implementations and stand to gain from algorithms for the reduction of BDDs. The same
holds for DCVS trees and multiplexer-based FPGAs.

An exact algorithm, even though unable to solve large instances, helps to measure the quality of heuristic algorithms
by gauging them on instances where an exact solution can be found.

From a theoretical point of view, the transformation presented in this work is an elegant characterization of the
problem. We show in Section 3 that the problem is NP-complete, answering a question raised by Shiple et al. in [16].

Several heuristic algorithms for the problem addressed here have been proposed. These algorithms are important
in applications where the available degrees of freedom in the functions represented can be used to reduce the memory
requirements of BDD based algorithms. The restrict operator [7] and the constrain operator [6] (also known as
generalized cofactor [18]) are two heuristics used to assign the don’t cares of a BDD. A comprehensive study of
heuristic BDD minimization has been presented in [16]. Another heuristic algorithm has been reported in [5].

We are aware also of work for an exact algorithm [14] based on the enumeration of the different covers that can be
obtained by all possible assignments of the don’t care points. A pruning technique reduces the enumeration process
thanks to a result by Shiple that changing the value of a function � of � variables on a minterm (actually on a cube) �
cannot change the size of the BDD for � by more than � nodes. The pruning is performed implicitly.

The remainder is organized as follows. Section 2 introduces basic definitions on BDDs and Section 3 has a proof
that BDD minimization is NP-complete. Sections 4, 5 and 6 describe respectively the compatibility graph, closed
clique covers and the generation of a minimum BDD. Minimization of BDDs is formulated as a variant of FSM
minimization in Section 7, while an implicit algorithm to compute a minimum closed cover is presented in Section 8.
Results and conclusions are offered respectively in Sections 9 and 10. The appendix contains all the proofs of the
lemmas and theorems and describes with an example an application of the algorithm to a concrete case.

2 Preliminaries

A BDD is a rooted, directed, acyclic graph where each node is labeled with the name of one variable. and every
non-terminal node ��� has one else and one then edge that point to the children nodes, � else� and � then� , respectively. The
terminal nodes are ��� and ��� . By convention we will draw the else (zero) edge as the edge pointing to left (west), and
the then (one) edge as the edge pointing to right (east).
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Any minterm � in the input space induces a unique path in a BDD defined in the following way: start at the root
and take, at each node, the else or the then edge according to the value assigned by minterm � to the variable that is
the label of the current node until a terminal node is reached. A BDD corresponds to the completely specified Boolean
function � that has all the minterms in � on (and only these) inducing paths in the BDD that terminate in � � . A BDD
is called reduced if no two nodes exist that branch exactly in the same way, and it is never the case that all outgoing
edges of a given node terminate in the same node. For a fixed ordering of the variables, the reduced ordered BDD for
a given Boolean function is unique. This implies that reduced ordered BDDs are canonical representations of Boolean
functions and we will therefore use the notation � � to denote both the node in the BDD and the Boolean function to
which it corresponds. Unless stated otherwise, we will use simply the term BDD when we refer to a reduced ordered
BDD.

The level of a node � � , ��� � ��� is the index of the variable tested at that node under the specific ordering used. The
level of the terminal nodes is defined as ��� 1, where � is the number of input variables. The maximum level of a
set 	 of nodes,

�
max
� 	 � , is the maximum level of all the nodes in 	 . A BDD is called complete if all edges starting at

level 
 terminate in a node at level 
�� 1.1 The level of a function � ,
��� � � , is defined as the level of a BDD node that

implements � . If ��� is a node in the BDD and � a minterm, ��� � � � will be used to denote both the value of function
� � for minterm � and the terminal node that � reaches when starting at � � . This notation is consistent because the
two terminal nodes stand for the constant functions 0 and 1. The index 0 will be reserved for the root of the BDD.
Therefore, if � is a minterm and 
 is the BDD for � , � 0

� � � represents the value of � for minterm � .
A 3 Terminal BDD (3TBDD) is defined in the same way as a BDD in all respects except that it has three terminal

nodes : � � , ��� and ��� . A 3TBDD 
 corresponds to the incompletely specified function � that has all minterms in
� off , � dc and � on terminate in � � , � � and � � , respectively.

3 Complexity of the Problem

Consider the problem of minimum BDD identification.

Problem: MINIMUM BDD IDENTIFICATION (MBI)

Instance: A set of minterms, labeled either positive or negative and an integer K.

Question: For a given fixed ordering, is there a BDD with less than K nodes that satisfies all the examples, i.e., a
BDD for a function whose on-set covers the positive examples and whose off-set covers the negative ones ?

Takenaga and Yajima [17] proved that this problem is NP-complete, by reduction from graph K-colorability. The
problem we address in this paper is the following:

Problem: EXACT BDD MINIMIZATION (EBM)

Instance: BDDs for functions � on and � dc and an integer K.

Question: Is there a BDD with less than K nodes that implements a function that is a cover for � ?

Proof that it is in NP (due to Shiple [16]):
Guess a BDD with fewer than K nodes. Check whether the guessed BDD implements a function that is a cover of

� . This check can be done in time and space upper bounded by the product of the sizes of the BDDs for � on and � dc

and of the guessed BDD. This product is polynomial in the input size.

Proof that it is NP-hard:
Suppose we could solve this problem in polynomial time with a deterministic algorithm. Then we can also solve

the MBI problem. To prove the result we need to prove two facts.

Fact 1. The BDD for a given function � of � variables cannot have more than ����� internal nodes, where � is the
number of minterms in � [14].

Proof of Fact 1: To verify this, consider all the paths through the BDD defined by all the minterms in � . This set
of paths has to go through each internal node in the BDD for � at least once. Otherwise, there are nodes other than the
constant node 0 in the BDD that are only reached by minterms in the off set of � , thereby implying that the BDD is not
reduced. Because a minterm can only traverse � internal nodes, we obtain immediately the above result.

Fact 2. A BDD of a function � : ������� represented by � minterms can be constructed in � � � 2 � 2 log � �
operations.

1A complete BDD will not, in general, be reduced.
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Proof of Fact 2: Build the BDD of � from the minterms by doing the following: first OR together each pair of
minterms. Then OR the results together, and keep doing this until the final result is computed. The number of such
iterations � is logarithmic in � . At iteration 
 , one needs to perform no more than ��� � 2 � � operations on BDDs no larger
than � � 2 ��� 1 (the latter size is explained by Fact 1 that the BDD for � cannot have more than � � � internal nodes).
Therefore, per iteration one needs no more than ��� � 2 � � � 2 ��� 1 � 2 ��� 1 � � � 22 ��� 2 elementary operations, that is upper
bounded by � 2 � 2, because 
�� log � . Since there are only log � iterations, the result can be built in time and space
� 2 � 2 log � .

It follows by Fact 2 that the BDDs for � on and � off can be constructed in time polynomial in the size of the
input instance of the MBI problem we want to solve. This implies that the BDD for � dc can also be constructed in
polynomial time in the size of the input of the MBI problem because it can be obtained by polynomial time bounded
BDD operations. To solve an MBI problem, simply transform it into an EBM problem and solve it. The resulting
solution will represent directly the answer to the original problem. 	

After we reported this result [12], we were informed that an earlier proof had been published in a technical report
by Sauerhoff and Wegener [15]. Our result has been obtained independently and provides a different proof. In [15] it is
also proved that, under the hypothesis that NP 
� P, the problem has neither approximationschemes nor polynomial time
approximation algorithms yielding solutions larger than the minimum by only a constant factor or a slowly increasing
function. Finally, Hirata, Shimozono and Shinohara proved in [9] the related result that MBI is NP-hard (differently
from [17]) and that there is a constant �
� 0 such that no polynomial algorithm can approximate MBI within the ratio
��� unless P = NP.

Incidentally, the polynomial time procedure outlined in the proof of Fact 2, together with the results in [15] directly
imply the result of Hirata, Shimonozo and Shinonara, as the authors themselves point out in the concluding remarks
of [9].

4 The Compatibility Graph

Previous algorithms [14] for this problem used directly the BDD representation of � on and � off . The exact approach
described in this paper uses the 3TBDD 
 that corresponds to the incompletely specified function � . 
 is assumed to
be complete. If necessary, 
 is made complete by adding extra nodes that have the then and else edges pointing to the
same node. In general, the resulting 3TBDD is no longer reduced. Moreover, we suppose that 3TBDD does not use
complemented edges.

Definition 4.1 Two nodes � � and ��� in 
 are compatible ( � ��� ��� ) iff no minterm � exists that satisfies � � � � � �
� ��� � � � � � � � � or � � � � � � � ��� � � � � � � � � .

This definition implies that � � and � � are not compatible between them and that � � is compatible with any node
in a 3TBDD.

Definition 4.2 Two nodes ��� and � � in 
 are common support compatible ( � ��� � � ) iff there exists a completely
specified function � such that � � � � and � � ��� and

� � � ��� max
� � � � ����� ��� ��� � � .

The definition implies that ����
� ��� and ����� � � , for any node � � .
It is important, at this point, to understand the relationship between these two concepts. First, note that the

completely specified function � referred in definition 4.2 does not necessarily correspond to any node in 
 . In fact,
in most cases, � will not correspond to any node in 
 , since most nodes in 
 correspond to incompletely specified
functions.

The relationship between compatibilityand common support compatibility (CSC) is given by the following lemma:

Lemma 4.1 If ����� � � then ��� � � � .

The reverse implication of lemma 4.1 is not true, in general. Figure 1 illustrates a situation where two nodes are
compatible but are not CSC. Nodes � � and ��� are compatible because no minterm leads to � � for one of this nodes and
to � � to the other. However, � � and ��� are not common support compatible because no completely specified function
� that only depends on the second variable is compatible with both of them.

However, when two nodes belong to the same level, common support compatibility and compatibility are equivalent:

Lemma 4.2 If
��� � ��� � ��� ��� � then � � � ���"! � � � ��� .
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Figure 1: Nodes � � and ��� are compatible but not common support compatible.

The motivation for the definition of common support compatibility can now be made clear. Assume that two nodes
belong to different levels and are compatible. In principle, they could be replaced by a new node that implements a
function compatible with the functions of each node. In general, this function may depend on variables that are not
on the support of the node at the higher level. Assume this node is ��� . Later, when we try to build the reduced BDD,
edges that are incident into � � will need to go upwards, against the variable ordering of the BDD. On the other hand,
if both nodes are common support compatible, then they can be replaced by a node that implements the completely
specified function � referred to in definition 4.2. Because this function only depends on the variables common to the
supports of both nodes, this problem will not arise.

The concept of common-support compatibility can be extended to sets of nodes in the natural way:

Definition 4.3 The nodes in the set 	 � ��� � 1 � � 2 ������� � ����� are common support compatible iff there exists a completely
specified function � such that

� � � � � � ��	 1 
������ 
 � and
��� � ��� � max

� 	 � � .
Definition 4.4 A set of nodes that are common support compatible is called a compatible set or, simply, a compatible.

The definition of a compatible implies that any two nodes that belong to a compatible are pairwise common support
compatible. The reverse implication is not true, but the next lemma holds.

Lemma 4.3 Let 	 � be a set of nodes belonging to the same level. Then, 	 � is a compatible iff all nodes in 	 � are
pairwise common support compatible.

Definition 4.5 The compatibility graph, 
 � ��� ����� , is an undirected graph that contains the information about
which nodes in 
 can be merged. Except for the terminal node � � , each node in 
 will correspond to one node in

�
with the same index. The level of a node in 
 is the same as the level of the corresponding node in 
 . Similarly, ����� � ��
and ���������� are the nodes that correspond to ����� � �� and ���������� .

Graph 
 is built in such a way that if nodes � � and ��� are common support compatible then there exists an edge
between � � and � � . An edge may have labels. A label is a set of nodes that expresses the following requirement: if
nodes � � and � � are to be merged, then the nodes in the label also need to be merged. There are three types of labels:
e, t and l labels. The following two lemmas justify the algorithm by which graph 
 is built:

Lemma 4.4 If
��� ��� � � ��� � � � then � � � � � !�� ����� � �� � ����� � �� � ���������� � ����������  .

Lemma 4.5 If
��� � ���"! ��� ��� � then � � � ��� ! � ����� � �� � ��� � ���������� � ��� � ����� � �� � ����������  .

The previous two lemmas justify the following algorithm to build the compatibility graph.

Algorithm 4.1

1. Initialize 
 with a complete graph except for edge (� � , � � ) that is removed.

2. If
��� � � � � � � � � � then the edge between � � and � � has two labels: an e label with � � ��� � �� � � ��� � �� � and a t label

with � ���������� � �#�������� � . (By lemma 4.4.)

3. If
� � � ���"! � � � � � edge ( � � , � � ) has an l label with � �$��� � �� � �#�������� � � �%� . (By lemma 4.5.)
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Figure 2: The 3TBDD 
 and the compatibility graph 
 . Nodes � 5 and � � are not shown on the compatibility graph,
since they are common support compatible with every node in the graph.

4. For all pairs of nodes
� � � � � � � check if the edge between nodes � � and � � has a label that contains � ��� � ��� � and

there is no edge between � � and � � . If so, remove the edge between � � and � � . Repeat this step until no more
changes take place.

Figure 2 shows an example of the 3TBDD 
 obtained from � defined by the following sets: � on
� � 011 � 111 � ,

� off
� � 010 � 110 � 101 � and the corresponding compatibility graph.
The existence of an edge in the incompatibility graph is related with common support compatibility and with

compatibility between pairs of nodes in the following way:

Lemma 4.6 � � � ��� ! ����� � s � t � � � � � � � � � � ! � ��� ��� .

It is important to note that the reverse implications are not true. In particular, the existence of an edge between two
nodes in 
 does not imply that they are common support compatible. Consider the 3TBDD shown in figure 3.

For this 3TBDD the algorithm described above does not remove the edge between nodes � 0 and � 5 because there
are long range dependencies that can not by found by the simple minded algorithm used to prune away edges. The
edge between � 0 and � 5 has the following 	 label: � � 5, � 1, � 2 � .

n

n n

n n n

0

n nz on x

2 1

5 43

2g 1g

5g

3g

0

z o

4

g

g

g g

Figure 3: Nodes � 0 and � 5 are not common support compatible but the compatibility graph does have an edge between
the corresponding nodes.

The edge between � 1 and � 5 has the 	 label � � 5,� 4 � and the edge between � 2 and � 5 has the 	 label � � 5, � 3 � . Because
� 5 is compatible with both � 3 and � 4, the edge between � 1 and � 5 and the edge between � 2 and � 5 are never removed.
Moreover � 1 and � 2 are compatible. Therefore the edge between � 0 and � 5 is never removed. However, no function
depending only on the last variable can be compatible with � 0, and therefore � 0 and � 5 are not common support
compatible.

5 Closed Clique Covers

A clique of graph 
 is a completely connected subgraph of 
 . To any set 	 of nodes that is a clique of 
 there are
associated class sets. If the nodes in 	 are to be merged into one, the nodes in its class sets are also required to be in
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the same set. Let 	 � � � � � 1 � � � 2 � � � � ��� � be a set of nodes that form a clique in 
 . The following are the definitions of
the e, t and l classes of 	 � . Notice that for concision we may blur the distinction between the nodes � ’s of 
 and the
corresponding nodes � ’s of 
 . Strictly speaking, cliques are defined on sets of � ’s and compatibles on sets of � ’s.

Definition 5.1 The
�

class of 	 � , � �
� 	 � � is the set of nodes that are in some

�
label of an edge between a node � � and

��� in 	 � with
��� ��� � � ��� ��� � � � max

� 	 � � .
Definition 5.2 The � class of 	 � , � �

� 	 � � is the set of nodes that are in some � label of an edge between a node � � and
� � in 	 � with

��� � � � � ��� � � � � � max
� 	 � � .

Definition 5.3 The 	 class of 	 � , � �
� 	 � � is the set of nodes that are in some 	 label of an edge between a node � � and

��� in 	 � with
��� � � � 
� � � ��� �

Lemma 5.1 If a set 	 � of nodes are a clique of 
 and
�
�
� 	 � ��� 	 � , then 	 � is a compatible set.

Note that a clique of 
 that does not satisfy the condition in lemma 5.1 is not necessarily a compatible set. For
instance, in the example in figure 3 the nodes � � 0 � � 1 � � 2 � � 5 � are a clique of 
 but are not a compatible set, because
� 3

�	�
�
� � � 0 � � 1 � � 2 � � 5 � � but � 3 
� � � 0 � � 1 � � 2 � � 5 � .

The algorithm that selects the minimum BDD compatible with the original function works by selecting nodes of 

that can be merged into one node in the final BDD. If a set 	 of nodes in 
 is to be merged into one, the set 	 has to be
a compatible set. Therefore, it has to be a clique of 
 satisfying definition 5.3. The objective is to find a set of cliques
such that every node in 
 is covered by at least one clique. However, to obtain a valid solution, some extra conditions
need to be imposed.

Definition 5.4 A set 
 � � 	 1 � 	 2 � � � 	 � � of sets of nodes in 
 is called a closed clique cover for 
 if the following
conditions are satisfied:

1. 
 covers 
 : � � � � 
 � 	 � � 
 : � � � 	 �
2. All 	�� are cliques of 
 : � � � � � � � 	�� :

� � � � � � � � edges
� 
 �

3. 
 is closed with respect to the
�

and � labels :
� 	 � � 
 � 	 � � 
 :

�
�
� 	 � �
� 	 ��� � 	 � � 
 � 	 � � 
 :

�
�
� 	 � �
� 	 �

4. All sets in 
 are closed with respect to the 	 labels : � 	 � � 
 :
�
�
� 	 � ��� 	 �

6 Generation of a Minimum BDD

From a closed clique cover for 
 , a reduced BDD � is obtained by the following algorithm:

Algorithm 6.1

1. For each 	 � in 
 , create a BDD node in � , � � , at level
�

max
� 	 � � .

2. Let the nodes in � that correspond to sets 	 � containing nodes that correspond to terminal nodes in 
 be the
new corresponding terminal nodes of � .

3. Let the else edge of the node � � go to the node � � that corresponds to a set 	 � such that
�
�
� 	 � ��� 	 � .

4. Let the then edge of the node � � go to the node � � that corresponds to a set 	 � such that
�
�
� 	 � �
� 	 � .

Lemma 6.1 � is an Ordered BDD compatible with 
 .

Now, the main result follows. Let � be the set of all BDDs that represent functions compatible with the incompletely
specified function � . Then, the following result holds:

Theorem 6.1 The BDD induced by a minimum closed cover for 
 is the BDD in � with minimum number of nodes.

Proof: see appendix.
As an example, 
 � �%� � 0 � � 1 � � 2 � � � � 4 � � � � 3 � � 5 � � � � � � � ���%� is a closed cover for the example depicted in figure 2

and induces the BDD � shown on the right side of figure 4.
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Figure 4: The 3TBDD 
 , the compatibility graph 
 and a solution � . Node � 5 was arbitrarily included in compatible� � 3 � � � � � 5 � .

7 Formulation of BDD Minimization as FSM Reduction

The definition of a closed cover is very similar to the standard definition of a closed cover used in the minimization
of finite state machines (FSMs). If the graph of a 3TBDD is viewed as the state transition graph of an FSM,
the algorithms developed for the minimization of FSMs can be used with some modifications. The two important
differences to consider are:

1. The definition of the
�

and � classes and the closure requirement in point 3 of definition 5.4 are different from
the definitions used in standard FSM minimization. In BDD minimization, only nodes at the highest level in
some compatible define the

�
and � classes, while in standard FSM minimization all nodes in a compatible set

are involved in the definition of these classes.

2. The requirement in point 4 of definition 5.4 means that some sets of nodes that satisfy the definition of a
compatible set in the FSM case do not satisfy the conditions for BDD minimization.

These two changes can be incorporated into existing algorithms for FSM minimization. In particular, the closure
conditionswith respect to the

�
and � labels are similar to the closure conditions imposed in standard FSM minimization.

The restriction imposed by condition 4 in definition 5.4 simply eliminates some cliques of the compatibility graph
from consideration and can be implemented by a filtering step. The transformation from BDD minimization to FSM
reduction is shown in the appendix and its correctness is argued.

8 Implicit Computation of a Minimum Closed Cover

We will use the unified implicit framework proposed in [10] 2. Implicit techniques are based on the idea of operating
on discrete sets by their characteristic functions represented by binary decision diagrams (BDDs) [4].

To perform state minimization, one needs to represent and manipulate efficiently sets of sets of states. With �
states, each subset of states is represented in positional-set form, using a set of � Boolean variables, � � � 1 � 2 ����� � � .
The presence of a state 	 � in the set is denoted by the fact that variable � � takes the value 1 in the positional-set,
whereas � � takes the value 0 if state 	 � is not a member of the set. For example, if � � 6, the set with a single state 	 4

is represented by 000100 while the set of states 	 2 	 3 	 5 is represented by 011010.
A set of sets of states 
 is represented in positional notation by a characteristic function ��� : � � � � as:

� � � � � � 1 if and only if the set of states represented by the positional-set � is in the set 
 . A BDD representing � � � � �
will contain minterms, each corresponding to a state set in 
 . As an example, ������	 � � 
 �

� � � denotes all positional-sets
� with exactly � states in them (i.e. 	 �
	 � � ). For instance, the set of singleton states is ����� 	 � � 
 1

� � � , the set of state
pairs is ����� 	 � � 
 2

� � � , the set of full states is ������	 � � 
 �
� � � , and the set of empty states is ������	 � � 
 0

� � � . An alternative
notation for ������	 � � 
 �

� � � is ������	 � � � � � .
Any relation � between pairs of sets 
 1 and 
 2 can be represented by its characteristic function � : � � � ��
 � �

where � � � ��� � � 1 if and only if ��� 1

� � � � 1, ��� 2

� � � � 1 and the element of 
 1 represented by � is in relation �
with the element of 
 2 represented by � . A similar definition holds for relations defined over more than two sets. For
example, we represent the state transition graph (STG) of an FSM by the characteristic functions of two relations:

2 ��������� ( � ������� ) denotes the existential (universal) quantification of function � over variables � ; � denotes Boolean implication; � denotes
XNOR; � denotes NOT.
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1. the output relation Λ, where input 
 , present state � and output � are in Λ
� 
 � � � � � if there is an edge from � with

input/output label 
���� , and

2. the next state relation
�

, where where input 
 , present state � and next state � are in relation
� � 
 � � � � � if there

is an edge from � to � with input label 
 .

8.1 Implicit Generation of Compatibles

It has been shown in Section 7 that given a BDD minimization problem it is possible to generate a companion FSM
whose closed covers of compatibles correspond to closed clique covers of the BDD, if:

� FSM compatibles that do not satisfy the L-closure are discarded, and

� FSM compatible closure is replaced by E-closure and T-closure.

Our starting point is the fully implicit algorithm for exact state minimization reported in [10], to which we refer for
a complete description of the implicit computations. In the sequel we discuss the modifications needed to generate
closed clique covers of the BDD.

8.2 Implicit Computation of L-closure

We compute as in [10] the set of compatibles � ��� � , where � ��� � � 1 iff
�

is the positional set representing a compatible
of the companion FSM. When minimizing an FSM obtained from an instance of BDD minimization one must delete
from � ��� � the compatibles

�
that are not closed with respect to their 	 -class. The 	 -class, � �

��� � , of a compatible
�

is the
set of nodes that are in some 	 -label of an edge between nodes � � and ��� in

�
with

� � � � �"! ��� ��� � . If
��� � � � ! � � ��� �

then edge
� � � � � � � has the 	 -label � � ��� � �� � �#�������� � � � � .

�
0
� � � � � � � �

� � 0
do � � �	� 1

� � � ��
 � � �
� � � � 
 
 � � � � ��� � � 
 � � � � � �
� � ��� 1

� until
� �	� 1

� � � � � � � � �

Figure 5: Computation of array
�

.

It is shown next how to capture the information on the level of the nodes. By construction, an FSM obtained
by BDD minimization is represented by a direct acyclic STG rooted at the unique reset state � ; each node has two
successors, except the terminal node that has a self-loop. Fig. 5 illustrates a procedure to build an array

��� � � , that
partitions the FSM states based on their distance from the root:

� � � � � is the set of states associated to the nodes having
a distance � from � . Starting from � and visiting in breadth-first order the STG, one computes iteratively the array
elements

� � � � � , using the transition relation
� � 
 � � � � � . In fact, state � is a successor of state � iff

� 
 � � 
 � � � � � .
Using the informations stored in

��� � � , one defines the order relation � � � � 	 � � � � � , for each couple of states
� � � � �

in the FSM. States � and � are in relation � � � � 	 � � � � � iff the distance of � from � is less than the distance of � from
� , i.e. formally

� � � � 	 � � � � � � 1 � � 
 ��� � � 
 ! � � 	 � � � � ��� � � � � � � (1)

Fig. 6 illustrates the procedure to compute the global relation � � � � 	 � � � � � .
A compatible

�
is pruned from the set of compatibles � ��� � if:

1.
�

contains states � and � that are in the order relation � � � � 	 � � � � � ,
2.

�
does not contain all the successors of � .

Hence, the filtered set of compatibles is given by:

� ��� � � � ��� ��� � � � � � 
 ����� 	 � 1
� � ��� ������	 � 1

� � ��� ����� � ��� ����� � ��� � � � � 	 � � � � � �� � 
 � 
 ��� 
 � � � � ��� ��� 
� � � ��� (2)
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� � � � 	 � � � � � ���
for
� 
 � 0; 
 ! � ; 
 � � � �
for each state ������	 � 1

� � � ��� � � � � �
for
� � � 
 ; � ! � ;

� � � � �
for each state ������	 � 1

� � � � � 
 � � �
� � � � � � � �
� � � � 	 � � � � � � � � � � 	 � � � � � � � ������	 � 1

� � ��� ������	 � 1
� � � �

�
�

�
�

Figure 6: Computation of the relation � � � � 	 � � � � � .

8.3 Implicit Computation of E-closure and T-closure

In standard FSM minimization one requires closure with respect to implied sets. Given a compatible
�

an implied set
under input 
 is the set of next states from the states in

�
under 
 . Instead in the case of BDD minimization one must

compute the implied sets only from the states in
�

of highest level. This requires a change in the computation of the
relation of the implied classes � ��� � 
 � � � , which is used by the following procedures:

1. the computation of primes,

2. the set up of the binate clauses in the covering table,

3. the construction of a reduced FSM.

The new computation for � ��� � 
 � � � is described by the following equation:

� ��� � 
 � � � � � � � � ��� 
 � ��� ������� � � � � � 	 ��� � ��� ��� ����� � � � � � � � 
 � � � � � � (3)

Subsets of states
�

and
� �

are in relation ��� � � � � � 	 ��� � � � � , iff
� �

is the subset of
�

that contains the states of
�

of
maximum level, i.e. the states having the largest distance from � in the STG of the FSM.

��� � � � � � 	 ��� � � � � ���
� � ��� � � � ��� �
for
� � � � � 1;

� � 0;
� � � � �

	 � � ��� � � � � � � � ��� � � � 	 
 � � � 	 ���


�

� 	 1

� 	 � �
�
� � � �



�

� 	 1

� � �� � 
 � � �
� 	 � 	 � � � �

� 	 � � � �
��� � � � � � 	 ��� � � � � � ��� � � � � � 	 ��� � � � � � 	 � � ��� � � � �
� � ��� � � � � ��� ��� � � � 
 	 � � ��� � � � � �

�

Figure 7: Computation of the relation � ��� ��� ��� � � � � � 	 ��� � � � � .
The computation of the relation � ��� ���
��� � � � � � 	 ��� � � � � is based on the availability of

� � � � and is summarized in
Fig. 7. For each level

�
starting from the maximum to the minimum, a relation

	 � � ��� � � � � is determined performing
� bitwise conjunctions, where � is the number of states. The � -th element of

� �
is 1 iff the � -th element of

�
is 1

and it has level
�
.
	 � � ��� � � � � represents the pairs

��� � � � � such that
�

is a compatible that contains at least one state at
level

�
and no state at level greater than

�
, and

� �
has exactly the states of

�
of level

�
. Before examining level

� � 1,
��� � � � � � 	 ��� � � � � is updated adding the elements in

	 � � ��� � � � � , and the sets
�

already in
	 � � ��� � � � � are removed

from � ��� � . Notice that the time complexity of the computation depends only linearly from the explicit parameters � ,
number of states, and � , number of levels in the STG representation.
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9 Results

Starting from the program ISM for implicit state minimization [10] we developed IMAGEM, a new program based on
the theory described in this paper for exact BDD minimization. In particular, we transformed the implicit algorithm
for exact state minimization in a new algorithm for the implicit computation of a minimum closed cover as described
in Section 8.

# # # # # IMAGEM

example orig. compat. filtered prime red. heuristic CPU time
states compat. compat. states (sec)

dnfa 64 2.435821e+12 1332186 89 14 16 517.29
dnfb 36 4.853883e+08 2987 94 6 12 11.85
dnfc 40 2.291224e+08 2613 102 10 15 12.94
dnfd 93 1.137739e+20 9.517899e+08 - - 23 timeout
dnfe 63 2.102303e+13 141179 509 6 12 217.29
dnff 62 2.184367e+11 92027 357 15 22 151.8
xor3 9 179 14 7 6 6 0.1
xor4 17 14975 118 13 6 6 0.43
xor5 24 608255 267 36 9 10 1.37
xor6 40 3.355914e+08 1329 170 13 20 13.98
xor7 57 2.791115e+11 3076 640 15 31 88.16
xor8 94 1.539147e+17 164929 21830 17 45 9041.11

ex.paper 10 575 32 8 4 4 0.17

Table 1: Results on Machine Learning Problems.

To evaluate experimentally the algorithms presented in this paper, we assembled two sets of problems: the first set
derives directly from a machine learning application and the second set was obtained from a logic synthesis benchmark.
In all the problems, the original ordering specified for the variables was the ordering used.

For the first set of problems, 12 completely specified Boolean functions � � were used as the starting point. For each
of these functions, a randomly selected set of minterms was designated as the care set, resulting in a set of incompletely
specified Boolean functions � � . The original objective was to identify the set of problems for which it is possible
to recover exactly the original functions � � from the incompletely specified functions � � , thereby characterizing the
conditions under which it is possible to infer the original function from a training set [13]. For the purposes of this
work, the functions � � are used solely as a set of incompletely specified functions. An advantage that exists for this set
is that upper bounds on the size of the solution are well defined, because the BDD sizes for the � � are known. Under
certain conditions, these upper bounds tend to become tight, with high probability, as the size of the problem increases,
providing a welcome check for the results obtained.

The second set of problems was obtained by selecting a subset of the problems that are distributedwith Espresso [3],
a well known two-level minimizer. More specifically, we included in this set of problems the functions that are the
first output from each of the PLAs that are included in the industry subset of the Espresso benchmark suite. From this
set, we eliminated all the functions that have a null don’t care set, since, for these functions, the problem is trivial.

Table 1 summarizes the results obtained from running the set of machine learning problems and Table 2 the ones
from the problems derived from the Espresso benchmark suite. The last entry in table 1 is denoted ex.paper and simply
refers to the case that has been presented in the paper to illustrate the theory.

For each example of a 3TBDD the number of states of the companion FSM is reported in the column denoted “#
orig. states”. This number is always equal to the number of nodes of the 3TBDD plus one because a new node is
added to the STG as explained in Section 7. The following two columns report the number of compatibles of the FSM
(i.e. the cardinality of the set � ��� � ) and the number of compatibles after filtering as per Section 8.2 (i.e. the ones which
are closed with respect to their 	 -class). This step reduces the number of compatibles of many orders of magnitude.

Then, after the number of primes, in column “# red. states” we report the number of states of the reduced FSM.
This number coincides with the number of nodes of the final BDD and represents the exact solution of the BDD
minimization problem. Instead, the column denoted with the label “heuristic” presents the solutions obtained using
the restrict operator [7], a well-known heuristic algorithm for BDD minimization; equal solutions are obtained using
the constrain operator [6] (also known as generalized cofactor [18]) 3. Therefore, IMAGEM is the first exact algorithm
that helps to evaluate the quality of the heuristics for BDD minimization on an interesting set of examples.

3Notice that the sizes of the BDD obtained by the heuristic algorithms have been measured without considering complemented edges.
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# # # # # IMAGEM

example orig. compat. filtered prime red. heuristic CPU time
states compat. compat. states (sec)

alu1 95 1.025649e+21 841993 1204 6 6 7409.97
br1 74 2.99581e+18 799173 329 6 11 1313.91
br2 51 5.937363e+14 53687 78 3 8 14.59
clpl 50 1.467671e+13 7559 39 3 13 12.39
dc2 46 8.277148e+10 8831 98 8 12 57.66
exp 54 2.695432e+11 10638 25 3 3 31.34
exps 71 1.8345e+10 3810 125 43 44 44.79
in0 151 2.622416e+25 1680740 1323 42 44 18201.76
in3 173 5.060229e+39 587880 12 9 14 1755.21
inc 35 1.119744e+07 364 26 12 13 3.84
intb 189 4.884137e+46 3.891123e+14 - - 69 spaceout

mark1 71 7.487812e+18 8049 35 4 5 41
newapla 52 1.24299e+12 3252 33 10 11 41.5

newapla1 57 8.766887e+14 8733 63 6 6 141.66
newapla2 19 93311 137 6 5 5 0.49
newbyte 16 20735 127 9 5 5 0.41
newcond 165 3.825623e+31 7.484552e+12 - - 54 spaceout
newcpla2 39 3.396557e+08 477 68 10 21 5.72
newcwp 16 10367 106 10 6 11 0.39
newtpla 94 1.265561e+23 411525 148 7 23 469.14

newtpla1 39 6.912e+09 1441 31 4 5 4.45
newtpla2 26 3149279 158 9 9 9 0.9

newxcpla1 39 4.470682e+09 1473 35 5 10 5.13
p82 16 15551 102 10 7 7 0.4

prom1 65 5.189184e+09 382 77 50 50 30.04
prom2 33 2.17728e+08 446 38 12 12 3.33

sex 28 1.679616e+07 419 16 5 5 1.62
spla 155 1.647427e+39 1.401835e+12 - - 8 spaceout
sqn 41 1.05336e+07 173 43 19 19 9.13
t4 68 5.108787e+14 31775 157 9 11 89.98

vg2 150 3.655064e+36 4.038678e+07 - - 14 timeout
wim 14 4319 82 8 6 6 0.26

Table 2: Results on problems from the Espresso benchmark suite
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Moreover, as we discussed in Section 1, there are specific applications, as for instance inductive learning, where
from one side BDD’s are used as very effective representation scheme, but on the other side heuristic algorithms return
unsatisfactory solutions. The results reported in table 1 show that IMAGEM returns the exact solution for a class of non
trivial problems.

The last column contains the time spent by IMAGEM to find the solution: all run times are reported in CPU seconds
on a DEC Alpha (300 Mhz) with 2Gb of memory. For all experiments, “timeout” has been set at 21600 seconds of
CPU time and “spaceout” at 2Gb of memory.

10 Conclusions

This paper addresses the problem of binary decision diagram (BDD) minimization in the presence of don’t care sets.
Specifically, given an incompletely specified function � and a fixed ordering of the variables, we propose an exact
algorithm for selecting � such that � is a cover for � and the binary decision diagram for � is of minimum size. We
show that the minimum-sized binary decision diagram compatible with the specification can be found by solving a
problem that is very similar to the problem of reducing an ISFSM. The approach described is the only known exact
algorithm for this problem not based on the enumeration of the assignments to the points in the don’t care set.

We show that this minimization problem can be formulated as a binate covering problem and solved using implicit
enumeration techniques. We have implemented this algorithm and performed experiments, by means of which exact
solutions for an interesting benchmark set were computed. In particular we could solve exactly some non-trivial
examples from the learning literature, where quality of the solution is of paramount importance.

The current bottleneck of our implicit computation is the step from filtered compatibles to prime compatibles. It
would be interesting to study new techniques for the implicit computation of prime compatibles or of a superset of
them, in order to enlarge the set of examples that can be solved exactly.
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Appendix A Proofs of lemmas and examples

The appendix contains some material not included in the paper for reasons of limited space.

A.1 Proofs of Lemmas

Lemma 4.1 If � � � ��� then � ��� ��� .

Proof : If � � 
� ��� , then there is a minterm � such that � � � � � 
� ��� � � � . Any completely specified function � will
assign a unique value to � , and therefore cannot be compatible with both � � and � � . 	

Lemma 4.2 If
��� ��� � � ��� � � � then � � � � � ! � � � � � .

Proof : The completely specified function � required to satisfy definition 4.2 can be obtained by setting � on
� � � on � � � on

and � off
� � on. Since � depends only on the variables common to the supports of � � and � � , it can be used in definition

4.2 to show that � � � ��� . 	

Lemma 4.3 Let 	 � be a set of nodes belonging to the same level. Then, 	 � is a compatible iff all nodes in 	 � are
pairwise common support compatible.

Proof: To prove the if direction, note that, by the hypothesis, it can never happen that given a minterm � there are two
nodes ��� and � � in 	 � that are CSC and satisfy ��� � � � � � � and � � � � � � ��� . This would violate lemma 4.1. The
function � that is needed to prove that 	 � is a compatible set is the function � that has the value 0 for � if some � �
exists that satisfies � � � � � � � � and has the value 1 for � if some ��� exists that satisfies � � � � � � ��� (the value for
minterms not defined in this way can be chosen arbitrarily). Moreover

� � � � � � 
 � �
� 	 � � , since all nodes of 	 � are at

the same level as � . If one does not assume that all nodes of 	 � belong to the same level, it is not guaranteed that �
satisfies

��� � ��� � 
 � �
� 	 � � , and one can build counterexamples to the lemma.

To prove the only if direction, note that if 	 � is a compatible, then the function � referred to in definition 4.3 is
compatible with any pair of nodes in 	 � , thereby showing that they are pairwise CSC. 	

Lemma 4.4 If
��� � ��� � ��� ��� � then � � � ��� ! � ����� � �� � ����� � �� � ���������� � ����������  .

Proof : By contradiction. Since 
 is complete, the successors are at the same level. Therefore, by lemma 4.2,
����� � �� 
� ����� � �� ! ����� � �� 
� ����� � �� and a minterm � can be selected in such a way that � ��� � ��

� � � 
� ����� � �� � � � and
����� ����� � 0. The existence of this minterm shows that � � 
� ��� and therefore that � � 
� ��� . A similar argument is true
for the then branch. Therefore, � ��� � �� 
� � ��� � �� 	 � �������� 
� � �������� ! � � 
� ��� . 	

Lemma 4.5 If
��� ��� �"! ��� � � � then � � � � � !�� ����� � �� � � � � ���������� � � ��� ����� � �� � ����������  .

Proof : By contradiction. If ����� � �� 
� � � then, for any completely specified functions � at level
� � � � � or higher a

minterm � can be selected in such a way that � ��� � ��
� � � 
� � � � � and � �
� � � � � 0. This minterm shows that � � 
� � ,

thereby showing that � � 
� ��� . Identically for the then branch. If � ��� � �� 
� ���������� then by lemma 4.2 there are minterms� and � such that ����� � �� � � � 
� ���������� � � � � � �
� ���
� � 0 and ����� � �� � � � 
� ���������� � � � � � �
� ����� � 1. These minterms
can be chosen to differ only in the value of the variable � �
� ����� and lead to incompatible terminal nodes. Therefore, � �
cannot be compatible with any function � such that

��� � � � � ��� � � � , thereby showing that � � 
� ��� . 	

Lemma 4.6 � � � ��� ! ����� � s � t � � � � � � � � � � ! � ��� ��� .

Proof : The first implication follows from lemmas 4.4 and 4.5 and the algorithm definition. Given this lemmas,
the algorithm only removes edges that are between nodes that are not CSC. Let us prove the second implication by
contradiction. Now, let � � � � � ��� and � � ��� ��� � and assume that � � 
� ��� and that � ��� . Then, there exists a
minterm � such that ��� � � � 
� � � � � � . Let � ��� � � ����� 1 � � � � ����� 1 be the sequence of nodes defined by minterm � in
the BDD between the level � and � � 1, starting at � � . Let � ��� � � ��� � 1 � � � � � �
� 1 be the sequence of nodes defined by
minterm � between level � and � � 1 starting at node � � . Then, because � ����� 1 and � ����� 1 are the terminal nodes
and there is no edge between them, after � steps, the edge between node � ���
� 1 ��� and node � ���
� 1 ��� will have been
removed because of condition 2. This will happen for � such that � � 1 � � � � � . For � such that ��� 1 � � ! � ,
the edge between � � ��� 1 ��� and ����� will have been removed because of condition 3. 	

Lemma 5.1 If a set 	 � of nodes are a clique of 
 and
�
�
� 	 � ��� 	 � , then 	 � is a compatible set.
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Proof : Let � be the maximum level of any node in 	 � . The definition of
�
�
� 	 � � implies that

�
�
� 	 � � includes all the

nodes of 	 � at level � that are descendents of some node in 	 � . Call these nodes the foundation of 	 � . Because these
nodes are a clique of 
 (or else they wouldn’t be in 	 � ), they are all pairwise compatible, by lemma 4.6. Because
they are at the same level, lemma 4.2 implies that they are pairwise CSC. Therefore, by the result of lemma 4.3 these
nodes are a compatible set. This implies that there exists a completely specified function � at the level

�
max
� 	 � � that

is compatible with every node in the foundation of 	 � . To finish the proof, we need to show that this function must
be also compatible with every other node in 	 � . To show this, assume that � is not compatible with some node � � in
	 � . Then, there must exist a minterm � such that � � � � � 
� � � � � . This minterm defines a path in the BDD that goes
through a node ��� in the foundation of 	 � . Since � � � � � 
� � � � � , � � and � are not compatible, which violates the
assumption that � is compatible with every node in the foundation of 	 � . Therefore � must be compatible with every
node in 	 � , thereby satisfying definition 4.3. 	

Lemma 6.1 � is an Ordered BDD compatible with 
 .

Proof : Since the cover is closed, steps 3 and 4 four are always feasible. Any path in 
 that leads to a 1 or a 0 will lead
to the corresponding terminal node in � . Finally, there will never be edges going upward in � because the node that
results from a set 	 � is at the lowest level of all the nodes in 	 � . 	

Theorem 6.1 The BDD induced by a minimum closed cover for 
 is the BDD in � with minimum number of nodes.

Proof : Given the result in lemma 6.1 it is sufficient to prove that there exists at least one closed cover of cardinality
equal to the size of the minimum BDD in � .

Let � be a BDD in � with minimum number of nodes � . For each node in � , � � , create a set 	 � such that � � is in 	 �
iff ��� � � � and

��� ��� � � ��� � � � . Let 
 � � 	 1 � 	 2 � � � 	 ��� . We will show that 
 satisfies all the conditions in definition
5.4:

1. ( 
 covers 
 ) We show that the assumption that some � � at level 	 is not in some set of 
 leads to a contradiction:
let � be a minterm that defines a path in 
 that starts at the root and goes through � � . Let � be the set of all
minterms that have the same values as � for � 1 � � � � � � 1. Each one of these minterms will define a path in � that
goes through some node � � in � at a level equal or higher than 	 . Since � � 
� � � (by the hypothesis) there exists
a minterm � � � � such that � � � � � � 
� � � � � � � . For this minterm � � , � 0

� � � � 
� � 0
� � � � , thereby contradicting

the assumption that � is compatible with 
 .

2. (All 	 � � 
 are cliques of 
 ) Since each node in 	 � is compatible with a completely specified function ( � � ) they
satisfy definition 4.3 and therefore, by lemma 4.1, they are a clique of 
 .

3. ( 
 is closed with respect to the
�

and � labels) Let � � be a node in � , � � � ����� � �� and ��� � �$�������� . Let� � � � � � � 	 � :
��� � � � � � max

� 	 � � � . For each node � � ��� � , � � � � � implies � � � � ��� � �� and � � � � �������� .
Therefore,

�
�
� 	 � ��� 	 � and

�
�
� 	 � �
� 	 � .

4. ( 
 is closed with respect to the 	 labels) Suppose
�
�
� 	 � � 
� 	 � . Then, there must be a node ��� such that ��� � 	 �

at level 	 ! � � � � � and � ��� � �� 
� 	 � or ���������� 
� 	 � . Assume the first is true and let ����� � �� � � � ; � � is not compatible
with � � (or else it would be in 	 � ) and depends only on the variables � � � � 1 � � � � � � . Therefore, there exists a
minterm � such that � � � � � 
� � � � � � and � � � 0. This minterm shows that � � 
� � � which contradicts the
hypothesis that � � is in 	 � .

Therefore, 
 is a closed clique cover for 
 and it has cardinality � . 	

A.2 Transformation of BDD Minimization to FSM Reduction

Let 
 be the 3TBDD that should be minimized, and consider the FSM with a state transition graph (STG) obtained
from 
 in the following way:

� Initialize the STG with a graph isomorphic to the 3TBDD, with nodes 
 0 � 
 1 ������� � 
�� � 
 � � 
�� each one corre-
sponding to one node in 
 .

� Add a new node, 
�� .

� Add transitions from 
�� , 
�� and 
�� to 
�� , labeled � � 0, � � 1 and � � � , respectively.

� Add a transition from 
�� to 
	� labeled � � � .
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Figure 8: The STG that corresponds to the 3TBDD 
 defined in figure 2.

As an example, consider the FSM obtained from the 3TBDD in figure 2, shown in figure 8.
This transformation leads to our final important result. Let � be the incompletely specified FSM with the state

transition graph obtained from 
 by the procedure outlined above and let 
 � be the compatibility graph for this finite
state machine built in the following way:

� There is an edge between nodes � �� and � �� in 
 � if states � �� and � �� are compatible, in the FSM reduction sense.

� Edges of 
 � are labeled in accordance with algorithm 4.1

Note that the structure of graph 
 � reflects the compatibility between states of � defined as for FSM reduction.
Therefore, 
 � can be computed using the standard procedures for FSM minimization. However, this means that 
 �
is not isomorphic to 
 , defined by algorithm 4.1. In particular, any two nodes that are at different levels in 
 � are
compatible for FSM reduction, and so 
 � always has an edge between � �� and � �� if

� � � �� � 
� ��� � �� � , and therefore the
second implication in lemma 4.6 is not true, in general.

The following lemma establishes that the cliques of 
 and the cliques of 
 � that are closed with respect to the 	
class are exactly the same.

Lemma A.1 A set 	 �� � � � �� 1
����� � �� � � is a clique of 
 � satisfying

�
�
� 	 �� � � 	 �� iff 	 � � � � � 1 ����� � � � � is a clique of 


satisfying
�
�
� 	 � ��� 	 � .

Proof : Since the edges of 
 � are a superset of the edges of 
 and the labels are the same, is is clear that to any clique
of 
 containing

�
�
� 	 � � there corresponds a clique of 
 � satisfying that condition. To prove the other direction, note

that for any two nodes in 
 � at the same level, the presence of an edge in 
 � implies that they are compatible, both in
the sense of FSM reduction and according to definition 4.1. Therefore, the rightmost implication of lemma 4.6 is valid
for nodes that are at the same level. The proof of lemma 5.1 only uses this implication for nodes at the same level,
namely the nodes in the foundation of 	 � defined in that lemma. Therefore, lemma 5.1 is still true if 
 is replaced by

 � implying that any set 	 �� in 
 � that satisfies

�
�
� 	 �� ��� 	 �� corresponds to a compatible of 
 � , according to definition

4.3. Therefore, the corresponding set 	 � in 
 is a clique. Because the labels are the same for any edges common to
both 
 and 
 � , � �

� 	 � ��� 	 � . 	
Corollary A.1 A minimum closed cover for � satisfying definition 5.4 when 
 is replaced by 
 � induces a minimum
BDD compatible with 
 , in accordance with theorem 6.1.
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Proof: Since the compatibles that can be part of the cover are the same in both 
 � and 
 , this result follows directly
from theorem 6.1. 	

A.3 Example

Figure 8 illustrates the companion FSM obtained from the 3TBDD 
 shown in figure 2. The FSM has 2 pairs of
incompatible states ( � 
 3 � 
 4 � � � 
 � � 
 � � ) while its set � ��� � contains 575 compatibles. After filtering away by means of
equation 2 the compatibles

�
that are not closed with respect to their 	 -class, 32 sets of compatibles are left:

� 
�� � � � 
 � � � � 
 � � 
�� � � � 
 � � � � 
 � � 
�� � � � 
 � � � � 
 � � 
 � � � � 
 � � 
 � � 
�� � � � 
 � � 
 � � � � 
 � � 
�� � � � 
 � � 
 � � 
�� � � � 
 5 � �� 
 5 � 
�� � � � 
 5 � 
�� � 
 � � � � 
 5 � 
�� � 
 � � 
 � � � � 
 5 � 
�� � 
�� � � � 
 5 � 
�� � 
 � � � � 
 5 � 
�� � 
�� � 
 � � � � 
 4 � � � 
 4 � 
 5 � � � 
 3 � �� 
 3 � 
�� � 
 �%� � � 
 3 � 
�� � 
 � � 
 � � � � 
 3 � 
 5 � � � 
 3 � 
 5 � 
�� � 
 � � � � 
 3 � 
 5 � 
�� � 
 � � 
 � � � � 
 2 � � � 
 1 � � � 
 1 � 
 2 � �� 
 1 � 
 4 � 
 5 � � � 
 0 � � � 
 0 � 
 1 � 
 2 � .
Using the computation of the implied classes �

��� � 
 � � � of equation 3 the following 8 primes are identified from
the previous 32 compatibles:� 
 0 � � � 
 0 � 
 1 � 
 2 � � � 
 1 � � � 
 1 � 
 4 � 
 5 � � � 
 2 � � � 
 3 � 
 5 � 
 � � 
 � � 
�� � � � 
 4 � � � 
 5 � 
 � � 
 � � 
�� � .
Among the 8 primes, there are 2 essential primes:� 
 3 � 
 5 � 
�� � 
 � � 
 � � � � 
 5 � 
�� � 
�� � 
 � �
and 6 nonessential primes:� 
 0 � � � 
 0 � 
 1 � 
 2 � � � 
 1 � � � 
 1 � 
 4 � 
 5 � � � 
 2 � � � 
 4 � .
After solving the binate covering problem, 2 nonessential primes are chosen:� 
 0 � 
 1 � 
 2 � � � 
 1 � 
 4 � 
 5 � .
Hence, the final reduced FSM has the following 4 states:

� 0
� � 
 0 � 
 1 � 
 2 �

� 1
� � 
 1 � 
 4 � 
 5 �

� � � � 
 3 � 
 5 � 
 � � 
 � � 
�� �
� � � � 
 5 � 
�� � 
�� � 
 � �

and is described by the following state transition table:

0 � 0 � � �
1 � 0 � 1 �
0 � 1 � � �
1 � 0 � � �
� � � � � 0
� � ��� � 1

This state transition table induces the BDD � shown on the right side of figure 4. � is an exact solution of the BDD
minimization problem.
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