
3736 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Leveraging Prior Knowledge for Effective
Design-Space Exploration in High-Level Synthesis

Lorenzo Ferretti , Student Member, IEEE, Jihye Kwon, Giovanni Ansaloni, Giuseppe Di Guglielmo,
Luca P. Carloni, and Laura Pozzi

Abstract—High-Level Synthesis (HLS) tools allow the gener-
ation of a large variety of hardware implementations from the
same specification by setting different optimization directives.
Each combination of HLS directives returns an implementa-
tion of the target application that is based on a particular
microarchitecture. Designers are interested only in the subset
of implementations that correspond to Pareto-optimal points in
the performance versus cost design space. Finding this subset is
hard because the relationship between the HLS directives and
the Pareto-optimal implementations cannot be foreseen. Hence,
designers must default to an exploration of the design space
through many time-consuming HLS runs. We present a method-
ology that infers knowledge from past design explorations to
identify high-quality directives for new target applications. To
this end, we formulate a novel abstract representation of appli-
cations and their associated configuration spaces, introduce a
similarity metric to compare quantitatively the configuration
spaces of different applications, and a method to infer actionable
information from a source space to a target space. The exper-
imental results with the MachSuite benchmarks show that our
approach retrieves close approximations of the Pareto frontier
of best-performing implementations for the target application, in
exchange for a small number of HLS runs.

Index Terms—Design-space exploration (DSE), hardware
acceleration, high-level synthesis (HLS), knowledge transfer.

I. INTRODUCTION

H IGH-LEVEL synthesis (HLS) enables the automatic
generation of hardware designs from high-level speci-

fications given, for example, as C/C++ or SystemC code [1].
With HLS, designers can first specify complex functionalities
in a simpler way by working at a higher level of abstrac-
tion than register-transfer level (RTL), and then synthesize
many different implementations from the same specification
by applying optimization directives before running the HLS

Manuscript received April 18, 2020; revised June 12, 2020; accepted
July 6, 2020. Date of publication October 2, 2020; date of current ver-
sion October 27, 2020. This work was supported in part by the National
Science Foundation under Grant 1527821; in part by the MagicISEs under
Grant 200021-156397 and the ML-Edge under Grant 200020-182009 projects
evaluated by the Swiss NSF; and in part by the MyPreHealth under Grant
16073 project funded by the Hasler Stiftung. This article was presented in
the International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems 2020 and appears as part of the ESWEEK-TCAD special
issue. (Corresponding author: Lorenzo Ferretti.)

Lorenzo Ferretti, Giovanni Ansaloni, and Laura Pozzi are with the Faculty
of Informatics, Università della Svizzera italiana, 6900 Lugano, Switzerland
(e-mail: lorenzo.ferretti@usi.ch).

Jihye Kwon, Giuseppe Di Guglielmo, and Luca P. Carloni are with the
Department of Computer Science, Columbia University, New York, NY 10027
USA.

Digital Object Identifier 10.1109/TCAD.2020.3012750

tool. Examples of directives include the unrolling factor of
a loop, the inlining of functions, and the mapping of arrays
to memory structures. The combined application of directives
has a major impact on the microarchitecture of the synthe-
sized implementation. Hence, HLS directives enable a broad
exploration of the design space in search of implementations
that are Pareto optimal with respect to conflicting objectives,
such as performance (latency and throughput) and cost (area
and power) [2], [3]. For complex designs, however, the rela-
tionships between the combination of many directives and
the quality of the synthesized implementations are difficult
to foresee before the execution of time-consuming HLS runs.
Moreover, the number of alternative implementations increases
exponentially with the number of considered directives, thus
making exhaustive explorations infeasible in practice even for
simple cases.

Several research efforts (summarized in Section VI) have
proposed strategies to discover, in the context of HLS-based
designs, the most effective implementations from a cost and
performance perspective, while minimizing the number of
HLS runs. This problem is named HLS-driven design-space
exploration (DSE). Our contribution tackles this problem from
a novel perspective: for the first time, we explore the feasibil-
ity of effectively harnessing the knowledge of past synthesis
outcomes to guide the optimization of new designs.

Fig. 1 illustrates our approach. When exploring a new target
design with HLS, we first select a source design from a library
of previously completed explorations. The source design is
the one whose specification is most similar to the target one.
Then, we consider the combinations of directives that led to
the best results for the source design. These are Pareto-optimal
implementations (marked with red crosses in Fig. 1), i.e., those
for which no other implementations resulted in both less area
and lower latency. The main idea is that the similarity among
the two designs justifies the translation of the directives from
the source design into directives for the target design, in order
to lead the search for an approximation of the set of Pareto-
optimal target implementations.

In more detail, our strategy employs a novel similarity met-
ric to identify the most appropriate source design for a given
target design. Then, it adopts a novel mapping strategy to link
the directives between the related, but not identical, source and
target designs. Ultimately, our methodology derives a set of
Pareto-optimal implementations for a new HLS design from a
prior knowledge at a minimal cost in terms of synthesis runs.

Our contribution is therefore threefold.

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on November 20,2020 at 20:58:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8935-6796

FERRETTI et al.: LEVERAGING PRIOR KNOWLEDGE FOR EFFECTIVE DSE IN HLS 3737

Fig. 1. High-level description of the methodology proposed in this work.
A target design is compared to available sources in a knowledge base. The
most similar source design is identified and leveraged to learn effective opti-
mizations for the target, approximating the Pareto frontier of its design space
while requiring few HLS runs.

1) We explore the feasibility of harnessing prior knowledge
in the context of HLS-driven DSEs.

2) We introduce an abstract representation of HLS design
space, a metric to assess the similarity between sources
and targets, and a way to infer optimizations across
different DSEs.

3) We demonstrate the effectiveness of our approach
across an extensive set of 39 different designs from
MachSuite [4]. We retrieve close approximations of
the Pareto set of the best implementations, achiev-
ing a Pareto frontier distance (Average Distance from
Reference Set) of 0.009 in the median case. On aver-
age, we only require the exploration of less than 8% of
target design spaces, and only an average of 38 synthesis
runs per design.

II. MOTIVATION

When optimizing a design with HLS, an expert designer
starts by identifying which directives are applicable. For exam-
ple, given the code in Snippet 1 of Fig. 2, the designer may
be interested in exploring unrolling factors for loops, com-
bined with different degrees of partitioning for the input/output
arrays. Furthermore, the designer may recall to have already
optimized in the past a design with a similar code structure,
such as the one reported in Snippet 2 (also shown in Fig. 2).
Indeed, even if they are not identical (e.g., the loop boundaries
and the memory access patterns differ), the two code snippets
have some structural similarities: they both iterate over two
nested loops and process data provided in input to the func-
tion through pointers. These similarities may be sufficient to
suggest adapting those directives that lead to optimal imple-
mentations for Snippet 2 to the case of Snippet 1, instead
of starting the DSE by trying anew many combinations of
directives for Snippet 1.

The designer’s empirical strategy to tackle the DSE task
hence consists of three main steps: 1) identify the main

structural characteristics in the code of the target design;
2) pinpoint a similar already-explored design; and 3) trans-
fer the knowledge from the source design to the new target
design.

Our methodology performs these steps, but, differently from
the above-described scenario, operates in a systematic and
automated way. In Section IV, we show that our explorations,
guided by prior knowledge, yield close approximations of
the Pareto-optimal results from an exhaustive approach, while
requiring very few synthesis runs. Our methodology answers
the following three research questions.

R.Q.1: From an HLS perspective, how can similarities
among designs be quantified?

In general, code written in a high-level programming lan-
guage such as C/C++ or SystemC is ill-suited for the automatic
identification of structural similarities. Therefore, we propose
an abstract representation that only retains the characteristics
of interest for HLS optimizations, e.g., the structure of loops
and that of memory access patterns. We extract such a repre-
sentation [that we termed specification encoding (SE)] with a
custom compiler pass. Since the representation is in the form
of a string of symbols, we can use string-similarity algorithms
to quantify the similarity in terms of computational patterns
that exist between a source design (from a library capturing
prior knowledge) and the target design.

R.Q.2: How can the similarity between directive choices for
different designs be assessed?

Besides the specification code, the other aspect affecting the
HLS results is the choice of HLS directives. Indeed, a proper
source of prior knowledge should have a choice of directives
values similar to the one of the target. As an example, if a
loop can be unrolled by only a small degree in a source, little
information can be leveraged to optimize a loop in the target
for very high unrolling factors. We introduce a domain-specific
language to describe succinctly the set of directives associated
with a design and a metric to measure the similarity between
sets of directives associated with the source and target designs.
Then, in the source selection strategy step, which is shown
in the top part of Fig. 1, we combine design and directive
similarities to identify the most promising source for the given
target design.

R.Q.3: How to infer from prior knowledge HLS directives
that give optimal results?

We have designed a strategy that transforms the HLS direc-
tives for the source design into HLS directives of the target
design, as shown in the lower part of Fig. 1.

In the next section, we describe in detail the answers to
these three research questions.

III. METHODOLOGY

A. Terminology

An HLS design (or design) is a functionality to be real-
ized in hardware. A specification is a high-level description
of the design in a programming language such as SystemC
or C/C++, given in input to the HLS tool. An implementation
of the design is the output of a run of the HLS tool. This
output is typically expressed as an automatically generated

Authorized licensed use limited to: Columbia University Libraries. Downloaded on November 20,2020 at 20:58:28 UTC from IEEE Xplore. Restrictions apply.

3738 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 2. Running example. Code snippets of two different functions from MachSuite [4]. Snippet 1 shows the C code of last_step_scan used in this
article as example of target design. Snippet 2 shows the C code of get_delta_matrix_weights2 used as example of source design. The code has been
rewritten to increase readability, without modifying the functionality.

RTL code written in Verilog or VHDL. Each implementation
is characterized by the values of a performance metric and a
cost metric.

A synthesis configuration (or, simply, configuration) defines
the transformations that a design undergoes through HLS. A
designer controls these transformations with constraint and
optimization directives, such as loop unrolling or pipelining,
array manipulation, and other control and datapath optimiza-
tions. A directive is associated with a location in the code
specification. A location could be either a label in the code
or a language construct; for example, a loop or an array dec-
laration. A designer can further customize some directives by
specifying the values for the directive parameters; for exam-
ple, the designer can customize the amount of parallelism in
the implementation by unrolling a loop a certain number of
times or by setting a certain initiation interval for the pipeline
implementing the loop.

A design space is the set of all the possible design configu-
rations and the associated costs and performance results from
HLS. A Pareto configuration of a design is a configuration
that leads to an implementation that is Pareto optimal in the
biobjective optimization space defined by the performance and
cost metrics. A (first-rank) Pareto frontier is the set of Pareto-
optimal points. Finally, an i-th rank Pareto frontier (for i > 1)
is defined as the Pareto frontier obtained after removing the
lower rank frontiers from the design space.

B. Problem Description

For a design T , let X T denote the set of all possible synthe-
sis configurations. In general, XT is a very large set, possibly
of infinite size. In practice, designers explore a portion of the
design space of T by trying a subset XT ⊂ XT , whose elements
they choose carefully based on their experience running HLS.
Given T and XT , the DSE task returns a subset of XT that
consists of all Pareto configurations, i.e.,

P(T, XT) = {x|x ∈ XT and x is Pareto}. (1)

The subset P(T, XT) is obtained by first 1) performing |XT |
HLS runs on T , one run for each x ∈ XT , and then 2) by
selecting only those configurations that turn out to be Pareto
configurations.

Now, assume that before performing the DSE task for T
(the target design), the designer has performed the DSE task

Fig. 3. (Top) Standard approach: the designer defines a set of configura-
tions to be explored, XT , given a target design T . Only after synthesizing all
the XT configurations, Pareto optimal ones P(T, XT) are identified. (Bottom)
Approach leveraging prior knowledge instead: the configurations to be synthe-
sized XS

T are inferred from the P(S, XS) of a similar design S. By synthesizing
T with XS

T � XT configurations, a close approximation̂P(T, XT) of the Pareto
frontier is obtained.

for another design S (the source design), thereby obtaining
P(S, XS) for a given subset XS of the configuration set XS.
Furthermore, assume that a function g : XS → XT exists that
transforms a configuration for the source design into one for
the target design, i.e.,

g(xs) = xt (2)

with xs ∈ XS and xt ∈ XT . With the help of function g,
the designer can leverage the prior knowledge on the source
design in order to perform a DSE for the target design with a
potentially much smaller number of HLS runs.

Let XS
T be the set of all configurations for the target design

T that are obtained by transforming the Pareto configurations
(up to a certain Pareto frontier rank) of the source design, i.e.,

XS
T = {g(xs)|xs ∈ P(S, XS)}. (3)

By synthesizing the target design T with the configurations
in XS

T , we can obtain the set P(T, XS
T) as an approximation

̂P(T, XT) of the set of Pareto configurations P(T, XT).
Fig. 3 showcases the difference between a standard approach

and one leveraging prior knowledge.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on November 20,2020 at 20:58:28 UTC from IEEE Xplore. Restrictions apply.

FERRETTI et al.: LEVERAGING PRIOR KNOWLEDGE FOR EFFECTIVE DSE IN HLS 3739

Fig. 4. Methodology flow. The target design and its configurations space are encoded into a signature, which is compared to the ones of existing DSEs. The
source having the most similar signature is selected to drive the inference process and generate the target configurations.

Note that this approximation requires |XS
T | HLS runs, while

the derivation of the actual set of Pareto configurations would
require |XT | HLS runs. Tuning the maximum Pareto frontier
rank whose configurations are transformed from source to tar-
get, the synthesis effort and the approximation of P(T, XS

T)

by ̂P(T, XT) can be traded-off. We explore the effect of vary-
ing this parameter in Section IV. Since for a given design T ,
the number of Pareto configurations |P(T, XT)| is, in general,
much smaller than the number of configurations |XT |, if sets
P(T, XT) and P(S, XS) are of comparable sizes then leverag-
ing prior knowledge allows a major reduction in the number
of time-consuming HLS runs while deriving the approximated
set ̂P(T, XT).

Moreover, the degree to which P(T, XT) is approximated by
̂P(T, XT) depends on the choice of a proper source design S to
derive the prior knowledge for the given target T . To this end,
we introduce a novel and concise representation to encode the
specification and a configuration space of each design via an
abstract characterization called signature. Then, we define a
similarity metric between the signatures. If the signatures of
two designs have a high similarity, then Pareto configurations
for one design—when transformed to configurations for the
other—may approximate well the actual Pareto configurations
for the other design. Moreover, signatures are also employed to
automate the transformation of Pareto configurations between
source and target spaces, thereby realizing function g(·) of (2).

Fig. 4 illustrates the overall flow of our methodology. Given
as input a target design’s specification and configuration space,
our strategy (A) derives the signature of the design, and (B)
employs a similarity metric over such signature to search,
in a database of already performed DSEs (the sources), for
the most similar one. Once a source is selected, the Pareto
configurations for that source are extracted, and (C) they are
transformed by an inference process into valid configurations
for the target.

Each of these three steps—signature encoding, similarity
evaluation, and inference—is detailed in the remainder of this
section.

C. Signature Encoding

This step aims to characterize a DSE with a compact
representation that abstracts the specification (code) and the
associated configurations (set of applied directives). The
proposed Specification Encoding (SE) and Configuration

TABLE I
SE OF DESIGN SOURCE CODE

Space Descriptor (CSD) capture these two aspects. The combi-
nation of SE and CSD uniquely defines a signature encoding.

Specification Encoding. An SE describes those aspects of
an HLS specification that can be targeted by HLS directives,
such as the presence of loops and read/write operations, while
disregarding anything that is not interesting from an HLS-
driven DSE perspective. The encoding process generates a
string representation of the specification that highlights the
source code structure.

Table I shows the encoding scheme adopted and the corre-
spondence between the string symbols and the code constructs.
We derive the SE from the C/C++ specification through an
LLVM [5] pass. We extended the compiler to parse the abstract
syntax tree and produce the SE string. The last column of
Table I also shows the HLS directives that can be associated
with each code construct. We use the curly braces to identify
the scope associated with symbols, thus allowing hierarchi-
cal representations (e.g., a function containing multiple nested
loops).

Running Example: Given the function last_step_scan
from Snippet 1 of Fig. 2 and the encoding in Table I, the
proposed SE is F{PP}L{L{RRW}}. The encoding states that
the function (F) receives two parameters by reference (PP),
it has two nested loops and the innermost loop performs
two reads and one write operations (L{L{RRW}}). Likewise,
the SE for Snippet 2 from Fig. 2 is F{PPP}L{L{RRW}},
showcasing a similar, but not identical, structure.

Configuration Space Descriptor. We defined a domain-
specific language to concisely describe a user-defined

Authorized licensed use limited to: Columbia University Libraries. Downloaded on November 20,2020 at 20:58:28 UTC from IEEE Xplore. Restrictions apply.

3740 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 5. (Left) Signature similarity matrix obtained with α = 0.2. (Center) SE similarity matrix. (Right) CSD similarity matrix. Darker color expresses a
higher similarity. Each row of the matrix shows the similarity between a target design and the source ones. The indices on the axes corresponds to the function
IDs in Table II.

configuration space. For source designs, CSDs describe which
configurations are available in its design space, while for a tar-
get, a CSD indicates the set of configurations that a designer
wishes to explore. Each line of the descriptor encodes a knob
(a type of directives, the location, and selected parameter
values) that the designer considers for the DSE task. For a
directive with multiple parameters, a set of values for each
parameter is specified.

Running Example: Given the function last_step_scan
in Snippet 1 of Fig. 2, the associated CSD is shown in
Snippet 3 of Fig. 6. The descriptor defines seven dif-
ferent knobs that can be associated with the function
last_step_scan. Line 1 of Snippet 3 shows a knob with a
single value: it associates a dual-ported block RAM (BRAM)
to the array bucket that is the input of the function.

Line 3 instead defines a knob governing the array parti-
tioning directive defined by all the pairs having one of two
partitioning strategies (cyclic and block) as the first com-
ponent, and the ten possible partitioning factors (all the powers
of two from 1 up to 512) as the second one.

The CSD is parsed and the resulting set of configurations
of the design space is generated as follows:

CS = K1 × K2 × · · · × KN (4)

where N is the number of considered knobs, and Ki is the set
of values related to each i knob, i.e., the set of values that the
directive associated to the knob i can assume. For a directive
with multiple parameters, Ki is the Cartesian product among
each set of values. The size of the configuration space is then
given by its cardinality (|CS|).

D. Similarity Evaluation

To choose a candidate source design for a target design, we
compute a similarity metric between their signature encodings.
We compute such a similarity given the similarities of the
design SEs and CSDs

Sim = αSimSE + (1 − α)SimCSD α ∈ [0, 1]. (5)

The parameter α in (5) weights the contributions of the SE
and CSD similarities. The best source candidate, selected

according to the similarity metric, is used to transfer knowl-
edge from source to target design during the inference step.

Fig. 5-left shows the similarity matrix for the 39 functions
in the MachSuite Benchmarks. Each row shows the similarity
between a target design and all the candidate source designs;
the diagonal elements show the similarity of the design to
itself. The figure highlights a high similarity variance that
discriminates well between similar and dissimilar sources. In
Section IV, we show that our chosen similarity metric leads
to an effective selection of the source for the given target.

SE Similarity: Since we express the SE as a string,
we can use string-based algorithms to assess the similarity
between SEs. In our approach, we adopt the Longest Common
Subsequence (LCS) metric [6]. This metric returns a score
SimSE ∈ [0, 1], whose value is closer to 1 the more two strings
are alike.

Fig. 5-center expresses the SimSE matrix for the same 39
functions, where each row shows the similarity between a
target design and all the candidate sources.

Running Example: Given the SE of the target
design F{PP}L{L{RRW}} and the source design
F{PPP}L{L{RRW}} in Fig. 2, the resulting SE similarity
score is 0.93.

CSD Similarity. The similarity between two CSDs is
assessed by comparing the knobs Ki for a target configura-
tion space XT (for design T) to the knobs Kj for a source
configuration space XS (for design S) using a mapping func-
tion MT,S, which relates each knob of the target CSD to a
specific knob of the source CSD

MT,S(Ki) = Kj. (6)

The function MT,S is determined through an alignment pro-
cedure. By iterating over the knobs of the target CSD from top
to bottom, each knob is mapped to the first nonmapped knob
of the same type belonging to the source CSD. Eventually, if
no more knobs are available in the source, some target knobs
may be left unmapped.

Running Example: Let us consider the target and source
designs in Fig. 2 and their CSDs in Snippet 3 and
Snippet 4 of Fig. 6, respectively. The CSD of function

Authorized licensed use limited to: Columbia University Libraries. Downloaded on November 20,2020 at 20:58:28 UTC from IEEE Xplore. Restrictions apply.

FERRETTI et al.: LEVERAGING PRIOR KNOWLEDGE FOR EFFECTIVE DSE IN HLS 3741

Fig. 6. Running example. Code snippets of the CSDs for the functions shown in Fig. 2. Snippet 3 shows the CSD defined for last_step_scan used in
this article as an example of target CSD. Snippet 4 shows the CSD defined for get_delta_matrix_weights2 used as an example of source CSD.

Fig. 7. Top: Mapping between the knobs of source and target CSD shown
as an example (Snippets 1 and 2). Bottom: Correspondence between the knob
value sets of knobs K6 and K5 in target and source, leading to a distance �

of 1.

last_step_scan has seven different knobs—each knob
is one line of the descriptor—while the CSD of func-
tion get_delta_matrix_weights2 has only six knobs.
Fig. 7 shows the mapping MT,S between the two CSDs. Five
out of seven knobs of function last_step_scan can be
mapped by using get_delta_matrix_weights2 as a
source design; while knobs K1 and K2 of last_step_scan
are unmapped.

Once a mapping MT,S is defined between a target configu-
ration space XT , defined with I different knobs, and a source
configuration space XS, defined with J different knobs, we
compute their similarity as follows:

SimCSD = 1 −
[

1

I

I
∑

i=1

�
(

Ki, MT,S(Ki)
)

/DMAX

]

(7)

where DMAX is a normalization factor—constant across all
the source candidates for a given target—such that SimCSD ∈
[0, 1]. Then, �(·) is a function measuring the minimum
distance between a source knob and a target knob

�
(

Ki, Kj
) =

√

√

√

√

|Ki|
∑

n=1

(|Kj|
min
m=1

|δ(kn, km)|
)2

kn ∈ Ki, km ∈ Kj.

(8)

The above equation sums up the distance between each target
knob value kn and the one that is closest to it among all source
knob values km. The function δ(kn, km) computes the distance

between two knob values of the same directive type that has
Z parameters, e.g., kn = (kn,1, . . . , kn,Z)

δ(kn, km) =
√

√

√

√

Z
∑

z=1

∣

∣kn,z, km,z
∣

∣

2 (9)

where numerical parameter values are casted to their respective
log2 value, and categorical parameter values are represented
with one-hot encoding.

Since for unmapped knobs, there is no correspondence
between source and target, the distance �(·) in (8) is com-
puted between the values of the target knob and the default
value of the directive.

Fig. 5-right shows the resulting SimCSD matrix for the func-
tions in the MachSuite Benchmark Suite considered in this
work.

Running Example: Given the mapping between the func-
tions in our running example (Fig. 2), for each target knob,
we measure the distance with respect to the source one. Fig. 7
(bottom) shows the computation of the distance for the target
knob K6 mapped to the source node K5, each having a sin-
gle value set of possible unrolling factors. K6 specifies eight
factors (from 1 to 128, all of them powers-of-two), while K5
comprises seven values (from 1 to 64). Since the δ is calcu-
lated among numerical values, the directive values are casted
to their respective log2; therefore, the knobs discrepancy leads
to a � equal to (log2128 − log264) = 1. When accounting for
all target knobs, the CSD similarity between the source and
target is 0.97.

E. Inference

After a source design is identified for a target design, the
inference process transfers knowledge from the source to the
target configuration space, hence implementing (2). In the first
step of such a process, we extract the configurations belonging
to the Pareto frontier in the source configuration space from a
library of prior knowledge. These are peeled from the source
design space, allowing the identification of second-rank Pareto
configurations. Then, we proceed iteratively to extract higher
ranked Pareto frontiers, until a certain number of these have
been retrieved from the source design space.

Each selected configuration is transformed into a valid one
in the target CSD. To this end, first, knobs in the source and
target spaces are mapped according to the mapping function

Authorized licensed use limited to: Columbia University Libraries. Downloaded on November 20,2020 at 20:58:28 UTC from IEEE Xplore. Restrictions apply.

3742 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 8. Inference from source to target design spaces from the running
example. The inferred values of the HLS directive knobs are underlined in
the bottom part of the figure.

MT,S described in the previous section. If a target knob Ki

is not be mapped to a source knob, the value of xi
T is fixed

to the directive default, since no prior knowledge related to
that knob can be leveraged. The values of all other knobs are
instead inferred from the source design space.

Then, given a source configuration xS = [x1
S, . . . , xJ

S] ∈ XS,
with xj

S being the value for knob j, the corresponding target
configuration is set as xT = [x1

T , . . . , xI
T] ∈ XT , where each

component xi
T is knob values associated to the knob i.

For each configuration component, we define the inference
function g : XS → XT , introduced in (2), as follows:

xi
T = arg min

n

{

δ
(

kn, xj
S

)}

(10)

where δ(·) is the distance function defined in (9), xj
S is the

values assigned to the jth knob of the source, and kn ∈ Ki is
the set of all possible sets of values that the knob Ki of the
target design can assume, as specified by its CSD. Therefore,
each target directive value xi

T is assigned to the closest value
to xj

S among those specified in the target knob set for knob i.
Running Example: Let us assume that, among the many

Pareto configurations of the source design in Fig. 2, one con-
figuration has the directive values shown in Fig. 8. Given
the mapping function from Fig. 7 and (10), we transform the
source Pareto configuration into a valid target configuration.
We map the partitioning factors—256 and 8 for K1 and K2 of
the source—to the closest partitioning factor values of the tar-
get knobs—respectively, 256 and 8 for K1 and K2 of the target.
Similarly, we infer the same partitioning type—cyclic—from
the source Pareto configuration for the target ones. Finally, we
map the source unrolling factors and the clock, 32, 64, and 10
for K4, K5, and K6 to 32, 16, and 10 for K5, K6, and K7 in
the target, respectively.

IV. EXPERIMENTS

A. Experimental Setup

We implemented the similarity evaluation and inference
algorithms in Python. We implemented the SE encoding in
C++ as a custom compiler pass within the LLVM infrastruc-
ture, as described in Section III-C.

Our experiments targeted all of the functions in the
MachSuite benchmarks collection [4], except those that expose
very small design spaces, and those having a variable latency
for different invocations during the benchmark execution due
to input-dependent control flows. In total, 11 designs were
discarded. The resulting suite comprises 39 functions, which
have on average 40 lines of code and 308 in the biggest case.

For each design, we performed an extensive DSE across
their configuration spaces up to tens of thousands of design

points. We used Vivado HLS [7] to run synthesis with a target
clock period of 10 ns and targeting a ZynqMP Ultrascale+
(xczu9eg) FPGA chip. We collected the design configura-
tions and synthesis results in a MySQL database.

In order to control the configuration space size,1 we only
employed power-of-two values for directives having a numer-
ical range (e.g., loop-unrolling and array-partitioning factors),
and, in some cases, we forced related knobs to have the same
value (e.g., the partitioning factor of an array and the unrolling
of a loop accessing it once every iteration). Such a deci-
sion corresponds to the intuitive choice of constraints that a
designer would impose when tasked with the exploration of
the design space. More than four years of single-core machine
time are required to generate the knowledge base. To speed
up this process, we collected synthesis data from up to 60
instances of Vivado HLS running in parallel. This allowed us
to reduce to produce the database in approximately 25 days.

We use these extensive DSEs in two ways. On the one hand,
we use these results as ground truth to assess the performance
of our approach. On the other hand, we use them as a source
of prior knowledge. In the latter case, we adopted a leave-one-
out cross-validation, considering each design as a target using
all others as candidate knowledge sources.

Similar to [8]–[11], we used as quality metric the Average
Distance from Reference Set (ADRS), which expresses the
distance between a reference curve P (the Pareto frontier from
ground-truth data), and an approximated curve P̄. The ADRS
for two objective functions is defined as

ADRS
(

P̄, P
) =

⎡

⎣

1

|P|
∑

p∈P

min
p̄∈P̄

(d(p̄, p))

⎤

⎦ (11)

d(p̄, p) = max
{

0,
(

Ap̄ − Ap
)

/Ap,
(

Lp̄ − Lp
)

/Lp
}

(12)

Low ADRS values are better, because they imply proxim-
ity between P and P̄. In our scenario, the first objective
function is the FPGA resource requirement (area, A) of
an implementation, expressed as the average utilization of
Flip-Flops, Look-Up Tables, DSP, and BRAMs. The second
objective function is runtime performance, i.e., latency (L) in
nanoseconds.

B. Results

Outcome of Explorations. Table II summarizes the results
of the explorations performed with our methodology. It reports
the target function IDs (used as indexes in Fig. 5), their
benchmarks and the function names. Moreover, for each case,
it provides the function IDs and the function names of the
source having the highest similarity score, the obtained ADRS
values in the target space, the number of synthesized config-
urations derived from that source, and the size of the related
configuration space (|CS|).

For the vast majority of the targets, our approach
requires very few syntheses to reach low ADRS scores.
As an example, when targeting aes_addRoundKey
(row index: 20) while leveraging the knowledge of the

1Even for the simple case in Snippet 2, considering all loop unrolling
factors, two types of resources, two types of partitioning, and all partitioning
factors would result in more than 108 configurations.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on November 20,2020 at 20:58:28 UTC from IEEE Xplore. Restrictions apply.

FERRETTI et al.: LEVERAGING PRIOR KNOWLEDGE FOR EFFECTIVE DSE IN HLS 3743

Fig. 9. ADRS evolution while changing the value of α.

add_bias_to_activations source, only 13 out of 500
possible synthesis rounds are performed, still resulting in a
perfect identification of the Pareto frontier of best perform-
ing implementations (ADRS = 0). Only 35 out of thousands
of configurations are synthesized for the gemm target (row
index: 5) while reaching a very close Pareto frontier approxi-
mation (ADRS = 0.012).

We obtained the results of Table II by inferring up to the
10th-ranked Pareto frontier (as defined in Section III-A) and by
fixing the tradeoff between SE and CSD similarity (introduced
as α in Section III-D) to 0.2. We further explore both settings
in the rest of this section.

Tuning of the Similarity Function. Fig. 9 shows the ADRS
scores achieved when selecting the most similar candidates
according to the similarity metric in (5) while varying the
parameter α, i.e., the relative weight of SE and configuration
space similarity. Data is shown on a logarithmic scale and in an
aggregated form across all targets. Boxes encompass the first
and third quartile of the ADRS values obtained by the DSEs
of all targets, while the lines inside them indicate the median
case. The skewers above and below each box are the upper and
lower 1.5 interquartile. As before, we inferred configurations
up until the 10th-ranked Pareto frontier in the source design
space.

Fig. 9 that both SE and CSD have an impact on the
quality of results and that CSD similarity generally has a
more significant impact than the SE one. An α value of
0.2 both minimizes the interquartile range and the median
ADRS.

Effectiveness of the Similarity Metric. Fig. 10 highlights
the importance of a proper source of prior knowledge in order
to achieve effective explorations. It depicts four DSEs of the
target design last_step_scan, from the running exam-
ple, leveraging different sources of prior knowledge. Each plot
depicts the ground truth of the target design space resulting
from its exhaustive exploration—gray dots—as well as the
Pareto frontier retrieved with the inference process—dark blue
line. The top-left DSE shows the result of inferring configu-
ration from get_delta_matrix_weights2 (ID 27), the
best-ranked source according to our similarity metric. In this
case, the Pareto frontier is very well approximated and obtains
a small ADRS of 0.004.

The top-right picture shows an example of DSE char-
acterized by a low SE similarity, resulting in a partial
approximation of the Pareto frontier, since only a few knobs
can be mapped from source to target. In this case, the

Fig. 10. Example of DSEs targeting last_step_scan, inferring from
different sources. (Top-left) Good Pareto approximation obtained with the
best candidate source. (Top-right, bottom-left, and bottom-right) Low-quality
Pareto approximations, from sources having low CSD and/or AS similarity.
Gray dots represent the ground truth for the target design last_step_scan
while the dark blue line represents the Pareto frontier obtained performing the
inference with different sources.

inference process uses as source design the function bulk
(ID 2), which is ranked 30th in order of similarity score.
Similarly, the bottom-left picture shows the result of the DSE
when product_with_bias_output_layer (ID 34) is
employed as a source design. In this case, the similarity score
is penalized by a low CSD similarity. Therefore, only a portion
of the target design space can be explored, due to inadequate
coverage of the knob values of XT by the ones in XS. The
Pareto frontier is hence well approximated only for the XT

region for which prior knowledge is available, resulting in an
ADRS of 1.5. Finally, in the plot at the bottom-right of Fig. 10,
we show the result of the inference from backprop (ID 35).
In this case, we observed both a low SE similarity (few knobs
can be mapped from source to target) and a low CSD similar-
ity (for mapped knobs, knob values are distant between source
and target spaces) resulting in an extremely poor approxima-
tion of the Pareto frontier, since little prior knowledge can be
harnessed. In this case, as reported in the figure, the retrieved
Pareto frontier only comprises a single design point.

Fig. 11 generalizes these findings by reporting the aggre-
gated ADRS values when selecting the sources with the high-
est similarity score for each target, the second-best choices,
etc. As in Fig. 9, we plot the data on a logarithmic scale.
Boxes encompass the first and third quartile of the ADRS
scores across all targets, while the line inside the boxes indi-
cates the median case. An order of magnitude separates the

Authorized licensed use limited to: Columbia University Libraries. Downloaded on November 20,2020 at 20:58:28 UTC from IEEE Xplore. Restrictions apply.

3744 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

TABLE II
LIST OF FUNCTIONS EXPLORED FROM MACHSUITE [4] (GROUPED BY BENCHMARK). THE TABLE REPORTS: TARGET FUNCTION ID, BENCHMARK

NAME, TARGET FUNCTION NAME, SOURCE FUNCTION IDs, SOURCE FUNCTION NAMES, ADRS VALUE, NUMBER OF

SYNTHESIZED CONFIGURATIONS, AND SIZE OF THE CONFIGURATION SPACE (|CS|)

Fig. 11. ADRS according to source selection by metric ranking.

best and third-best choice, after which performance remains
almost constant and tangibly worse than in the case of the
best-ranked source.

Finally, Fig. 12 compares the aggregated ADRS values
obtained by our strategy (named Prior Knowl. in the fig-
ure), i.e., leveraging the source with the highest similarity,
with three alternatives: 1) a perfect oracle always choos-
ing a-posteriori the best source (Oracle); 2) the average of
selecting all sources for each target (Average); and 3) a random

Fig. 12. ADRS according to source selection criterion.

sampling of the target design space (Random)—disregarding
knowledge transfer altogether. For the latter case, we per-
formed several samplings equal to the ones required by our
methodology, and we averaged the results over 100 different
runs to minimize noise. A choice that is driven by the proposed
similarity metric (Prior Knowl.) performs three orders of
magnitude better than a choice that is not considering past
explorations at all (Random) and 12× better when compared
with a blind choice for the source design (Average).

Authorized licensed use limited to: Columbia University Libraries. Downloaded on November 20,2020 at 20:58:28 UTC from IEEE Xplore. Restrictions apply.

FERRETTI et al.: LEVERAGING PRIOR KNOWLEDGE FOR EFFECTIVE DSE IN HLS 3745

Fig. 13. Cumulative evolution of the ADRS while inferring from multiple
Pareto frontiers. The average number of synthesis performed while the number
of Pareto frontiers increases is shown with the dashed line.

TABLE III
QUALITATIVE COMPARISON WITH SOA METHODOLOGIES.

AVERAGE # OF SYNTHESIS REQUIRED TO OBTAIN AN ADRS ≤ 0.04

Tuning the Number of Source Pareto Frontiers. In a fur-
ther round of experiments (Fig. 13), we investigated the effect
of varying the number of selected source Pareto frontiers. Each
boxplot shows the aggregated ADRS outcomes when infer-
ring an increasing number of Pareto frontiers from the highest
similarity source to the target. While increasing the number
of frontiers always lowers ADRS scores, diminishing returns
can be observed for a number of frontiers ≥ 7. The number of
required syntheses, instead, linearly increases with the amount
of inferred Pareto frontiers.

Comparison With State of the Art. Table III compares
our methodology (named Prior Knowl. in the table) with four
related works that also aim to automate the optimization of
HLS designs. According to the taxonomy of Section VI, three
of them are refinement-based approaches [8]–[10], while one
is a model-based approach [11]. For fairness, we group the
results in different brackets according to the configuration size
of the employed benchmarks. When no benchmark is reported
for a given size on past works, we marked the corresponding
table cell with NA. In other cases, data show the average num-
ber of synthesis runs required to reach an ADRS of 0.04, in
which Zhong et al. considered as an excellent Pareto frontier
approximation [11] [and which is attained by our approach in
29 out of 39 cases (see Table II)].

The numbers in this table show that our approach greatly
outperforms the refinement-based approaches (see the required
number of synthesis in the first four columns), and this advan-
tage grows with the size of the configuration space. Our
strategy is even competitive with the model-based strategy of
Zhong et al. [11] (see the last column), while being agnostic to
the number and type of optimizations that can be considered.2

Leveraging Prior Knowledge Across Different Clock
Constraints and Platforms. All previous results assumed that

2Zhong et al. only considered the loop unrolling and the dataflow directives.

TABLE IV
ADRS OBTAINED BY LEVERAGING THE KNOWLEDGE OF THE

GET_DELTA_MATRIX_WEIGHTS2 SOURCE WHILE EXPLORING THE

LAST_STEP_SCAN TARGET, VARYING THE CLOCK CONSTRAINTS AND

FPGA MODELS EMPLOYED FOR THE TARGET BENCHMARK

the same clock constraint (10 ns) and FPGA model (Xilinx
Zynq xczu0eg) are employed for all synthesis runs. In prac-
tice, both these conditions may not be satisfied, as often past
explorations may be performed for an FPGA than is dif-
ferent from the one of interest for a new design. Similarly,
the clock constraints may, in general, not be the same for
sources and targets. Nonetheless, our methodology is robust
toward variations of FPGA models and operating frequencies
because it relies on the Pareto-dominance relationship in the
cost/performance space of implementations in each DSE com-
posing the knowledge base, as opposed to relying on the actual
values of area and latency. This relationship, and consequently
the set of Pareto configurations of a design, is not tangibly
affected by the employed clock period and FPGA.

To investigate this characteristic, we have observed the
ADRS obtained by identifying the implementations of the first-
rank Pareto frontier of the last_step_scan benchmark (13
out of 1600 implementations) synthesized with various clock
periods, and inferring the related configurations for a different
clock constraint. We have evaluated the result of the inference
for target and sources with clock constraints of 5, 10, 25, and
50 ns. For all the experiments no changes in the inferred Pareto
frontier have been observed, and hence good approximations
of the Pareto frontier have been obtained. These results con-
firm that indeed the set of Pareto configurations is not tightly
dependent on the operating frequency.

Similar remarks are obtained when varying the FPGA
employed for the synthesis of source and target. We
have observed the ADRS obtained by identifying the
implementations of the first-rank Pareto frontier of the
last_step_scan benchmark synthesized with various
FPGAs (ZynqMPUltrascale+ xczu9eg, Virtex xc7vh580,
Kintex xc7k352, and Artix xc7a100), and inferring the
related configurations for a different platform. For all the
combinations of target and source platforms, the Pareto con-
figurations are the same. Even in this case, the inferred
Pareto frontier perfectly approximates the one obtained by an
exhaustive exploration.

Concluding this round of experiments, Table IV
shows an example of applying our methodology, again
considering last_step_scan as a target, while
employing the knowledge base in Table II. The design
get_delta_matrix_weights2 (ID 28) is identified as
the most similar source and it is used to infer configurations
up to its 10th-rank Pareto frontier—the same setting adopted

Authorized licensed use limited to: Columbia University Libraries. Downloaded on November 20,2020 at 20:58:28 UTC from IEEE Xplore. Restrictions apply.

3746 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

for the results in Table II. In the first row of the table,
provided for reference, both the clock constraint and the
FPGA of the target design are equal to the ones used for the
source. In rows 2–4, three different target clock constraints
are used, while in rows 5–7, the target FPGA is different from
the source one. In all cases, very similar, and small, ADRS
are achieved, showcasing the robustness of our methodology.

V. EXTENSIONS AND FUTURE WORKS

Across a large variety of designs, leveraging prior knowl-
edge can lead to the identification of high-quality implemen-
tations while requiring a low budget of synthesis.

However, the quality of the implementations discovered dur-
ing a DSE relies on the presence of a similar DSE in the
knowledge base. While we have shown that this scenario is
not unrealistic—75% (29 out of 39) of the benchmarks have
obtained an ADRS lower than 0.04—it is still possible that
none of the available sources has a high degree of similar-
ity for a given target. This drawback could be alleviated by
partitioning target applications, and inferring prior knowledge
for each of them separately, possibly from different sources.
Moreover, a better coverage of target design spaces could be
achieved by interpolating and extrapolating from the data in
the source ones. In addition, more complex mapping algo-
rithms could be conceived for matching source and target
knobs (see Section III-D), e.g., taking into account loop nest-
ing levels, the presence of loop carried dependency, control
flow, etc. Implementing such strategies would be a natural
extension of this work.

Our framework is, for the most part, independent from
the metrics used to measure cost and performance (for the
experiments in Section IV we considered area and latency,
respectively) as these are only employed to identify Pareto
configurations in the source space. Further tradeoffs can there-
fore be explored, for example, including energy efficiency as
an alternative or additional dimension.

Finally, experimental evidence confirms the intuition that
high similarity between sources and targets results in better
approximation of the Pareto frontier of a given design space.
We hope such findings will spur follow-up efforts investigating
the link between presynthesis evaluations (e.g., similarity) and
post-synthesis validation (e.g., ADRS).

VI. RELATED WORK

Recent works proposing strategies to navigate HLS design
spaces can be organized into two main categories. On the one
hand, model-based approaches cite [11]–[14] rely on an esti-
mation of performance and resource requirement of a given
optimization. While mandating very few synthesis runs, such
strategies struggle when coping with multiple, interdependent
optimizations. Hence, they are often limited to capturing the
effect of only a few directives.

On the other hand, refinement-based frameworks rely on the
outcome of some synthesis runs as a starting point, and aim
to improve on this initial solution using different strategies,
such as random forest [8], genetic algorithms [15], simulated
annealing [16], clustering [9], or local search techniques [10].

Refinement-based methods are agnostic to the set of consid-
ered directives, but usually exhibit a slower convergence rate,
because they must incrementally build a knowledge of the
design space being explored.

Our proposed methodology neither relies on an a-priori
model nor tries to infer it from an ongoing exploration.
By focusing on previous explorations, we can instead tap
on a knowledge base which is both rich in terms of
available data points and robust toward different directives
and their combination. Indeed, as summarized in the sur-
veys by Pan and Yang [17] and Weiss et al. [18], useful
information can be extracted from previous sets of experi-
ments for which the outcomes are known, in order to effi-
ciently explore new ones. Nonetheless, most of the strategies
described in these surveys deal with domains that are dis-
tant from HLS, such as classification and object recognition
applications.

In a recent editor’s note, Doppa et al. [19] highlighted
the importance of leveraging prior knowledge to effectively
reduce the complexity of DSE problems. A small number
of works take this stance in the context of hardware design.
However, they do so from a different and somehow limited
perspective: Dai et al. [20] aimed at improving the accuracy
of HLS estimations using post-synthesis data, while the goal
of Liu et al. is to estimate the performance on FPGA from an
ASIC synthesis report [21]. Deshwa et al. [22] leveraged prior
knowledge in the context of network-on-chip DSEs, to identify
the promising starting point for their exploration methodol-
ogy. More recently, Wang et al. [23] proposed a method to
accelerate the process of HLS-driven DSE by precharacter-
izing micro-kernels offline and creating predictive models of
these. Finally, Martins et al. [24] also presented a strategy
to harness prior knowledge based on a similarity metric, but
their framework is geared toward the selection of compiler
optimizations, as opposed to targeting the hardware domain
of HLS.

VII. CONCLUSION

In this work, we have proposed a methodology for lever-
aging prior knowledge in HLS-driven DSE. We consider the
Pareto-dominance relationship among directive configurations
in a source design, and translate Pareto configurations from
a source into corresponding ones in a target. By transferring
knowledge from similar DSEs, we are able to retrieve high-
quality implementations with a very sparse sampling of target
DSEs, requiring few synthesis runs.

The proposed strategy assesses similarities between sources
and targets—therefore identifying the most promising source
to learn from—and performs inference of configurations
based on a novel abstract representation. Such representa-
tion provides a succinct view of the design code and of the
configuration space of a DSE.

Our methodology greatly outperforms state-of-the-art
refinement-based strategies, requiring much fewer synthesis to
derive the same DSE quality. Results are in line with model-
based methods, but, as opposed to them, we are not restricted
in the type of supported directives.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on November 20,2020 at 20:58:28 UTC from IEEE Xplore. Restrictions apply.

FERRETTI et al.: LEVERAGING PRIOR KNOWLEDGE FOR EFFECTIVE DSE IN HLS 3747

REFERENCES

[1] G. Martin and G. Smith, “High-level synthesis: Past, present, and
future,” IEEE Design Test Comput., vol. 26, no. 4, pp. 18–25,
Jul./Aug. 2009.

[2] H.-Y. Liu, M. Petracca, and L. P. Carloni, “Compositional system-level
design exploration with planning of high-level synthesis,” in Proc. Conf.
Design Autom. Test Eur. Conf. Exhibit., Dresden, Germany, Mar. 2012,
pp. 641–646.

[3] L. Piccolboni, P. Mantovani, G. Di Guglielmo, and L. P. Carloni,
“COSMOS: Coordination of high-level synthesis and memory
optimization for hardware accelerators,” ACM Trans. Embedded Comput.
Syst., vol. 16, no. 5s, pp. 1–22, Sep. 2017.

[4] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks, “MachSuite:
Benchmarks for accelerator design and customized architectures,” in
Proc. IEEE Int. Symp. Workload Characterization, Raleigh, NC, USA,
Oct. 2014, pp. 110–119.

[5] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. Int. Symp. Code Gener.
Optim., San Jose, CA, USA, Mar. 2004, p. 75.

[6] M. Paterson and V. Dančík, “Longest common subsequences,” in Proc.
Int. Symp. Math. Found. Comput. Sci., Jun. 1994, pp. 127–142.

[7] Vivado High-Level Synthesis. Accessed: Aug. 10, 2020. [Online].
Available: https://www.xilinx.com/products/design-tools/vivado/
integration/esl-design.html

[8] H.-Y. Liu and L. P. Carloni, “On learning-based methods for
design-space exploration with high-level synthesis,” in Proc. 50th
ACM/EDAC/IEEE Design Autom. Conf., Austin, TX, USA, Jun. 2013,
pp. 1–6.

[9] L. Ferretti, G. Ansaloni, and L. Pozzi, “Cluster-based heuristic for high
level synthesis design space exploration,” IEEE Trans. Emerg. Topics
Comput., early access, Jan. 15, 2018, doi: 10.1109/TETC.2018.2794068.

[10] L. Ferretti, G. Ansaloni, and L. Pozzi, “Lattice-traversing design space
exploration for high level synthesis,” in Proc. IEEE 36th Int. Conf.
Comput. Design, Orlando, FL, USA, Oct. 2018, pp. 210–217.

[11] G. Zhong, V. Venkataramani, Y. Liang, T. Mitra, and S. Niar, “Design
space exploration of multiple loops on FPGAs using high level synthe-
sis,” in Proc. IEEE 32nd Int. Conf. Comput. Design, Seoul, South Korea
Dec. 2014, pp. 456–463.

[12] N. K. Pham, A. K. Singh, A. Kumar, and M. M. A. Khin, “Exploiting
loop-array dependencies to accelerate the design space exploration with
high level synthesis,” in Proc. Design Autom. Test Eur. Conf. Exhibit.
(DATE), Grenoble, France, 2015, pp. 157–162.

[13] G. Zhong, A. Prakash, Y. Liang, T. Mitra, and S. Niar, “Lin-analyzer: A
high-level performance analysis tool for FPGA-based accelerators,” in
Proc. 53rd ACM.EDAC/IEEE Design Autom. Conf., Austin, TX, USA,
Jun. 2016, pp. 1–6.

[14] J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, and B. He, “COMBA: A
comprehensive model-based analysis framework for high level synthesis
of real applications,” in Proc. Int. Conf. Comput.-Aided Design, Irvine,
CA, USA, Oct. 2017, pp. 430–437.

[15] B. C. Schafer and K. Wakabayashi, “Machine learning predictive
modelling high-level synthesis design space exploration,” IET Comput.
Digit. Techn., vol. 6, no. 3, pp. 153–159, May 2012.

[16] A. Mahapatra and B. C. Schafer, “Machine-learning based simulated
annealer method for high level synthesis design space exploration,” in
Proc. Electron. Syst. Level Synth. Conf., San Francisco, CA, USA, 2014,
pp. 1–6.

[17] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[18] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer
learning,” SpringerOpen J. Big Data, vol. 3, no. 1, p. 9, May 2016.

[19] J. R. Doppa, J. Rosca, and P. Bogdan, “Autonomous design space
exploration of computing systems for sustainability: Opportunities and
challenges,” IEEE Design Test, vol. 36, no. 5, pp. 35–43, Oct. 2019.

[20] S. Dai, Y. Zhou, H. Zhang, E. Ustun, E. F. Young, and Z. Zhang, “Fast
and accurate estimation of quality of results in high-level synthesis with
machine learning,” in Proc. 26th IEEE Symp. Field Program. Custom
Comput. Mach., Boulder, CO, USA, Apr. 2018, pp. 129–132.

[21] S. Liu, F. Lau, and B. C. Schafer, “Accelerating FPGA prototyp-
ing through predictive model-based HLS design space exploration,” in
Proc. 56th ACM/IEEE Design Autom. Conf., Las Vegas, NV, USA,
Jun. 2019, p. 97.

[22] A. Deshwal, N. K. Jayakodi, B. K. Joardar, J. R. Doppa, and P. P. Pande,
“Moos: A multi-objective design space exploration and optimization
framework for NoC enabled manycore systems,” ACM Trans. Embed.
Comput. Syst., vol. 18, no. 5s, p. 77, Oct. 2019. [Online]. Available:
https://doi.org/10.1145/3358206

[23] Z. Wang, J. Chen, and B. C. Schafer, “Efficient and robust high-
level synthesis design space exploration through offline micro-kernels
pre-characterization,” in Proc. Design Autom. Test Eur. Conf. Exhibit.
(DATE), Grenoble, France, 2020, pp. 145–150.

[24] L. G. Martins, R. Nobre, J. M. Cardoso, A. C. Delbem, and E. Marques,
“Clustering-based selection for the exploration of compiler optimization
sequences,” ACM Trans. Archit. Code Optim., vol. 13, no. 1, p. 8,
Apr. 2016.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on November 20,2020 at 20:58:28 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TETC.2018.2794068

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

