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Abstract. Interchange formats have been the backbone of the EDA
industry for several years. They are used as a way of helping the devel-
opment of design flows that integrate foreign tools using formats with
different syntax and, more importantly, different semantics. The need for
integrating tools coming from different communities is even more severe
for hybrid systems because of the relative immaturity of the field and
the intrinsic difficulty of the mathematical underpinnings. In this paper,
we provide a discussion about interchange formats for hybrid systems,
we survey the approaches used by different tools for analysis (simulation
and formal verification) and synthesis of hybrid systems, and we give a
recommendation for an interchange format for hybrid systems based on
the Metropolis metamodel. The proposed interchange format has rig-
orous semantics and can accommodate the translation to and from the
formats of the tools we have surveyed while providing a formal reasoning
framework.

1 Introduction

Hybrid systems have proven to be powerful design representations for system-
level design in particular for embedded controllers. The term hybrid refers to
the use of multiple models of computation in a unified framework. Often, hybrid
refers to a mix of continuous dynamical systems and finite-state machines even
though compositions of heterogeneous systems may be defined in larger semantic
domains. The needs for a way of mixing and matching different tools is very
much felt because of the relative novelty of this design representation and of the
immaturity of the tools available today. There are two camps in the community
who deals with hybrid systems: one would prefer to define a common model of
computation for hybrid systems that should be used uniformly across different
tools, the other pushes for an interchange format, i.e., a file, or a set of files, which
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contains data in a given syntax that is understood by different interacting tools.
It is not a database nor a data structure, but a simpler object whose goal is to
foster the exchange of data among different tools and research groups. Of course,
the approach fostered by the first group has innumerable advantages but it faces
an uphill battle with respect to the existing tool vendors or providers such as
research groups since embracing this approach would require a substantial re-
write of their tools. The second approach could be strengthened by providing
rigorous semantics to the interchange format, thereby allowing a formal analysis
of the properties of the translation between different hybrid models.

Our goal in this paper is to provide a survey of models of computation used
in a number of tools for the design of hybrid systems and to propose a prototype
interchange format based on the Metropolis MetaModel (MMM) that should
favor the interaction among the groups involved in hybrid system research and
development.

In the U.S., the DARPA MoBIES project had the importance of an inter-
change format very clear and supported the development of HSIF as a way of
fostering interactions among its participants. However, limitations to its seman-
tics make the interchange of data between foreign tools difficult (for example,
HSIF does not support some of the features of Simulink/Stateflow model).
To motivate our views, we offer here some considerations about interchange
formats that are the result of our experience in the field of Electronic Design
Automation (EDA) and of a long history in participating to the formation of
standard languages and models for hardware design as well as of Columbus [1],
a research project supported by the European Community that spearheaded
collaboration across the ocean between European and US research groups.

We believe that an interchange format for tools and designs should:

– support all existing tools, modeling approaches and languages in a coherent
global view of the applications and of the theory;

– be open, i.e., be available to the entire community at no cost and with full
documentation;

– support a variety of export and import mechanisms;
– support hierarchy and object orientation (compact representation, entry er-

ror prevention).

By having these fundamental properties, an interchange format can become the
formal backbone for the development of sound design methodologies through the
assembly of various tools. The process of moving from the design representation
used by tool A to the one used by tool B is structured in two steps: first, a
representation in the standard interchange format is derived from the design
entry that is used by A, then a preprocessing step is applied to produce the
design entry on which B can operate. Notice that tool B may not need all the
information on the design that were used by A and, as it operates on the design, it
may very well produce new data that will be written into the interchange format
but that will not ever be used by A. Naturally, the semantics of the interchange
format must be rich enough to capture and “protect” the different properties
of the design at the various stages of the design process. This guarantees that



528 A. Pinto et al.

there will be no loss going from one design environment to another due to the
interchange format itself. The format is indeed a neutral go-between.

In our opinion, HSIF is an excellent model for supporting clean design of hy-
brid systems but not yet a true interchange format. Simulink/Stateflow in-
ternal format could be a de facto standard but it is not open nor it has features
that favor easy import and export. Modelica has full support of hierarchy and
of general semantics that subsumes most if not all existing languages and tools.
As such, it is indeed an excellent candidate but it is not open. In addition, all
of them have not been developed with the goal of supporting heterogeneous
implementations.

On the other hand, the Metropolis metamodel (MMM) has generality and
can be used to represent a very wide class of models of computation. It has a
clear separation between communication and computation as well as architecture
and function. While the metamodel itself is perfectly capable to express contin-
uous time systems, there is no tool today that can manage this information in
Metropolis.

In conclusion, we believe that no approach is mature enough today to recom-
mend its general adoption. However, we believe also that combining and lever-
aging HSIF, Modelica, and the Metropolis metamodel, we can push for
the foundations of a standard interchange format as well as a standard design
capture language where semantics is favored over syntax. The discussion of this
approach is the main goal of the paper.

2 Preliminaries

This section contains the definitions of hybrid systems and the Metropo-
lis metamodel language.

Hybrid Systems. The notion of a hybrid system that has been used in the
control community is centered around a particular composition of discrete and
continuous dynamics. In particular, the system has a continuous evolution and
occasional jumps. The jumps correspond to the change of state in an automaton
whose transitions are caused either by controllable or uncontrollable external
events or by the continuous evolution. A continuous evolution is associated to
each state by means of ordinary differential equations. The structure of the
equations and the initial condition may be different for each automaton state.
In the sequel, we follow the classic work of Lygeros et al. [2] to define a hybrid
system as used in the control literature. In this definition, a hybrid system is a
tuple H = (Q,UD, X, U, V,SC ,S, E, Inv, R, G). Without going into the detailed
definition of each element of the tuple, we just recall that the triple (Q,UD, E)
can be viewed as a Finite State Machine (FSM) having state set Q, inputs UD

and transitions defined by E. This FSM characterizes the structure of the discrete
transitions. A dynamical system is associated to each state and characterized by
a set of differential equations. Of particular interest are the mappings Inv, R, G.
Inv : Q → 2X×UD×U×V is a mapping called invariant that is defined over each
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state of the automaton and states the conditions under which a transition from
a state to another in the automaton must occur. R : E × X × U × V →2X is the
reset mapping that defines the initial state of the continuous dynamics after a
particular transition has occurred. G : E → 2X×U×V is a mapping called guard.
G determines the conditions under which a transition may occur. The guard
and the invariant mappings are complex to analyze with respect to the behavior
of the hybrid system. Guards are partly responsible for the non-deterministic
behavior of a hybrid system since when a guard allows a transition to occur,
the hybrid system may or may not take that transition. The full semantics of a
hybrid system are beyond the scope of this paper and can be found in [2].

Metropolis and its Meta-model. The Metropolis metamodel [3] is a for-
malism with precise semantics, yet general enough to support the models of
computation [4] proposed so far and, at the same time, to allow the invention
of new ones. A behavior can be defined as concurrent occurrences of sequences
of actions. Some action may follow another action, which may take place con-
currently with other actions. The occurrences of these actions constitute the
behavior of a system that the actions belong to.

In the metamodel, special types of objects called process and medium are used
to describe computation and communication, respectively. Processes are active
objects characterized by a thread that specifies the possible sequence of actions
(or better of events, where an event is the beginning or ending of an action)
of the process. Medium, instead, are passive objects that offer services and are
used for implementing specialized communication protocols. For coordination,
one can write formulas in linear temporal logic [5], or use quantity managers to
describe a particular algorithmic implementation of constraints. Operationally,
a building block called quantity is defined in the metamodel language. Its task
is to attach tags to events. An execution is then divided in two steps. First,
processes issue requests to the quantity managers to annotate their events with
particular values of the quantities. Second, the control passes to the quantity
managers that order the event depending on the values that have been requested,
and decide which requests to grant. In a complex system, multiple quantities
could be needed. A quantity manager has to be defined for each quantity. Since
their scheduling decisions could depend on each other, the metamodel language
provides an interaction mechanism that the user can fully customize to give a
specific semantics to the model.

The semantics of the interchange format must be carefully defined to cover
all the languages of interest, while still providing efficient and tractable access
to subsets corresponding to particular domains of application. The Metropo-
lis metamodel serves this purpose. In fact, states and continuous processes are
defined in abstract terms, and can be tailored for the individual needs of a par-
ticular model of hybrid behavior. In particular, the mechanisms that determine
the operational semantics of the model can be customized by simply encoding
the appropriate scheduling policies as the resolution function of the quantity
managers dedicated to handling the transition relation and the discretized so-
lution of the continuous dynamics. This flexibility is essential to cleanly, and
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natively, support different semantic models in a unified environment. In addi-
tion, the metamodel is in itself executable, and provides the high level abstract
semantics that regulates the scheduling and interaction of processes and quan-
tity managers. Thus, if different models of hybrid behavior are translated into
our interchange format, they can also be executed together. Their execution is
regulated by the specific choice of managers and resolution functions that are
used to glue the system together.

In addition, the full power of the metamodel constraint capabilities and
declarative specification can be used to ensure and/or verify that certain prop-
erties of interest are satisfied at the border of the domains. This capability is
especially important, as it provides a single unified environment for co-simulation
and co-analysis.

Note, in particular, that the semantics of interaction between different models
of computation is not fixed, but can be defined according to the implementa-
tion strategy. The metamodel is first used to define a common semantic domain.
Then, the appropriate refinement maps are used to embed each specific model
into the common refinement. The semantics of interaction is then the result
of applying the metamodel abstract semantics (defined in terms of action au-
tomata [3]) to the instances of the models. Thus, different model interactions
can be obtained by not only changing the common refinement, but also by play-
ing with the refinement maps. Experimenting with this technique is part of our
future work. In particular we aim at integrating different formalisms by showing
their individual strengths and weaknesses.

3 A Survey of Languages and Tools for Hybrid Systems

Table 1 shows the approach adopted by each language for modeling the basic
hybrid system structure. The first column indicates how discrete and continuous
signals are declared in each language. Some languages like Charon [6] and
Modelica [7] use special type modifiers to specify whether a variable is discrete
or continuous. However, the semantics is different in the two cases. While
Charon defines a discrete variable constant between two events, hence having
derivative equal to zero, the derivative of discrete variables in Modelica is not
defined. Graphical languages like HyVisual [8], Simulink [9], and Scicos [10]
rely on attributes associated with ports. Type of signals can be automatically
inferred during compilation. Hysdel [11] and CheckMate [12] describe the
hybrid system as a finite state machine connected to a set of dynamical systems
making the interface between discrete and continuous signals fixed and explicit.

Another basic feature is the association of a dynamical system to a specific
state of the hybrid automata. HyVisual and Charon seem to have the most
intuitive syntax and semantics for this purpose. In HyVisual a state of the
hybrid automata can be refined into a continuous time system. Charon al-
lows a mode to be described by a set of algebraic and differential equations.
In CheckMate, Simulink, and Hysdel a hybrid system is modeled with two
blocks: a state machine and a set of dynamical systems. A discrete state tran-
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Table 1. Various approaches to modeling hybrid systems

Name Continuous/Discrete State/Dynamics Continuous/Discrete
Specification Mapping Interface

Charon defined by modes refinenement indirect
language modifier into continuous dynamics

CheckMate separation between discrete output from event generator
FSMs and dynamical systems FSMs to dynamical systems first order hold

Hysdel real and boolean discrete output from event generator
signals FSMs to dynamical systems first order hold

HyVisual signal attribute, state refinement toContinuous,
automatic type detection into continuous models toDiscrete actors

Modelica defined by different equation sets indirect
language modifier depending on events (when statements)

Scicos defined by implemented by connections interaction between
port attribute of event selectors continuous/discrete states

Simulink automatic type detection discrete output from library blocks like
FSMs to dynamical systems zero-order hold.

Table 2. Main features offered by the languages/tools of Table 1

Name Derivative Automata Hierarachy Object Non-Causal Algebraic Dirac
Definition Oriented Modeling Loops Pulses

Charon yes modes of yes yes no no no
operation

CheckMate yes Stateflow no no no no no
specification

Hysdel discrete logic no no no no no
differences functions

HyVisual integration graphical yes yes no no no
editor

Modelica yes algorithm yes yes yes no not yet
sections

Scicos integration network of yes no no no no
condit. blocks

Simulink derivative and Stateflow yes no no no no
integration specification

sition can be triggered by an event coming from a particular event-generation
block that monitors the values of the variables of the dynamical system. On
the other hand, the finite state machine can generate events that are sent to a
mode-change that selects a particular dynamics depending on the event. Sci-
cos implements the automata as an interconnection of blocks whose discrete
state can affect the continuous state of blocks implementing the continuous dy-
namics. Finally, Modelica provides a set of conditional statements that can
change the set of equations describing the continuous state. The last column
in Table 1 describes how discrete and continuous signals and blocks interact
with each other. CheckMate and Hysdel use an event-generator and a mode-
change block. HyVisual and Simulink provide special library blocks to convert
a discrete signal into a continuous and vice versa. In Scicos, a block can have
both continuous and discrete inputs as well as continuous and discrete states.
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Discrete states can influence continuous states. Charon and Modelica have
special modifiers for distinguishing between discrete and continuous signals. As
in all other languages, assignments of one to the other is not possible and can
be statically checked (by a simple type checker).

Table 2 shows the features provided by the different tools. All of them sup-
port the derivative operator. The specification of the discrete automata has dif-
ferent interpretations. Again, the most intuitive way of describing the discrete
automata is implemented by HyVisual and Charon. HyVisual , for instance,
has a finite state machine editor where a state machine can be described with
bubbles and arcs. Each bubble can then be refined into a continuous time system
or into another hybrid system.

Two features are very useful: Object orientation (OO), i.e. the possibility of
defining objects and extending them through inheritance and field/method ex-
tension, and non-causal modeling, i.e. the possibility of using implicit equations
to describe a dynamical system. None of the languages discussed above has a
clear definition of the semantics of programs that contain algebraic loops. All of
them rely on the simulation engine that, in presence of algebraic loops, either
stops with an error message or solves them using specialized algorithms. We
believe that a language has to give a meaning to programs containing algebraic
loops and the meaning should be independent from the simulation engine.

4 The Interchange Format

In this section, we present a set of requirements for an Interchange Format (IF)
and then we proceed to suggest a prototype IF, based on the MMM, by defining
its syntax and semantics.

Requirements. An interchange format should be able to capture all the main
features of the languages that have been already developed. It has to be a sort of
“maximum common denominator” among all hybrid system modeling environ-
ments. Specification in the interchange format are not supposed to be written
directly by designers. Instead, they should be produced by automatic tools that
translate specifications written with other languages into the interchange for-
mat. The set of supported features has to be rich enough to guarantee lossless
translations. For instance, if the interchange format did not support hierarchy,
only flat designs could be described. A translation from one language that sup-
ports hierarchy to the interchange format would still be possible but it would
inevitably flatten out the design structure, making it impossible to retrieve the
original description (the translation process then would be lossy in the sense
that the design structure would be lost forever).

We describe the set of features that we believe are essential for an interchange
format.

– Object orientation is used to group common properties of a set of objects
in a base class. It includes the features for defining complex data structures
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as well as incompletely specified processes. It is possible to extend processes
and add/determine part of their behaviors.

– Hierarchy is an essential feature for organizing, structuring and encapsulat-
ing designs. Flat designs are too complicated to handle because they expose
all their complexity in a single view. Even if the interchange format is not
supposed to be manipulated directly by designers, it has to retain the original
structure.

– Heterogeneous modeling is the ability of representing and mixing differ-
ent models of computation.

– Refinement is a language feature for specifying a formal relation between
components described at different levels of abstraction. Similarly to Ptolemy,
refinement can be used to associate a continuous time dynamics to a discrete
state. Since a design can be expressed at different levels of abstraction, formal
refinement is definitely an important feature.

– Implicit equations are naturally used by designers to describe dynamical
systems. An equation represents a constraint on a set of variables.

– Explicit declaration of discrete states and transitions manager. A
transition manager determines the possible sequence of discrete states of a
hybrid automata. Transitions from one state to another, even if defined by
the designer, are handled by the simulator, which is hidden. In order for the
sequence of states to be preserved across tools, a transition manager should
be explicitly described in the interchange format.

– Explicit declaration of invariant constraints. Invariants are constraints
on the state variables. A set of invariant constraints can be associated with
each state of a hybrid system. A specific logic should be supported by the
interchange format to specify invariants. Metropolis, for instance, defines
the logic of constraints (LOC) as a general way of declaring relations among
quantities.

– Explicit non-determinism must be supported by the interchange format.
Languages like the Metropolis metamodel have a keyword to specify non-
deterministic variables. It is up to the simulation engine to implement non-
deterministic choices and return, for instance, one of the possible simulation
traces. At the specification level the semantics of a non-deterministic sys-
tem should include all admissible traces. Non-determinism is important for
modeling the environment and for the emergent field of stochastic hybrid
systems.

– Explicit declaration of causality relations and scheduling for vari-
ables resolution. When a system is described with implicit equations, so-
phisticated techniques are required to understand dependency among vari-
ables. After the dependency analysis has been performed, an imperative
program can be written that evaluates variables with a specific order. This
step is usually hidden but should be explicit in the interchange format since
it contributes to the operational semantics of the language.

– General continuous/discrete interface. Each modeling environment de-
fines its own communication semantics between continuous and discrete do-
mains. Instead of defining a communication semantics, the interchange for-
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mat should provide a set of language primitives that allow the designer to
implement any possible communication scheme.

Language syntax. Rather than focusing on object orientation and scoping,
we focus on the definition of a few base classes and synchronization statements
that should be provided by the interchange format. In order to support hetero-
geneous modeling, the interchange format should provide a set of basic building
blocks that can be used to build several models of computation. The Metropo-
lis metamodel provides three basic components: processes for doing compu-
tation, media for communication and quantity managers for synchronization
and scheduling and starting form this basic classes, we define the following:

– State is a process that extends the basic process class. It contains ports
representing input and output transitions. These ports are connected to other
states and are used to communicate output actions and reset maps.

– AnalogProcess is a continuous time process which extends the basic process
class. It contains: ports to access external variables that are stored in com-
munication media, and a set of equation statements that define the process
behavior.

– TManager (TM) is the transitions manager which implements the transi-
tions logic of the finite state machine. It defines a resolve method which
determines the current state.

– EManager (EM) is the equation manager. Each equation has a scheduler
associated with it. The scheduler defines a resolve method that computes
unknown values starting from known ones. It uses causality constraints to
determine inputs and outputs.

– ERManager (ERM) is a manager associated with each dynamical system. It
defines a resolve method that implements the algorithm to schedule the
equation resolution.

– Transition is a communication medium used to connect states.
– AnalogVar is a communication medium used to connect analog processes.

Besides the basic elements, few other keywords are needed:

– refine(Object, Netlist) creates a formal relation between an object and
a netlist of components. It is used to build models at different levels of
abstraction.

– invariant{ <formula on state variables> } is used to specify invari-
ants. <formula> is a relation on the state variables.

– causality(P,var1 -> var2) states that var1 depends on var2. The two
variables must be in the scope of the process P .

– scheduling(P1,P2,...,PN) specifies the scheduling order among processes
P1,...,PN belonging to a dynamical system.

Language semantics. Figure 1 shows a simple example of hybrid system de-
scribed in the interchange format. Following the Metropolis metamodel for-
malism, we graphically represent processes (analog and states) with squares,
communication media with circles and managers with diamonds. The system
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eqn(...)

TM

ERM

EM2

Computation/Communication

EM1

Dynamical system level

Equation level

Scheduling

Transition level

refine(S2,N)

S1

S2

A1

A2

eqn(...)

Fig. 1. Graphical representation of an hybrid system using the interchange format

has two discrete states which communicate through media. Each state is refined
into a dynamical system (or into another hybrid system). State S2, for instance,
is refined into a dynamical system composed of two analog processes, A1 and
A2. The behavior of an analog process is specified by equations. The netlist is
partitioned in the computation/communication netlist CN , which represents the
structure of the system, and the the managers netlist MN which limits the
possible executions of CN by imposing scheduling constraints. CN contains pro-
cesses and communication media. The set of processes P = {S, A} is partitioned
in the set of states S and the set of analog processes A. Each process behavior
is a sequence of events {ei} where an event can have an annotation associated
with it (e.g. time).

The execution of a program is defined as a sequence of event vectors v =
[ES , EA] where ES(i) is the event executed by the i-th state process and EA(i) by
the i-th analog process. A special event called NOP corresponds to the stalling of
a process (refer to [3] for a detailed explanation of the Metropolis metamodel
semantics). In this setting, an execution is valid if the transition event ES(i) from
state si to sj implies that the set of values associated with events in EA satisfies
the guard conditions defined on the transition. In addition, if the current state
is si and all events in ES are equal to NOP , then the set of values associated
with events in EA must satisfy the invariant constraints defined in si.

Operationally, the execution consists of a sequence of iterations during which,
processes in CN issue requests to MN which in turn grants only the requests
that are consistent with constraints like guards and invariants. The type of a
request depend on the process that issues it. State processes issue requests to
execute their output transitions while AnalogProcess processes issue requests
to evaluate their equations sets.

When requests are issued the control is passed to MN and a coordination
between TM , EM and ERM starts to ensure that invariants are satisfied, tran-
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Fig. 2. Simple hybrid system example. A) is the schematic representation of the circuit,
B) shows the finite state machine, transitions and invariants

sitions are consistently taken, and equations are evaluated in conformance with
causality and scheduling constraints. Note that there could be more than one
event vector satisfying all constraints and choosing one is a simulation choice
and not a restriction imposed by the language.

Example. Consider the continuous time system of Figure 2. Resistor R and
capacitor C are two continuous time processes.

Capacitor is a process derived from a general analog process (figure 3). The
AnalogProcess base class defines special functions for establishing connections
to quantity managers. The process has two ports to connect to communication
media and read/write variables value. The port type is an interface that declares
services that are defined (implemented) by communication media. Note that the
ports are not associated with a direction, which implies that the component
does not have a causality constraint associated with its description. A resistor
is described in the same way but the current/voltage relation is governed by
Ohm’s law v = R*i.

For the description of the system, we refer the reader to Figure 3. The entire
continuous time subsystem results from the interconnection of analog processes
into a netlist, called RCCircuit. Causality constraints and scheduling constraints
are specified in this netlist and are used to build the scheduling netlist.

Following is an example corresponding to the charge state of the circuit. Reset
maps as well as shared state variables are all accessed through ports. A media
has to provide a place to store these variables and also has to implement services
to access them. Depending on the implementation of these services, it is possible
to customize the communication semantics.

A finite state machine is represented as interconnection of states and tran-
sitions. The first part of the netlist instantiates all components including states
and communication media. The second part connects states to channels. The last
part describes the transitions. Each state declares a set of output transitions that
can be connected to the target state in the FSM netlist.

A top level netlist is needed for instantiation of the finite state machine and
association of dynamical systems to states. A snippet of the code is also shown
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process Capacitor extends AnalogProcess {
parameter double C;
port AnalogInterface i, v;
equations {

i = c * der(v);
}

}

process Charge extends State {
port AnalogChannel v0out, v0in, vc;
OutTransition vcth(vc >= 4, v0out = -5);
constraints {

invariant(vc>=1 && vc <= 4 && der(vc) >= 0);
}

}

netlist RCCircuit extends AnalogNetlist {
port AnalogInterface V0;
AnalogChannel current, voltagec, voltager = new AnalogChannel(0.0);
Sub S = new Sub();
Capacitor C = new Capacitor(1uF);
Resistor R = new Resistor(1K);
connect(S.in1,V0); connect(S.in2,voltagec); connect(S.out,voltager);
connect(R.v,voltager); connect(R.i,current); connect(C.i,current); connect(C.v,voltagec);
constraints {

causality(R,v->i); causality(C,i->v); causality(S,out-> in1 && in2); scheduling(S->R->C);
}

}

netlist RCFSM extends FSMNetlist {
Charge ch = new Charge();
Discharge dch = new Discharge();
AnalogChannel v0c2d, v0d2c = new AnalogChannel(0.0);
connect(ch.v0out,v0c2d); connect(ch.v0in,v0d2c);
connect(dch.v0out,v0d2c); connect(dch.v0in,v0c2d);
transition(ch.vcth,dch); transition(dch.vcth,ch);

}

netlist Top {
RCFSM myfsm = new RCFSM();
refine(myfsm.ch,RCCircuit);
refine(myfsm.dch,RCCircuit);
refineconnect(myfsm.ch.v0in, refinementof(myfsm.ch).V0);
refineconnect(myfsm.dch.v0in, refinementof(myfsm.dch).V0);
connect(myfsm.ch.vc,refinementof(myfsm.ch).voltagec);
connect(myfsm.dch.vc,refinementof(myfsm.dch).voltagec);

}

Fig. 3. Example of code describing an analog netlist, a state, an FSM and the top
netlist

in Figure 3. The top netlist uses the refine keyword to associate a dynamical
system to a state. A few more connections are specified in the top netlist. First of
all we have to connect the reset maps to the dynamical system input. In this case
the variable V0 is an input of the RCCircuit netlist. Also we have to connect the
variable corresponding to voltage across the capacitor to the state input port.
This variable will be checked during simulation for evaluating guards conditions
and invariant constraints.

5 Application Scenarios

Consider three hypothetical flows: one where a system is specified and simulated
using HyVisual, and then is formally validated using CheckMate. The second
is a similar flow where Modelica is used as design entry and simulation tool
instead of HyVisual. The third is when a design consists of two parts, one
modeled in Modelica and one in HyVisual and we wish to simulate the entire
system in Modelica.
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To implement these flows, the basic operations are importing into the in-
terchange format from HyVisual and Modelica models and exporting the
interchange format into a CheckMate and a Modelica model. Using the in-
terchange format allows a linear number of translations and relative constraints
versus a quadratic number of translators if the interchange format is not used.

HyVisual to Interchange Format. Translating an HyVisual model into the
interchange format is straightforward.

Computation.There is a one-to-one correspondence between HyVisual states
and state processes in the interchange format. Each state can be refined into
another hybrid model or into a dynamical systems. This is possible because
the interchange format supports refinement of a generic object into a netlist.
Also a dynamical system in HyVisual is constructed as the interconnection of
library elements, each of them having a well defined input-output behavior. Each
component is mapped into an analog process whose set of equations is defined
by the behavior of the respective HyVisual component.

Communication. Each state process has input and output ports representing
respectively input and output transitions. Each HyVisual transition from state
si to sj is mapped into a transition medium between state process si and sj in the
interchange format. If a refinement is associated with the HyVisual transition,
then the correspondent transition medium is refined into a netlist.

For each variable v appearing in guard condition c on transition t, there has
to be an analog channel from the dynamical system that computes v to the state
having t as output transition.

Communication between analog processes in the same dynamical system are
implemented by analog communication channels.

Coordination. Each component in HyVisual is causal, i.e. it has inputs and
outputs and output values are computed as a function of the inputs. For each
analog process a set of causality constraints is added in such a way that outputs
depend on the inputs.

Causality and scheduling constraints are used respectively by the equation
resolution manager and the equation manager for computing the values of vari-
ables at a given time. These two managers in cooperation with the transition
manger implement all the algorithms that determine the system operational be-
havior. For instance, the Runge-Kutta solver can be implemented by the cooper-
ation of ERM and EM. The transition manager, instead, can be implemented so
that a request for backtracking is issued to the ERM when a threshold is missed.

Modelica to Interchange Format. A Modelica model has one or more
equation sections that describe its behavior. An equation section can contain if
and when statements whose condition expression generates events. Depending
on which event happens, different branches of the conditional statements (and,
therefore, a different set of equations) become active. There are several additional
restrictions. In particular, the number of variables has always to be equal to the
number of equations (non-determinism is avoided by construction).



Interchange Formats for Hybrid Systems: Review and Proposal 539

The translation of a Modelica program into the interchange format can be
done as follows.
Computation. Each Modelica model is a hybrid system. The number of state
processes and the transitions between them are determined by the number of
branches resulting from the combination of if and when statements in the equa-
tion sections of the model. Each state process is refined into a dynamical system
whose set of equations corresponds to the branch that is active in that state.
Since the interchange format supports hierarchy and non-causal modeling (as
well as object orientation) translation of the computation aspect does not re-
quire special analysis of the original program.
Communication. The only communication mechanism that we should pay atten-
tion to is the connection primitive that Modelica defines. Variables involved
in a connection are subject to an implicit equation. If the variables are defined as
flow variables that their sum as to be zero, otherwise they have to be equal. This
semantics can be implemented in the interchange format by an analog process
that explicitly declares the equations of a connection.
Coordination. Since Modelica allows non-causal modeling, causality analysis
must be performed on the original program to determine the causality and
scheduling constraints for each model. In the case of Modelica functions, this
is not needed since inputs and outputs are defined by special keywords.

Interchange Format to Modelica. Each process in the interchange format is
mapped to a Modelica model. If the process is a unrefined analog process then
the Modelica model only contains an equation section where all the equations
of the analog process are directly rewritten using the Modelica syntax.

An interconnection of state processes modeling an hybrid automata (where
each process is refined into a dynamical system) is mapped into a Model-
ica model presenting a when statement with as many branches as states. Each
branch is guarded by the guard conditions on the automata transitions. Also
each dynamical system that refines a state s is described as a set of equations
in the correspondent branch of the when statement representing s.

Note that a model in the interchange format always comes with causality
constraints on the variables. Instead of using model then, it is better to use
functions in Modelica that distinguish between input and output.

A composition of hybrid systems in the interchange format is a Model-
ica model that instantiates all the systems and interconnects them.

Note that a translation from Modelica to the interchange format and back
will only lose the connection statements since they are translated into analog
processes. However, a smart translator could recognize connection processes (e.g.,
by name) and generate a connection relation among the inputs of the analog
connection process.

Interchange Format to CheckMate. CheckMate models hybrid systems
using three basic blocks:
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– Switched continuous system block (SCSB) of the form ẋ = f(x, σ) where σ
is a discrete variable.

– Polyhedral threshold block (PTHB) whose output is a Boolean variable
which is true if Cx ≤ d is satisfied. This block represents the conjunction of
all guard conditions.

– Finite state machine block (FSMB) that takes the output of PTHB and
generates σ.

The function f can be of three types: x = c, ẋ = Ax + b and ẋ = f(x) where f
is a non linear function.

Before translating a model from the interchange format to CheckMate, we
must verify that the limitations on the guard conditions and on the fields are not
violated by the model to be translated. If this is not the case, an error should be
notified saying that the target language lacks properties that are required for the
description of the original model. After this step, we flatten the design hierarchy.
The program in the interchange format has to be analyzed and rewritten in the
form of a finite state machine where each state is refined into a dynamical system.
The CheckMate FSMB has the same states and transitions of the interchange
format one. To build the FSMB we replace each guard condition with a Boolean
input coming from the PTHB. The FSMB has an output σ denoting the current
state. For each dynamical system di which refines state si we derive its state
space representation. The CheckMate SCSB is the juxtaposition of all this
systems and the input σ decides which of this systems is used for computing the
state variables. Finally the CheckMate PTHB is obtained as the conjunction
of all guard conditions, state variables as inputs and as many Boolean outputs
as guard conditions.

6 Conclusions

Hybrid systems are important to a number of applications of great scientific and
industrial interest. Being hybrid systems at the same time complex and rela-
tively new, several tools are today available based on different assumptions and
modeling strategies. We reviewed the most visible tools for hybrid systems and
we presented the case for a novel interchange format based on the Metropo-
lis metamodel (MMM). To do so, we first gave a formal definition of the MMM.
We proceeded in listing the requirements and the formal definition of the format.
We concluded with examples of use of the interchange format in defining a de-
sign flow that includes HyVisual, Modelica and CheckMate to enter the
design, simulate it and formally verifying its properties. The interchange format
is at this point a proposal, since work still needs to be done to support it with
the appropriate debugging and analysis tools and to provide translators to and
from the new IF from and to existing tools.

We are confident that a variation of our proposal will be eventually adopted
by the community interested in designing embedded systems with particular
emphasis on control. We are open to any suggestion and recommendation to
improve our proposal.
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