
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 6, JUNE 2010 869

The Connection-Then-Credit Flow Control Protocol
for Heterogeneous Multicore Systems-on-Chip

Nicola Concer, Luciano Bononi, Michael Soulié, Riccardo Locatelli, and Luca P. Carloni, Senior Member, IEEE

Abstract—Connection-then-credits (CTC) is a novel end-to-end
flow control protocol to handle message-dependent deadlocks
in best-effort networks-on-chip (NoC) for embedded multicore
systems-on-chip (SoCs). CTC is based on the classic end-to-end
credit-based flow control protocol but differs from it because it
uses a network interface microarchitecture where a single credit
counter and a single input data queue are shared among all pos-
sible communications. This architectural simplification reduces
the area occupation of the network interfaces and increases their
design reuse; for instance, the same network interface can be used
to connect a core independently of the number of incoming and
outgoing communications. CTC, however, requires a handshake
preamble to initialize the credit counter in the sender network
interface based on the buffering capacity of the receiver network
interface. While this necessarily introduces a latency overhead in
the transfer of a message, simulation-based experimental results
show that the penalty in performance is limited when large
messages need to be transferred, thus, making CTC a valid
solution for particular classes of applications such as video stream
processing.

Index Terms—End-to-end flow control, message-dependent
deadlock, multicore systems-on-chip (SoC), network interface
design, networks-on-chip (NoC).

I. Introduction

FUTURE GENERATIONS of systems-on-chip (SoCs) will
consist of heterogeneous multicore architectures with a

main general-purpose processor, possibly, itself consisting of
multiple processing cores, and many task-specific subsystems
that are programmable and/or configurable [1], [2]. These
subsystems, which are also composed of several cores, will
provide more power-efficient support to important classes of
embedded applications across multiple use-case scenarios [3]–
[5]. Heterogeneity is the combined result of hardware special-

Manuscript received September 21, 2009; revised January 8, 2010. Date
of current version May 21, 2010. This work was supported in part by
the University of Bologna, Bologna, Italy, with the project “Modeling and
Analysis of Network Protocols for Spidergon-Based Networks on Chip,”
by STMicroelectronics, Grenoble, France, the National Science Foundation,
under Award No. 0541278, the Gigascale Systems Research Center, which is
one of the six centers funded under the Focus Center Research Program, a
Semiconductor Research Corporation program. This paper was recommended
by Associate Editor A. Jantsch.

N. Concer and L. P. Carloni are with the Department of com-
puter science, Columbia University, New York, NY 10027 USA (e-mail:
concer@cs.columbia.edu; luca@cs.columbia.edu).

L. Bononi is with the Department of Computer Science, University of
Bologna, Bologna 40127, Italy (e-mail: bononi@cs.unibo.it).

M. Soulié and R. Locatelli are with STMicroelectronics, Grenoble F-38019,
France (e-mail: michael.soulie@st.com; riccardo.locatelli@st.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2010.2048592

ization, reuse of intellectual property modules, and the applica-
tion of derivative design methodologies [6]. Programmability
makes it possible to upgrade dedicated software and add the
support of new applications and features that were not included
at the chip design time.

Some current SoCs already offer task-specific subsystems
such as media accelerator subsystems including heterogeneous
and specialized cores (e.g., video and audio decoders) that
are connected to a shared bus and communicate through the
global memory [6]. This approach, however, offers limited
programmability and reuse and does not optimize the uti-
lization of the resources (e.g., the buffering queues in the
core interfaces are typically sized for the worst-case scenario).
Instead, communication among these cores in future SoCs will
likely be based on the network-on-chip (NoC) paradigm [8]–
[10]. These NoCs will also be heterogeneous, e.g., they may
combine regular topologies with the insertion of dedicated
long-range links [11] or may combine circuit-switched net-
works [12], [13] with packet-switched networks [14]. Further,
as future SoCs host more specialized subsystems, the NoCs
will become hierarchical: e.g., as illustrated in Fig. 1, a top-
level network connects the main components of the chip, while
other subnetworks support auxiliary subsystems such as the
media accelerator.

In some of these task-specific subsystems, the communica-
tion will be based on the message-passing paradigm, which
improves the performance of many important tasks such as
the processing of video/audio streams and other multimedia
applications [15]. While being of general applicability, the
end-to-end flow control protocol that we present in this paper
is targeted to the design of the subnetwork interconnecting
the cores of a message-passing subsystem. The goal is to
optimize the flexibility and reusability of the cores through
the definition of a unified network interface (NI) design.

Network interfaces are crucial components for design and
reusability in the NoC domain because they decouple the
design of the cores from the design of the network. NIs
implement the NoC communication protocols and improve
performance by providing elasticity between inter-core com-
munication tasks and intra-core computation tasks thanks to
their data storage capabilities. As shown in Fig. 2, input and
output queues are used to temporarily store the incoming and
outgoing messages, respectively.

The message sizes may vary during the execution of one
particular application, which typically requires the establish-
ment of multiple connections to support different traffic pat-

0278-0070/$26.00 c© 2010 IEEE

Authorized licensed use limited to: Columbia University. Downloaded on June 02,2010 at 19:47:53 UTC from IEEE Xplore. Restrictions apply.

870 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 6, JUNE 2010

Fig. 1. NoC-based system-on-chip and the media-accelerator subsystem [7].

Fig. 2. Network interfaces connecting cores to the NoC and possible mes-
sage dependencies in (a) shared-memory and (b) message-passing communi-
cation paradigms.

terns across the cores of the SoC, and even more across the
execution of multiple applications that may be simultaneously
running on the same SoC. Messages are the units of transfer
at the application level among the SoC cores. In each NI,
a message is typically broken down into a sequence of
smaller packets, which are the units of transfer for routing
purposes (Fig. 3). The size of a packet is either fixed or varies
dynamically within a limited range of values. A packet may be
further segmented in flow control units (flit) for more efficient
allocation of link-level network resources, i.e., the buffering
space of the queues that are present in the NIs and the routers,
and the bandwidth of the links connecting them [16], [17].1

The transfer of a long message in a packet-switched NoC
normally entails the occupation of its resources for multiple
consecutive clock cycles.

The correct operations of a network requires to efficiently
handle deadlock situations that may arise due to the circular
dependencies on the network resources that are generated by
in-flight messages. A variety of methods has been proposed
in the literature to either avoid or recover from deadlock [16],
[18]. Most of these methods rely on the consumption assump-
tion, thereby, the packets of a message traversing the network
are always consumed by the destination core once they reach
its corresponding network interface [19]. However, as shown
in Fig. 2 and discussed in detail in Section II, deadlock
may be caused also by dependencies that are external to the
network, i.e., internal to a core. In fact, regardless of the com-
munication paradigm (shared-memory or message-passing) a
SoC core typically generates new messages in response to
the reception of a previous one. These dependencies between

1This is typical for packet-switched NoCs where the size of a flit measured
in bits often coincides with the parallelism of a link measured in terms of the
number of wires that implement it, i.e., a flit often coincide with a physical-
transfer unit (phit) [14].

Fig. 3. Messages generated by cores are partitioned into packets by the NIs
and then in flits. Each packet has a header that contains the routing information
used by the routers to compute the path toward the packet’s destination.

messages can generate a different type of deadlock called
message-dependent (or protocol)2 deadlock [15], [19], [20].
Classic approaches to address message-dependent deadlocks
rely either on assigning physically-separated [21] (or virtually-
separated [6], [22]) networks to different message classes or
on using an end-to-end flow control protocol to regulate the
access to the NoC [23], [24]. While the first solution is suitable
to the shared-memory paradigm, systems that adopt a message-
passing paradigm benefit from the implementation of a credit-
based (CB) protocol [25], which is discussed in Section III.

Motivated by the trends in the design of heterogeneous
multicore SoCs, we build on the CB approach to develop
connection-then-credits (CTC), an end-to-end flow control
protocol that allows us to handle message-dependent deadlocks
while simplifying the design of the network interface. As
explained in detail in Section IV, the microarchitecture of a
CTC network interface uses a single credit counter together
with a single output queue to send all the possible outgoing
messages and a single pair of data and request queues that are
shared across all possible incoming messages. On the other
hand, CTC requires the completion of a handshake procedure
between any pair of cores that want to communicate before
the actual message transfer starts. In Section V, we analyze
the benefits and costs of the proposed solution by presenting
a comprehensive set of experimental results and we compare
three possible alternative implementations of the NIs imple-
menting the CTC protocol. The current version of the CTC
protocol is compatible with best-effort NoC implementations
that use simple input-queued wormhole routers [26]. Finally,
Section VI discussed related work and outlines future work,
including the support of quality-of-service features, such as
guaranteed latency or throughput for selected communications,
through the design of connection-aware routers.

II. Message-Dependent Deadlock

There are two main communication paradigms for exchang-
ing data among the processing cores of a multicore SoC
and they are associated to two corresponding programming
models: shared-memory and message-passing.

In a shared-memory paradigm, the processing cores com-
municate via data variables that are defined in the same
logical memory space and are physically stored in one or

2Message-dependent deadlock occurs at a level of abstraction that is higher
than routing-level deadlock, which can be addressed by deadlock-free routing
algorithms such as dimension-order routing [16], [17] We focus on addressing
message-dependent deadlock while assuming the use of a deadlock-free
routing algorithm. Notice that message-dependent deadlock is different from
application-level deadlock which is out of the scope of this paper.

Authorized licensed use limited to: Columbia University. Downloaded on June 02,2010 at 19:47:53 UTC from IEEE Xplore. Restrictions apply.

CONCER et al.: THE CONNECTION-THEN-CREDIT FLOW CONTROL PROTOCOL FOR HETEROGENEOUS MULTICORE SYSTEMS-ON-CHIP 871

more memory cores. As shown in Fig. 2(a), a processor
accesses a memory through either a load or a store request by
specifying the memory address and the size of the data block
to be transferred. In the case of a load request, the addressed
memory replies by sending the values of the requested block
of data (typically a cache line) to the processor, which saves
them in its local cache memory. In the case of a store request,
the memory receives new values for a block of addresses,
which typically corresponds to a line in the processor’s local
cache, and it replies by generating a short acknowledgement
message to confirm their correct delivery. Shared-memory is
the most used paradigm in current multicore SoCs.

In the message-passing paradigm, which is illustrated
in Fig. 2(b), the processing cores communicate by send-
ing/receiving data that are pushed directly from a core to
another (peer-to-peer communication): the sending and re-
ceiving cores are commonly referred as the producer and
consumer, respectively. By having dedicated logical addressing
space for each processing core and providing direct com-
munication among their physical local memories, message-
passing avoids the issues of shared-memory coherency and
consistency [27], thus, potentially reducing the communication
latency of each data transfer. This paradigm is particularly
suited for multimedia applications, where a system is typically
constructed as a pipeline of processing elements which pass
streams of data (e.g., video frames, audio frames) from one
element to the next [2], [15]. While message passing can be
implemented by the operating system on top of a physically
centralized memory architecture, the trend in the design of
multicore architectures for multimedia applications is to have
an increasing number of processing cores exchanging streams
of data through a distributed memory organizations, where
each core has access to a local memory [28].

The correct implementation of shared-memory and
message-passing paradigms in a SoC requires an underlying
NoC with communication protocols that guarantee the correct
transfer of each message and, particularly, the absence of
deadlock. As discussed in Section I, even if the NoC relies
on deadlock-free routing algorithms, message-dependent
deadlock may arise due to the dependencies among the
messages “inside a core,” which are shown in Fig. 2: e.g., the
dependence between a load request and response in a memory
for the shared-memory paradigm and the causal dependency
between the consumption and production of data in a core
for the message-passing paradigm. For both paradigms, the
dependencies between pairs of messages may get combined,
thus leading to message dependency chains [29]. Indeed, the
causal relations among pairs of messages can be modeled as
a partial order relation ≺ over the set of all possible messages
that are transferred in the network. Message dependency
chains depend on the chosen communication paradigm and
the characteristic of the given application.

Example: Fig. 4 shows an example of a message-dependent
deadlock occurring in a packet-switched NoC with wormhole
flow control and without virtual channels (VCs). Assuming
a routing-level deadlock free interconnect, the system falls
in a message-dependent deadlock caused by the dependences
between the messages received and sent by the cores of the

Fig. 4. Example of message-dependent deadlock in a multicore SoC with a
message-passing communication scenario.

SoC that communicate through a message-passing paradigm.
One stream of data, which is represented with the continuous
arrow lines, traverses the network flowing from core3 to core1

and from core1 to core4. Meanwhile, a second stream of
data, which is represented with the dashed arrow lines, goes
from core6 to core2 and from core2 to core0. Since the input
and output queues of all NIs have necessarily limited storage
capacity, the transfer of a long stream of data may cause
a backpressure effect to propagate backwards into the NoC.
For instance, assuming that the rate at which core2 processes
the incoming flits of a long message, M6 sent by core6 is
slower than the flits’ arrival rate. Eventually, these flits will
accumulate first in core2’s network interface and then in the
buffering queues of the NoC across the path between the two
cores. In particular, they may fully occupy the input queue of
the West port of router RC, thereby, blocking a message M1

that is attempting to reach core4 from core1. Since message
M1 cannot advance, eventually router RB will backpressure
network interface NI1 to prevent it from injecting additional
M1’s flits. This may stall core1 with the consequence of
delaying the completion of the transfer of message M3 from
core3. Hence, some of M3’s flits may be buffered in the input-
queue of the East input port of router RB. But, in turn, this may
prevent the progress of message M2, which needs to traverse
router RB as it goes from core2 to core0. The flits of M2 would
then be blocked in the North input port of router RC, which
would end up exercising backpressure on network interface
NI2. Finally, this may lead to a stalling of core2 with the
consequence of interrupting completely the processing of the
flits of message M6: as the chain of dependency turns into a
cycle, the SoC falls into a deadlock. �

Similarly, to routing-dependent deadlock, the message-
dependent deadlock problem can be addressed with either
avoidance or recovery strategies. The relative advantages of
the various techniques based on these two approaches depend
on how frequently deadlocks occur and how efficiently (in
terms of resource cost and utilization) messages can be routed
while guarding against deadlocks [19].

The introduction of a virtual network (VN) for each type
of message transfer guarantees the solution of the message-
dependent deadlock by satisfying the consumption assump-
tion [6], [19]: the input and output queue of each router
and each NI in the network is replicated and assigned to
a single specific message class. For instance, two message

Authorized licensed use limited to: Columbia University. Downloaded on June 02,2010 at 19:47:53 UTC from IEEE Xplore. Restrictions apply.

872 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 6, JUNE 2010

Fig. 5. Task graphs for three multimedia applications: (a) Video object plane decoder (VOPD), (b) Double video object plane decoder (DVOPD), and the
(c) Multiwindow display (MWD) task graphs.

classes can be used to distinguish between memory requests
and reply messages, while more message classes are necessary
to implement cache coherence in a system with distributed
shared memory [30].3

By introducing dedicated resources for each message class
a VN-based implementation allows the removal of the impact
of causal dependency relations between messages that belong
to different classes on the operations of the network at the
cost of a higher buffer requirement and more complex router
and network-interface design. This cost, however, may become
too high for classes of application generating long message-
dependency chains such as stream processing applications.
These applications are often implemented with a pipeline of
processing cores, where each core produces data for the next
consumer core. This leads to potentially long dependency
chains of message requests request1 ≺ · · · ≺ requestn, where
n is the number of cores in the pipeline. For example, Fig. 5
shows the task graphs of three multimedia applications where
the nodes represent the computational tasks while the arcs rep-
resent the communication between these tasks with the relative
bandwidth requirements [31]–[33]. Notice that the task graphs
of these applications, which fall in the stream processing class,
are similar as they present a fairly-linear pipeline structure
with a sequence of multiple stages, each stage corresponding
to a task. For these applications, an optimally-concurrent
SoC implementation where each task is mapped to a distinct
processing core and where each intertask communication is
implemented by end-to-end message-passing would lead to as
many message classes as the number of arcs. Furthermore,
as discussed in Section I, multicore SoCs for embedded
products simultaneously support an increasing number of such
streaming applications [1], [2], [34]. This translates into the
presence of complex communication patterns among the cores,
which run multiple threads of computation to implement the
multiple tasks of the various applications. In this scenario, an
implementation based on virtual networks does not scale well
because: 1) the number of distinct message types that travel
on the network continues to grow; and 2) the length of the
dependency chains is difficult to predict at design time since

3For instance, a VN-based implementation of the MOESI cache coherence
protocol, which defines four different message classes [20], [21], requires four
different VNs.

it depends on the particular subset of applications that are
executed at any given time during the SoC operations. The CB
flow control protocol, which is discussed in next section, is a
possible solution, while the CTC protocol, which we propose
in Section IV, offers additional flexibility and reusability with
respect to the CB approach.

III. CB End-to-End Protocol

An end-to-end flow control protocol addresses the message-
dependent deadlock by guaranteeing that a sender NI does not
ever inject more flits in the network than the corresponding
receiver NI can absorb. The CB end-to-end flow control
protocol is a simple implementation of this idea that has been
used in various NoC designs [23], [24], [35].

With a CB protocol, the sender NI maintains a precise
knowledge of the number of queue slots that the receiver NI
has still available through the exchange of end-to-end transfer
credits. A credit is associated with one or more flits depending
on the desired level of granularity. What is important is the
guarantee that no fragment of a sent message can remain
blocked in the NoC due to lack of space in the input queue of
the receiver NI, with the potential risk of causing a deadlock
situation. Hence, the sender NI can continue to inject flits in
the network only if it has still enough credits as proofs that the
receiver NI will absorb these flits. Dually, the receiver NI must
send a credit back to the sender NI for each flit that its core has
consumed, thereby generating an empty slot in its input queue.

Generally, a single consumer core can be addressed by
multiple producers. Also a producer can address multiple
consumers and for each of these the producer needs a
dedicated credit counter. Differently from CB flow control
mechanisms that operate at the link level between a pair of
interconnected routers [16], [17], here a pair of communicating
cores may be separated by multiple hops in the network. Also,
all packets generated by the peer cores arrive at the same NIs
input port. Fig. 6 shows the simplest way to address this issue.
The NI of each core is provided with multiple and independent
input and output queues and credit counters: there is one input
queue for each possible sender NI that may send messages
to this core; there are also one output queue and one credit
counter for each possible receiver NI that may be addressed by
this core. In particular, a given receiver network interface NIr
saves the incoming flit that has received from another network

Authorized licensed use limited to: Columbia University. Downloaded on June 02,2010 at 19:47:53 UTC from IEEE Xplore. Restrictions apply.

CONCER et al.: THE CONNECTION-THEN-CREDIT FLOW CONTROL PROTOCOL FOR HETEROGENEOUS MULTICORE SYSTEMS-ON-CHIP 873

Fig. 6. Block diagram of network interface supporting the CB protocol.

interface NIs into the input queue Qs associated to NIs. Then,
whenever the core of NIr reads a flit from Qs, NIr generates an
end-to-end flit-credit that is sent back to NIs. Upon reception
of this credit NIs updates the credit counter Cr associated
to the destination NIr. The output arbiter of NIs decides
which flit to inject into the NoC based on the current status
of each of its output queues and their corresponding credit
counters. Multiple credits can be combined into one single
end-to-end credit message for better efficiency. As discussed
in Section IV-A, the number K of flit-credits associated to a
single credit-message and the size of the queues may have a
relevant impact on the performance of the NoC.

The CB end-to-end flow control protocol differs from the
solution based on VNs for two main reasons. First, a VN-based
NoC design requires that all the queues, including those in the
routers, must be replicated as many times as the number of
VNs. Instead, the CB protocol requires that only the queues of
the network interfaces must be replicated. Second, with a VN-
based NoC the number of queues per physical link depends
on the length of the application message-dependency chain,
which may not always be easy to determine at design time.
With the CB protocol, instead, this number may vary for each
given network interface depending on the number of the other
network interfaces that exchange data with it.

On the other hand, adding a dedicated input (output) queue
to the network interface for each possible sender (receiver)
of messages forces engineers to design a specific network
interface for each node of the network, thus, leading to adhoc
network-interface designs that are poorly reusable. Further, if
all possible communication scenarios are difficult to determine
at design time, CB protocols may lead to the over-provisioning
of the NI in terms of queues. Particularly, this is the case
for multiuse-case SoCs, where the interaction between cores
is driven by the applications run by the user [4], [5]. These
considerations motivated us to develop the CTC end-to-end
flow-control protocol as an alternative to the CB flow-control
protocol. As discussed in the next section, CTC rationalizes
and simplifies the design of NIs, while guaranteeing the
absence of message-dependent deadlock.

IV. CTC Protocol

CTC regulates the exchange of messages between two
peer NIs by introducing an handshake-based procedure called
connection. Specifically, a new distinct connection is set up
for each data message that a sender NI needs to send to
a receiver-NI interface before the actual transfer of data
occurs.

Fig. 7. Block diagram of network interface supporting the CTC protocol.

Fig. 7 shows the block diagram of a network interface
supporting the CTC protocols. The CTC NI contains two input
queues and one single output queue independently from the
number of network interfaces that may require a connection
with this NI or the number of cores that this NI may address.
The data queue Qin is used to store incoming data flits while
the request queue Qreq is used to store incoming connection
requests. Additionally, the output arbiter uses two counters
to account for the available storage on the connected peer
network interface and the number of flits that remain to be sent
before terminating the current connection. The CTC protocol
consists of the following main steps.

1) To initiate a connection with a peer-receiver network
interface NIr a sender network interface NIs sends a
special message consisting of a single packet P REQ

(packet-request) to NIr. The P REQ packet specifies the
source and the total size of the data message to be
delivered.

2) Upon the reception of a P REQ packet, NIr stores
the request in Qreq together with the other requests
previously received and not yet processed.

3) After the core associated to NIr has completed process-
ing some of the data previously received and, therefore,
queue Qin has enough free space to accept a new
message, NIr selects the next connection request among
those pending in Qreq and generates an acknowledge-
ment packet called P ACK.

4) Once delivered to the selected source NIs, the P ACK

packet initializes the output credit counter to a value I =
Min{S,M}, where S is the available current storage in
NIr’s data queue and M is the size of message generated
by NIs measured in flits. Hence, after receiving the first
P ACK, NIs’s credit counter is initialized with as much
available storage as it is necessary to the message.

5) Upon the reception of the first P ACK packet, NIs gener-
ates a data packet that consists of a header flit followed
by a given number of data flits (Fig. 3). The header flit
opens a path through the routers of the NoC toward NIr
based on a wormhole flow-control mechanism [16].4

6) After consuming a fixed number K of flits from its
input port Qin, a NIr generates a new P ACK to update
Nis credit counter until it has sent enough flit-credits to
transfer the whole message.

4CTC is orthogonal to the routing algorithm and the network topology. For
the experiments presented in Section V, we used a Spidergon NoC with a
distributed, minimal deterministic routing algorithm [6].

Authorized licensed use limited to: Columbia University. Downloaded on June 02,2010 at 19:47:53 UTC from IEEE Xplore. Restrictions apply.

874 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 6, JUNE 2010

Fig. 8. Formats of header, P REQ, P ACK, and data flits.

7) Once the connection is set up, whenever a NIs receives
a P ACK packet from NIr it increments its Credit
Counter by the number K of flit-credits specified by
P ACK. Dually, whenever NIs injects a data flit into
the NoC NIs it decreases both the Credit Counter and
the Sent-Flit Counter by one unit. The latter accounts
for the total number of flits that remain to be sent to
complete the transfer of the message for the current
connection.

8) NIs terminates each data packet by tagging the last data
flit as a tail-flit. This may happen for one of three
possible reasons.

a) All the flits of the message have been sent and
the connection can be terminated. As both sender
and receiver NIs know the size of the message to
transfer, no further steps are needed.

b) The number of sent flits reaches a given maximum
threshold Pmax, which is an upper-bound for the
size of a data packet. This value, which is a
parameter of the given NoC implementation, is
used to avoid starvation issues: by limiting the size
of a packet we obtain a fair sharing of the NoC
resources among different connections because the
path along the NoC is made available to other
possibly-blocked packets. Then, if more flit-credits
are available, the NIs creates a new packet by
generating a new header-flit before starting the
injection of new data flits.

c) NIs runs out of end-to-end flit-credits. In this case,
the current data packet is terminated with a tail-flit
even if the number of its injected data flits has been
less than Pmax. Then, the NI remains idle until
new credits arrive. Notice that the CTC connection
remains open until the delivery of all the flits of
the current message is completed.

Example: Fig. 9 illustrates the operations of the CTC
protocol with three snapshots.

1) Network interfaces NI0 and NI2 address NI1 with two
P REQ packets requesting the transfer of two messages
of 100 and 80 flits, respectively.

2) NI1 selects NI0 to initiate the connection while it stores
the other request in the request queue. Assuming that
K = 5 and that the space currently available in the data
queue is S = 10, NI1 first generates a P ACK containing
S flit-credits used to initialize NI0’s credit counter with
the maximum available storage.

3) Assuming Pmax ≥ 10, a data-packet with 10 flits is
injected in the NoC by NI0 to be later absorbed and

stored in the data queue of NI1. Eventually, NI1 will
generate a total of �(M−S)/K�+1 = 19 P ACK packets
for this connection to enable the transfer of 100 flits
from NI0.

CTC does not impose a specific flit width but requires a
particular format for the various flits generated by the NIs
with some fixed-width fields (Fig. 8), including the following:

1) position (P)—a two-bit field with sideband signal indi-
cating the position of the flit in the packet, i.e., HEAD,

TAIL, BODY or SINGLE (for unit-flit packets);
2) address (A)—a (log2N)-bit field indicating the address

of the NI;
3) type (T)—a two-bit field indicating the flit type:

HEADER, P REQ, P ACK or DATA;
4) the remaining fields are dedicated to data or to special

functions, such as indicating the size of the message to
be sent (MSize) in a P REQ packet or the number of credit
(Credits) associated to a P ACK packet.

Notice that the width of the request-queue Qreq is signifi-
cantly smaller than the width of the data queue. In fact, for
each incoming P REQ an NI needs to store only the source
address and the size of the message to transfer. In an NoC
with 64 nodes, a core can be identified with log2 64 = 6 bits.
The remaining bits can be used to represent the message size.
While flit widths keep increasing [36] (e.g., up to 64/128 bits),
a counter of 10 bits allows the transfer of a message with size
up to 64 × 210 = 64-kbit in a single connection.

Similarly to the flit-credits in a CB protocol, the P ACK

packets are flow-control packets that transport a number of
end-to-end flit-credits. The difference between CTC and CB
is that in the CTC protocol the first generated P ACK of a
given connection actually initializes the output credit counter
of NIs to the number of free slots available on the peer node.
In the CB protocol, instead, each counter is initialized at the
system start-up time and incoming flit-credits are used only to
increment the corresponding counter value.

As we indicated above, an NIr accepting a new P REQ first
generates a single P ACK with the total space S available on
the data queue Qin. Once the connection is established, NIr
starts receiving flits and its core starts processing them. For
every subset of K flits that are processed by the core, thereby
freeing the corresponding space in Qin, NIr generates a new
P ACK packet until the total number of generated credits is
sufficient to transfer all the M flits of the message.

Since the value of K is fixed for a given NoC implementa-
tion, for any connection request P REQ made by a sender NIS
the receiver NIr can generate up to ζ P ACK packets, where

ζ =

⌈
M

K

⌉
. (1)

The values of parameters K and Pmax are fixed for a given
implementation of the CTC protocol and determined at design
time. On the other hand, the length M of a message that
is transferred during a connection is not known at design
time and typically changes across different connections. Some
remarks are in order.

1) Since the receiver NIr sends credits in chunks of size
K, it inevitably assigns to the sender NIs a number of

Authorized licensed use limited to: Columbia University. Downloaded on June 02,2010 at 19:47:53 UTC from IEEE Xplore. Restrictions apply.

CONCER et al.: THE CONNECTION-THEN-CREDIT FLOW CONTROL PROTOCOL FOR HETEROGENEOUS MULTICORE SYSTEMS-ON-CHIP 875

Fig. 9. Example of CTC-based NoC operations: (a) Core interface NI1 receives two P REQ requests from NI0 and NI2, (b) NI1 selects the request from
NI0 and generates the corresponding P ACK while storing the request from NI2 in the request-queue, (c) NI1 receives the data-packets from NI0.

data-queue slots that is larger than necessary whenever
a message’s length M is not a multiple of K. Notice,
however, that at most K−1 slots of Qin can be reserved
without being actually used. These additional slots are
freed when the connection is terminated by the reception
of the tail flit.

2) If the sender NIs runs out of credits before sending all
the Pmax flits or whenever M is not a multiple of Pmax,
a packet is terminated by tagging the last flit to be sent
as a tail-flit; since Pmax is just an upper-bound for the
size of a packet, it may happen that a given message
of length M is transferred through a longer sequence of
smaller packets than what would be possible in absence
of congestion.

A. Protocol Correctness

An end-to-end flow control addresses the message-
dependent deadlock by guaranteeing the consumption assump-
tion of all injected flits of the supported application. This
makes the NoC design orthogonal to the supported application,
which, therefore, has no constraints on the communication
complexity and message dependencies. Nevertheless the de-
pendencies between the data and the control packets (P REQ

and P ACK) generated by the end-to-end protocol must be
properly handled.

The CTC protocol defines the following three message
dependencies:

1) P REQ → P ACK;
2) P ACK → Data;
3) Data → P ACK.
Since, these are all the possible dependencies that can occur

in the system, properly accounting for them guarantees the
absence of message-dependent deadlock. The three types of
message dependencies are handled by CTC in the following
way.

1) P REQ → P ACK: To guarantee the consumption as-
sumption of the P REQ packets, the request queue must
be sized accordingly to the maximum number of re-
quests that a NI can receive. In the current version
of CTC, a sender network interface NIs is limited to
have one single outstanding P REQ at time. Hence, in a
worst-case scenario such as an all-to-all communication

TABLE I

Symbols Used in the CTC Analytical Model

Symbol Description
M Peer-to-peer message length
K Number of credits carried by each P ACK
Qin Consumer input queue size
Pmax Maximum packet size threshold
R Router pipeline length
h(NIs,NIs) Distance (in hops) between two NIs
ψ(NIs,NIs) Aggregate number of pipeline stages between two NIs
ζ Number of P ACK generated by the consumer

to complete connection
ρ Processing rate (flit/cycle) of a core
ε Delay for processing a P REQ
π Minimum number of packets generated per message
δ End-to-end delay for a single flit-packet

pattern, the size of Qreq grows linearly with the size of
the NoC. By sizing Qreq in this way all incoming P REQ

packets are guaranteed to be stored in the receiver NIr
and removed from the NoC.

2) P ACK → Data: P ACK packets are always consumed
by a sender NIs, which processes them in order as soon
as they arrive to increment the credit counter, without
the need of storing them.

3) Data → P ACK: the credit mechanism ensures that no
more data-flits than those allowed by the credit counter
can ever be injected. Hence, all data flits injected into
the NoC are guaranteed to be absorbed and stored in the
receiver NIr as soon as they reach their destination.

B. Analytical Model

Table I summarizes the variables that we use to model the
performance of the CTC protocol analytically. Two of these
variables are actually design parameters that are fixed for any
given CTC implementation.

1) K is the number of flit-credits per P ACK packet: this
parameter is related to the size of the input queue in
a receiver network interface NIr and to the number of
control packets generated per single message.

2) Pmax is the maximum size of a packet measured in flits:
this value affects the number of packets that must be
generated to complete a connection.

Authorized licensed use limited to: Columbia University. Downloaded on June 02,2010 at 19:47:53 UTC from IEEE Xplore. Restrictions apply.

876 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 6, JUNE 2010

To minimize the length of a connection between cores, a
sender NIs should be able to generate a continuous flow of data
flits and the receiver NIr should be able to absorb and process
this flow. Hence, it is important to guarantee that the source
NIs never runs out of end-to-end credits. This performance
requirement can be satisfied by sizing properly the input data
queues of the receiver NIr. This requires to account for both
the value of K and the round trip time between a receiver NIr
and all its possible peer sender network interfaces. The zero-
load latency δ measured in clock cycles that is taken by a flit
to traverse the NoC from a given source NIs to reach a given
receiver NIr is equal to

δ(NIs,NIr) = h(NIs,NIr) · R + ψ(NIs,NIr) + 2

where h(NIs,NIr) is the distance in hops between the two
nodes, R is the number of clock cycles used by routers to
process and forward a flit, ψ(NIs,NIr) captures the aggregate
number of wire pipeline stages across all the links on the
path between NIs and NIr, and the value “2” accounts for
the two local hops between NIs and routers at the sender and
receiver nodes. The latency R of each router depends on the
specific architecture of the routers composing the NoC and
the clock frequency at which they work. This value generally
ranges in an interval between one and five clock cycles [26].
Wire pipelining is often necessary to meet the target clock
frequency in the implementation of a synchronous NoC [37],
thus making the latency of traversing a link increase linearly
with the number of clocked repeaters that have been inserted
on the link. The zero-load round-trip time taken by a flit to
traverse the NoC from NIr to NIs and back is given by

Trtt(NIr,NIs) = δ(NIr,NIs) + εs + δ(NIs,NIr)

where εs indicates the processing delay of the credit at NIs.
Putting it all together, the data queue Qin of a given network

interface NIr should be sized according to the equation

Qin(NIr) = K + max
NIs∈N

{
Trtt(NIs,NIr)

}
(2)

where N is the set of the network interfaces that may require a
connection to send data to NIr. As discussed above, the size of
Qin is related to the parameter K because whenever NIr sends
a P ACK packet with K credits it must have as many available
slots for data flits in Qin. The second element accounts for the
impact of the longest round-trip time between NIr and its peer
network interfaces. In practice, this value can be set as equal
to the maximum round-trip time between any pair of network
interfaces in the NoC.

The zero-load latency taken by a connection to complete
the transfer of a message of size M flits from a source NIs to
a receiver NIr is

LM(NIs,NIr) = δ(NIs,NIr) + δ(NIr,NIs)

+ ε + π · (
δ(NIs,NIr) + Pmax

)
where the term δ(NIs,NIr)+δ(NIr,NIs) accounts for the round-
trip delay of the P REQ–P ACK packets and ε is the number
of cycles taken by the receiver NIr to select and process the
given P REQ packet. The term (δ(NIs,NIr)+Pmax) accounts for
the serialization delay of the header flit followed by at most

Fig. 10. Contention on node three between P ACK and data flits.

Pmax flits. Finally, variable π captures the minimum number
of packets into which a message of size M is decomposed and
is equal to

π =

⌈
M

Pmax

⌉
. (3)

The connection procedure and the header flits used to open
a path in the routers of the network affect the maximum
throughput that can be achieved by the protocol. On a single
message connection, the maximum achievable throughput can
be computed as

ThM =
M

LM
. (4)

C. Contention on the Input and Output Ports of a Network
Interface

Regardless of whether the CTC protocol is used in combi-
nation with a shared-memory or a message-passing commu-
nication paradigm, a network interface can simultaneously act
both as sender and receiver. This can generate a contention on
the input and output ports of the network interface between
the data packets (both incoming and outgoing) and the control
packets that are used to regulate the communication (both
P REQ and P ACK). Fig. 10 illustrates a simple example of this
situation: network interface NIi−1 sends data to NIi, which in
turns sends data to NIi+1. In this scenario, since NIi acts both
as a sender and receiver network interface, it may suffer from
access contention on its input and output ports. In particular:

1) the data-flits to be sent to NIi+1 compete for access to
the same output port with the P ACK packets to be sent
to NIi−1;

2) the data-flits coming from NIi−1 compete for access to
the same input port with the P ACK packets coming from
the NIi+1.

Recall that to minimize the communication latency and
avoid idle cycles at the source (bubbles) due to lack of end-
to-end credits, a receiver network interface NIr should be able
to provide its peer sender network interface NIs with a new
P ACK each time the space for K data flits becomes available
on its data queue. Let ρ denotes the rate at which data flits
are “consumed” by the core associated with NIr. Notice that
0 ≤ ρ ≤ 1 because the NoC can deliver at most one flit per
clock cycle to each NI. Hence, a P ACK packet should be
injected into the NoC every K ·ρ cycles. This can be obtained
by simply making the access of the output port preemptive
for P ACK packets with respect to the data-flits: whenever
a new P ACK packet is ready to be generated the data flit

Authorized licensed use limited to: Columbia University. Downloaded on June 02,2010 at 19:47:53 UTC from IEEE Xplore. Restrictions apply.

CONCER et al.: THE CONNECTION-THEN-CREDIT FLOW CONTROL PROTOCOL FOR HETEROGENEOUS MULTICORE SYSTEMS-ON-CHIP 877

of the current packet is tagged as a tail-flit so that in the
following cycle the P ACK can be injected. On the other hand,
the preemptive procedure may increase the number of header-
flits used to open the path through the NoC for the data flits. If
it is possible to estimate the value of ρ with sufficient accuracy,
then the value of the parameter Pmax can be set according to
the following equation:

Pmax = K · ρ. (5)

In Section V-A, we present an experimental analysis of the
interaction between the values of the main CTC design param-
eters and the contention at the ports of the network interfaces.

V. Experimental Results

In order to analyze the characteristics of the CTC protocol
and compare the performance of a CTC-based NoC versus a
CB-based NoC, we developed a C++ system-level simulator
that allows us to model various NoC topologies, routing, and
flow-control protocols as well as the traffic scenarios generated
by various types of cores. We used the simulator to compare
the two end-to-end protocols on the Spidergon NoC [6] using
AFirst, a deterministic, minimal, and distributed routing algo-
rithm [38]. Spidergon is a NoC interconnect whose topology is
a ring enriched by cross links interconnecting opposite nodes.
We considered the traffic scenarios for three distinct SoC
applications (VOPD, DVOPD and MWD) from the literature [31]–
[33] whose task graphs are reported in Fig. 5. We assigned
each task to a different core following the heuristic presented
in [39]. We also considered the uniform random traffic (URT)
pattern where each node may communicate with any other
node in the network [16].

In the CB-based NoC, the NI of each core has a number of
input queues equal to the number of incoming streams (Fig. 5).
On the input side, the input arbiter selects the incoming data
to process, while on the output side, the output arbiter selects
the queue that is used to forward the flit or to send a credit
(see Fig. 6). The selection of the input and output queues is
made on a packet basis according to a round-robin policy. For
both the CTC and the CB-based NoCs, the size of each data
input queue is set uniformly based on (2).

Fig. 11 shows the average end-to-end message latency as
a function of the offered load for the given traffic patterns.
In all cases, K is fixed to 32 flit-credits (results are similar
for the other credits values) and the messages are 64 flits. As
expected, the CTC protocol gives a higher latency due to the
handshake procedure. Nevertheless, for the VOPD application
the difference between the two protocols remains under 10%
up to the saturation point, which is around 0.4. In the case of
MWD, the difference raises close to 20%, while for DVOPD, the
two protocols differ by 10%. Finally, in the URT traffic, the
two protocols behave in a very similar way.

Fig. 12 shows the average peer-to-peer latency as a function
of the number of credits K per P ACK packet when the
offered load is lower than the saturation threshold. Clearly,
by increasing the value of K the performance of the system
also improves: processing elements can inject more flits per
P ACK, thus reducing the number of control packets (credits
and headers). Conversely, increasing K also requires bigger

input queues that must support the additional number of flits
received per P ACK sent.

Fig. 13 reports the throughput comparison as a function
of the message size M with K = 4. In all these scenarios,
the performance of the CTC-based NoC increases with the
message size for the same offered load because the rate of
connections-per-flits that must be set up is reduced. The
throughput of the CB-based NoC, instead, decreases as the size
of each message increases because this effectively augments
the number of times in which a P ACK packet preempts the
data packets. Therefore, CTC represents a valid proposition
for message-passing applications such as video stream
processing that present large intercore message transfers.

In Fig. 14, we analyze the amount of storage used by the
two alternative flow-control protocols assuming a flit width
W = 64 bits and the request width R = 14 bits (4 bits for
addresses and 10 bits for message size) and K = 4. As
discussed in Section III, for both CB-based and CTC-based
NoCs the input queues of the network interfaces must be
properly sized to avoid throughput degradation. For a CB-
based NoC, each input queue must be sized accordingly to (2).
For a CTC-based NoC, instead, only the data queue must have
this size, while the request queue of a given interface must be
as large as the number of distinct producer cores that can send
message to its core. Notice that in order to provide a single
interface design for each possible core, this number can be
overestimated without a major loss of area because the request
queue has a minor impact on the overall storage relatively to
the data queue. For example, in the CTC case of Fig. 14, we
assume that all nodes can be reconfigured to communicate
with any other node by setting the number of request-queue
slots equal to N − 1. Neither CTC nor CB instead impose a
specific size for the output queue. In this example, we consider
the output queue equal to the input ones. By doing so, we have
that the request queue occupies 9% of the total storage used
by CTC while it reaches 14% with an output queue length of
a single slot.5

For the cases of VOPD, MWD, and DVOPD, only the interfaces
associated to nodes with incident (outgoing) arrows actually
require input (output) queues. In case of VOPD, the CTC-based
NoC uses a total of 22 data queues, including both input
and output queues, while the CB-based NoC needs 30 data
queues. Hence, assuming that the length of each data queue is
the same in the two NoCs, CTC saves up to 25% of storage
space for this particular case study. In the MWD case, since
most cores communicate only with one other core the two
NoCs have many interfaces with similar structures. Still, even
in this case, CTC saves up to 12% of storage as reported in
Fig. 14. For DVOPD, which is a SoC implementing two VOPD

in parallel [32], we reach 35% of storage savings.
Finally, the URT traffic pattern represents the special case,

where each node may communicate with any other node of the
NoC. Here, clearly, CB is an expensive solution as it requires
N−1 queues, where N is the number of nodes in the network.

5To obtain the same flexibility in CB we need to replicate all pairs of input
and output queues in the NI so that we have one pair for each node of the
NoC.

Authorized licensed use limited to: Columbia University. Downloaded on June 02,2010 at 19:47:53 UTC from IEEE Xplore. Restrictions apply.

878 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 6, JUNE 2010

Fig. 11. Message latency as a function of the injection rate for (a) VOPD, (b) MWD, (c) DVOPD, and (d) uniform traffic patterns.

Fig. 12. Message latency as a function of the number of credits associated to a P ACK for the case of (a) VOPD, (b) MWD, (c) DVOPD, and (d) uniform,
traffic patterns.

Fig. 13. NoC throughput as a function of the message size when K = 4 flit-credits in (a) VOPD, (b) MWD, (c) DVOPD, and (d) URT patterns.

Fig. 14. Breakdown of the aggregate storage measured in bit of input, output and request queues in the NoC NIs for (a) VOPD, (b) MWD, (c) DVOPD,
and (d) URT patterns.

In fact, in absence of a negotiation protocol, replicating the
queues is the only way to guarantee that flits of different
messages are not mixed in a single queue and that all injected
flits are also absorbed from the NoC. In comparison, the
storage reduction achieved by CTC can be very high because
all N − 1 input and output queues of each node are replaced
by a single input and single output data queues.

In summary, the reduction of the size of the queues that
must be installed in each network interface translates directly
in a reduction of the area occupation and is expected to lead
also to a reduction of the overall NoC power dissipation.

A. Experimental Analysis of NI Port Contention

As discussed in Section IV-C, an NI acting as sender and
receiver generates a contention on its input and output ports
between the data and control packets. In this section, we study

the impact of these contentions on the performance of the
NoC. We first use a simple traffic pattern, where a producer
NIi−1 sends a flow of data toward NIi, which processes it and
forward it to a sink NIi+1. The three NIs and the relative cores
are mapped on a three-node array (1D-Mesh) network. In this
scenario, P ACK, P REQ, and data-flits contend for the single
output channel of NIi so that P ACK and data packets flow
toward NIi+1 and credits toward NIi−1.

As discussed in Section IV-B, to minimize the duration
of a contention a consumer should minimize the generation
time of P ACK packets. To ensure the quick generation of
P ACK packets one can choose among three main options: 1)
preemptive priority for P ACK packets; 2) VCs; or 3) separated
physical networks, called multiplanes (MPs) [40].

In the first case, P ACK packets have preemptive priority
over the data packets: when the producer-consumer NIi needs

Authorized licensed use limited to: Columbia University. Downloaded on June 02,2010 at 19:47:53 UTC from IEEE Xplore. Restrictions apply.

CONCER et al.: THE CONNECTION-THEN-CREDIT FLOW CONTROL PROTOCOL FOR HETEROGENEOUS MULTICORE SYSTEMS-ON-CHIP 879

Fig. 15. Throughput as a function of Pmax and P ACK size, when the output flits are dispatched on (a) one link shared between P REQ, P ACK and
data, (b) one link with two VNs, one for P REQ and data, the other for P ACK, and (c) two separated physical links.

Fig. 16. Effect of Pmax and K on the communication latency for the MWD application with (a) preemptive P ACK, (b) VCs, and (c) separated network
planes.

to generate a P ACK, it terminates the generation of data-flits
by tagging the last data flit as flit tail. In the following cycles,
NIi’s output port can be used to inject the P ACK packets.
Fig. 15(a) shows the average throughput of data flits measured
on NIi and NIi+1 in this scenario. The throughput is measured
in function of the maximum packet size Pmax and the number
K of credits associated to each P ACK. As anticipated by (5),
the best throughput is obtained when K ∼ Pmax so that the
protocol forces NIi to terminate a packet in coincidence with
the possible generation of a P ACK. Also, when Pmax is smaller
than K a packet is terminated even if there are available
credits on the output counter. When Pmax is larger then K,
instead, delays in the delivery of P ACK packets due to traffic
congestion can force a packet to be terminated before the
expected length because the NI has no more end-to-end credits.
In both cases, the additional control traffic contributes to
reduce the maximum achievable throughput. Indeed, Pmax has
an important role in the performance of the protocol. A value
of Pmax that is too small gives a significant loss of performance
because the NIs generate many small data packets, each
including a header flit that does not carry data but only routing
information. In particular, when Pmax = 1 the throughput
reaches the minimum value close to 0.5 flit per cycle. Ac-
cording to (1), to assign a large number of credits to a single
P ACK reduces the number of control credits to be injected
in the network, thereby, improving the performance of the
system, as confirmed by the experimental results of Fig. 15(a).

The second option is to separate P ACK and data packets
through distinct VCs: P ACK and data packets travel along
different queues but keep sharing the same physical link. Note
that VCs in this case are not used to ensure the correctness of
the protocol but only to improve its performance. Fig. 15(b)
shows the throughput in this scenario. Here, P ACK packets no
longer need to preempt the generation of data flits because they
can use separated virtual queues. However, P ACK and data

packets still share the same physical channel. This explains
the improvement of the throughput as K increases: again,
according to (1), by increasing the credits associated to a
P ACK we reduce the number of credit packets to be generated
so that the physical channels can be used mainly for data flits.
The value of Pmax, instead, leads to the same behavior as in the
previous case: according to (3), by increasing the maximum
packet size we reduce the number of header flits that must be
generated and, therefore, we increase the throughput. Notice,
however, that the traffic of Fig. 15 is a simple case, where
P ACK packets do not collide (i.e., they travel from NIi to
NIi−1) with other flow of data. Hence, their delivery is never
delayed by contentions in the routers. Later on in this section,
we propose an analysis with a more realistic traffic pattern.

The third possible approach uses two separated physical
channels, one dedicated to P REQ and P ACK packets and the
other for data packets. Fig. 15(c) shows the throughput of this
scenario. In this case, the size of the credit associated to each
P ACK does not influence the performance of the NoC. This
is an expected behavior because the simulated traffic is simple
and credits of any kind do not find any contention traversing
the routers of the network. On the other hand, the maximum
size of a packet greatly influences the performance of the
system. When Pmax = 1, each data flit uses a separated header
flit so that the throughput reaches 0.5 flit/cycle. The maximum
throughput is achieved by increasing the Pmax parameter.
According to (3), this reduces the number of packets (and
hence, headers) per message. Clearly, the throughput cannot
reach the ideal unit value because the connection procedure
reduces the performance of the system as indicated by (4).

Next, we analyze the effect of the NI Port Contention on the
communication latency for the case of the MWD application,
whose task graph is reported in Fig. 5(c), when we equip the
NoC with VCs or separated MPs. Fig. 16(a) reports peer-to-
peer average latency of messages in function of K and Pmax

Authorized licensed use limited to: Columbia University. Downloaded on June 02,2010 at 19:47:53 UTC from IEEE Xplore. Restrictions apply.

880 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 6, JUNE 2010

when we use preemptive P ACK packets. Clearly, the preemp-
tive case has the highest latency. Here, whenever a P ACK is
to be injected into the NoC the packet (if any) that is currently
being injected is terminated. After the injection of the P ACK

packets, the NI will inject a new header flit and then restart
sending the data flits that remain to be sent. By increasing K,
we minimize such an event. By increasing Pmax, we reduce the
number of headers that must be injected, thereby, reducing
the overall latency of the messages. Fig. 16(b) reports the
case when VCs are used so that P ACK packets travel along
separated queues. Still, since P ACK and data flits have to share
the same physical links, to increase the value of K reduces
also the average message latency. Finally, Fig. 16(c) reports the
average latency, when the control and data traffic are separated
on two physically-independent networks. According to (2), the
value of K influences only the queue size on the network
interfaces. Larger queues in the network interfaces allow the
generation of more credits and a higher use of the NoC. On
the other hand, the value of Pmax greatly affects the message
latency because it determines the number of packets into which
a message of length M is split.

VI. Related Work

The message-dependent deadlock is a well-known problem
that was first addressed by the parallel computing research
community. The literature offers many works aimed at ad-
dressing this issue. The IBM SP2 supercomputer, for example,
uses a bidirectional communication network that avoids
message-dependent deadlock by guaranteeing sufficient queue
space for each source-destination pair [41]. This solution is
hardly portable to NoCs for SoCs due to the small portion
of the limited on-chip power budget that can be allocated
to buffering queues. The Cray T3E [42] and SGI ORIGIN2000

[43], strictly avoid message-dependent deadlock with the
help of a logically-separated network for each message class.
Starting from the solutions developed for parallel computing
Kim et al. [21] propose a shared-memory architecture that
avoids message-dependent deadlock by using two physically-
separated networks for the request-response message types.
These solutions may be difficult to scale to future multicore
SoCs, where the increasing number of heterogeneous cores
will rely on more complex communication patterns that will
generate more elaborate message-dependency chains [15].

The Stanford DASH multiprocessor computer uses a
deadlock-recovery mechanism that is based on logically–
separated networks for groups of message classes and guar-
antees that messages belonging to certain class can always
sink via deflection (or “backoff”) if necessary [44]. Anjan
et al. [18] propose to add timers into the router’s output
ports to detect deadlock occurrences and move the blocked
packets into specialized queues to guarantee progress. Song
et al. [19] propose a deadlock-recovery protocol motivated by
the observation that in practice message-dependent deadlocks
occur very infrequently even when network resources are
scarce. However valid, most of these approaches are more
suitable for parallel computing systems than for the SoC
domain due to the additional resources that they require in

terms of storage buffering and circuit logic for deadlock
detection/recovery and packet reordering.

The Æthereal [23], [35], [45] and FAUST [24] NoCs use
CB end-to-end flow control protocols. In order to limit the
number of input and output queues required by the CB end-
to-end flow control, Æthereal requires the establishing of a
connection between two peers of the NoC. Connections can
be defined either at design time or runtime and are managed
through a centralized node. The number of input and output
queues is related to the maximum number of connections that
a NI can support simultaneously.

Wolkotte et al. [13] propose a circuit-switched architecture
with a dedicated wire on each link of the NoC to carry an
acknowledgement signal backward from the destination to the
source of any given end-to-end connection. The acknowledg-
ment signal is used in combination with a window counter
mechanism to prevent a buffer overflow at the destination
of a connection. Every source has a local window counter
of size WC indicating how many data-packets the source is
allowed to send to a single destination. The destination sends
an acknowledgement signal every time it has read X data-
packets, where X ≤ WC. Upon the reception of this signal,
the source increases its local window counter WC by X. In this
approach, the number of acknowledgement signals to embed
in each channel depends on the specific application. Hence,
this mechanism does not support new communication patterns
not considered at design time.

Another nonreconfigurable NoC is proposed by Murali
et al. [46], who define a methodology for designing
application-specific NoC taking message-dependent deadlock
into account. The NoC architecture is tailored for the
specific supported application. Hybrid packet/circuit switched
NoCs use a request-response handshake procedure to setup
virtual circuits between cores [12]. This procedure satisfies
the consumption assumption and, therefore, is guaranteed
to avoid message-dependent deadlock as long as all the
request messages are consumed. Hansson et al. present a
detailed comparison of strict ordering (separated physical
networks for each message type) and end-to-end flow control
approaches [15]. Their result is that the two approaches have
similar costs in terms of power and area consumption but
flow control-based networks offer higher flexibility as they
can better support more complex traffic applications beyond
the simple request-response paradigm.

A natural future extension of the CTC protocol is the
implementation of quality-of-service (QoS) guarantees. In fact,
the P REQ–P ACK handshake procedure can be used to reserve
NoC links in combination with connection-aware routers so
that throughput and latency guarantees are achieved. The
Æthereal NoC uses a similar approach implementing routers
with a time-division-multiplexing capability that can support
both guaranteed and best-effort traffic packets [47], [48].

VII. Conclusion

Message-dependent deadlock is a destructive event that,
even if rare [19], must be properly addressed to guarantee the
correct behavior of a network. The CB end-to-end flow control
protocol solves this problem by using multiple dedicated input

Authorized licensed use limited to: Columbia University. Downloaded on June 02,2010 at 19:47:53 UTC from IEEE Xplore. Restrictions apply.

CONCER et al.: THE CONNECTION-THEN-CREDIT FLOW CONTROL PROTOCOL FOR HETEROGENEOUS MULTICORE SYSTEMS-ON-CHIP 881

queues and output registers in the network interfaces. This
increases the complexity of the network interface design.
Further, since the number of these queues depends on the
number of distinct communications that its particular core
may have, the same network may present interfaces that have
different microarchitectural structures.

We proposed the CTC end-to-end flow control protocol as
an area-efficient solution to the message-dependent deadlock
problem that is characterized by a simpler and more mod-
ular network interface architecture. CTC-supporting network
interfaces use one single input data queue and one output
credit counter. Hence, the overall number of queues per
network interface remains equal to two, the total amount of
storage is reduced, and the overall network-interface design
becomes independent from the communication requirement of
the particular core, thus increasing its reusability. On the other
hand, any new communication between a pair of peer nodes
requires the preliminary completion of a handshake procedure
to initialize the output credit counter on the producer side
(after the connection has been established CTC works in a
way similar to the original CB flow protocol). This procedure
necessarily increases the latency of a message transfer and it
also reduces the network throughput for small messages.

In summary, the choice between CB versus CTC may be
seen as a case of typical “performance versus area” tradeoff.
From this perspective, experimental results show that for a
video processing application the latency penalty remains under
10% while the savings in terms of the overall area occupation
of the network interfaces reaches 35%. Therefore, CTC is an
effective solution to the message-dependent deadlock problem
for NoCs that are part of multicore SoCs targeting throughput-
driven stream processing applications.

References

[1] C. H. van Berkel, “Multicore for mobile phones,” in Proc. Conf. Design,
Autom. Test Eur., Apr. 2009, pp. 20–24.

[2] P. Kollig, C. Osborne, and T. Henriksson, “Heterogeneous multicore
platform for consumer multimedia applications,” in Proc. Conf. Design,
Autom. Test Eur. (DATE), Apr. 2009, pp. 1254–1259.

[3] C.-L. Chou and R. Marculescu, “User-aware dynamic task allocation
in networks-on-chip,” in Proc. Conf. Design, Autom. Test Eur. (DATE),
Mar. 2008, pp. 1232–1237.

[4] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. D. Micheli,
“Mapping and configuration methods for multiuse-case networks on
chips,” in Proc. Asia South Pacific Design Autom. Conf., Oct. 2006,
pp. 146–151.

[5] A. Hansson, M. Coenen, and K. Goossens, “Undisrupted quality-of-
service during reconfiguration of multiple applications in networks on
chip,” in Proc. Design, Autom. Test Eur. (DATE), Apr. 2007, pp. 954–
959.

[6] M. Coppola, M. D. Grammatikakis, R. Locatelli, G. Maruccia, and
L. Pieralisi, Design of Cost-Efficient Interconnect Processing Units:
Spidergon STNoC. Boca Raton, FL: CRC Press, 2008.

[7] M. Coppola, “Keynote lecture: Spidergon STNoC: The communication
infrastructure for multiprocessor architectures,” in Proc. Int. Forum
Appl.-Specific Multiprocessor SoC, Jun. 2008.

[8] L. Benini and G. D. Micheli, “Networks-on-chip: A new SoC paradigm,”
IEEE Comput., vol. 35, no. 1, pp. 70–78, Jan. 2002.

[9] W. J. Dally and B. Towles, “Route packets, not wires: On-chip in-
terconnection networks,” in Proc. Design Autom. Conf., Jun. 2001,
pp. 684–689.

[10] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Öberg, M. Millberg, and
D. Lindquist, “Network on chip: An architecture for billion transistor
era,” in Proc. 18th IEEE NorChip Conf., Nov. 2000, p. 117.

[11] U. Y. Ogras and R. Marculescu, “It’s a small world after all: NoC
performance optimization via long-range link insertion,” IEEE Trans.
Very Large Scale Integr. Syst., vol. 14, no. 7, pp. 693–706, Jul.
2006.

[12] M. Anders, H. Kaul, M. Hansson, R. Krishnamurthy, and S. Borkar, “A
2.9 tb/s 8 w 64-core circuit-switched network-on-chip in 45 nm CMOS,”
in Proc. Eur. Solid-State Circuits Conf., Sep. 2008, pp. 182–185.

[13] P. Wolkotte, G. Smit, G. Rauwerda, and L. Smit, “An energy-efficient
reconfigurable circuit-switched network-on-chip,” in Proc. Int. Parallel
Distrib. Process. Symp., Apr. 2005, pp. 155–161.

[14] G. D. Micheli and L. Benini, Networks on Chips: Technology and Tools
(Systems on Silicon). San Francisco, CA: Morgan Kaufmann, 2006.

[15] A. Hansson, K. Goossens, and A. Rădulescu, “Avoiding message-
dependent deadlock in network-based systems on chip,” in Proc.
Very Large Scale Integr. VLSI Design, vol. 2007. May 2007,
pp. 1–10.

[16] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Mateo, CA: Morgan Kaufmann, 2004.

[17] J. Duato, S. Yalamanchili, and L. Ni, “Message switching layer,” in
Interconnection Networks: An Engineering Approach. San Mateo, CA:
Morgan Kaufmann, 2003, ch. 2, pp. 43–80.

[18] K. V. Anjan and T. M. Pinkston, “DISHA: A deadlock recovery scheme
for fully adaptive routing,” in Proc. Int. Symp. Parallel Process. (IPPS),
Apr. 1995, pp. 537–543.

[19] Y. H. Song and T. M. Pinkston, “A progressive approach to handling
message-dependent deadlock in parallel computer systems,” IEEE Trans.
Parallel Distrib. Sys., vol. 14, no. 3, pp. 259–275, Mar. 2003.

[20] H. D. Kubiatowicz, “Integrated shared-memory and message-passing
communication in the alewife multiprocessor,” Ph.D. dissertation, Dept.
Elect. Eng. and Comput. Sci., Masachusetts Inst. Technol., Boston, 1997.

[21] J. Kim, J. Balfour, and W. Dally, “Flattened butterfly topology for on-
chip networks,” in Proc. IEEE Micro., Dec. 2007, pp. 172–182.

[22] S. Murali and G. D. Micheli, “An application-specific design methodol-
ogy for STbus crossbar generation,” in Proc. Conf. Design, Autom. Test
Eur., Apr. 2005, pp. 1176–1181.

[23] J. Dielissen, A. Rădulescu, K. Goossens, and E. Rijpkema, “Concepts
and implementation of the Philips network-on-chip,” in Proc. IP-Based
SoC Design, Nov. 2003.

[24] Y. Durand, C. Bernard, and D. Lattard, “FAUST: On-chip distributed
architecture for a 4G baseband modem SoC,” in Proc. Design Reuse
IP-SoC Conf., Nov. 2005, pp. 51–55.

[25] A. S. Tanenbaum, “The network layer,” in Computer Networks, 2nd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1988, ch. 5, pp. 343–423.

[26] L. Peh and W. J. Dally, “A delay model for router microarchitectures,”
IEEE Micro., vol. 21, no. 1, pp. 26–34, Jan. 2001.

[27] J. L. Hennessy and D. A. Patterson, “Multiprocessors and thread-level
parallelism,” in Computer Architecture: A Quantitative Approach. San
Mateo, CA: Morgan Kaufmann, 2006, ch. 4, pp. 196–264.

[28] R. L. Collins and L. P. Carloni, “Flexible filters: Load balancing
through backpressure for stream programs,” in Proc. Embedded Software
(EMSOFT). Oct. 2009, pp. 205–214.

[29] T. M. Pinkston and J. Shin, “Trends toward on-chip networked microsys-
tems,” Int. J. High Performance Comput. Netw., vol. 3, no. 1, pp. 3–18,
2001.

[30] M. Chaudhuri and M. Heinrich, “Exploring virtual network selection
algorithms in DSM cache coherence protocols,” IEEE Trans. Parallel
Distrib. Sys., vol. 15, no. 8, pp. 699–712, Aug. 2004.

[31] E. van der Tol and E. Jaspers, “Mapping of MPEG-4 decoding on a
flexible architecture platform,” in Proc. Soc. Photo-Optic. Instrum. Eng.
Conf., Jan. 2002, pp. 1–13.

[32] A. Pullini, F. Angiolini, P. Meloni, D. Atienza, S. Murali, L. Raffo,
G. De Micheli, and L. Benini, “NoC design and implementation in
65 nm technology,” in Proc. Int. Symp. Netw.-Chips (NOCS), May 2007,
pp. 273–282.

[33] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini,
and G. De Micheli, “NoC synthesis flow for customized domain specific
multiprocessor systems-on-chip,” IEEE Trans. Parallel Distrib. Syst.,
vol. 16, no. 2, pp. 113–129, Feb. 2005.

[34] M. Bekooij, “Dataflow analysis for real-time embedded multiprocessor
system design,” in Dataflow Analysis for Real-Time Embedded Multi-
processor System Design. San Mateo, CA: Kluwer, 2005, ch. 4, pp.
81–108.

[35] O. P. Gangwal, A. Rădulescu, K. Goossens, S. González Pestana,
and E. Rijpkema, “Building predictable systems on chip: An analysis
of guaranteed communication in the Æthereal network on chip,” in
Dynamic and Robust Streaming in and Between Connected Consumer-
Electronics Devices (Philips Research Book Series), vol. 3, P. van der

Authorized licensed use limited to: Columbia University. Downloaded on June 02,2010 at 19:47:53 UTC from IEEE Xplore. Restrictions apply.

882 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 6, JUNE 2010

Stok, Ed. Berlin, Germany: Springer-Verlag, 2005, pp. 1–36.
[36] E. Carara, N. Calazans, and F. Moraes, “Router architecture for

high-performance NoCs,” in Proc. Conf. Integr. Circuits Syst. Design
(SBCCI), Sep. 2007, pp. 111–116.

[37] N. Concer, M. Petracca, and L. P. Carloni, “Distributed flit-buffer flow
control for networks-on-chip,” in Proc. Int. Conf. Hardware/Software
Codesign Syst. Synth. (CODES+ISSS), Oct. 2008, pp. 215–220.

[38] L. Bononi and N. Concer, “Simulation and analysis of network on chip
architectures: Ring, Spidergon, and 2-D mesh,” in Proc. Design, Autom.
Test Eur. (DATE), 2006, pp. 154–159.

[39] L. Bononi, N. Concer, M. Grammatikakis, M. Coppola, and R. Locatelli,
“NoC topologies exploration based on mapping and simulation models,”
in Proc. Euromicro Conf. Digital Syst. Design Architect., Methods Tools
(DSD), Aug. 2007, pp. 543–546.

[40] Y. J. Yoon, N. Concer, M. Petracca, and L. P. Carloni, “Virtual channels
versus multiple physical networks: A comparative analysis,” in Proc.
Design Autom. Conf., Jun. 2010.

[41] C. B. Stunkel, D. G. Shea, B. Aball, M. G. Atkins, C. A. Bender, D. G.
Grice, P. Hochschild, D. J. Joseph, B. J. Nathanson, R. A. Swetz, R. F.
Stucke, M. Tsao, and P. R. Varker, “The SP2 high-performance switch,”
IBM Syst. J., vol. 34, no. 2, pp. 185–204, 1995.

[42] S. Scott and G. Thorson., “The Cray T3E network: Adaptive routing
in a high performance 3-D torus,” in Proc. Hot Chips, Nov. 1996,
pp. 158–163.

[43] J. Laudon and D. Lenoski, “The SGI origin: A ccNUMA highly scalable
server,” SIGARCH Comput. Archit. News, vol. 25, no. 2, pp. 241–251,
1997.

[44] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy,
“The directory-based cache coherence protocol for the DASH multi-
processor,” in Proc. 17th Int. Symp. Comput. Architecture, Apr. 1997,
pp. 148–159.

[45] B. Gebremichael, F. Vaandrager, M. Zhang, K. Goossens, E. Rijpkema,
and A. Radulescu, “Deadlock prevention in the Æthereal protocol,” in
Proc. Correct Hardware Design Verificat. Methods (CHARME) Conf.,
Oct. 2005, pp. 345–348.

[46] S. Murali, P. Meloni, F. Angiolini, and D. Atienza, “Designing message-
dependent deadlock free networks on chips for application-specific
systems on chips,” in Proc. Very Large Scale Integr. VLSI-Syst.-Chip
(SoC), Nov. 2006, pp. 158–163.

[47] E. Rijpkema, K. G. W. Goossens, A. Radulescu, J. Dielissen, J. van
Meerbergen, P. Wielage, and E. Waterlander, “Trade-offs in the design
of a router with both guaranteed and best-effort services for networks
on chip,” in Proc. Conf. Design, Autom. Test Eur. (DATE), vol. 150,
no. 5. Sep. 2003, pp. 294–302.

[48] A. Jantsch and H. Tenhunen, “Guaranteeing the quality of services in
networks on chip,” in Networks-on-Chip. Hingham, MA: Kluwer, 2003,
ch. 4.

Nicola Concer received the Laurea (summa cum
laude) and Ph.D. degrees in computer science from
the University of Bologna, Bologna, Italy, in 2005
and 2009, respectively.

Since 2009, he has been a Post-Doctoral Re-
searcher with the Department of Computer Science,
Columbia University, New York, NY, under the
supervision of Dr. L. P. Carloni. His current research
interests include the design of power-efficient in-
terconnection systems for heterogeneous multicore
system-on-chip architectures.

Luciano Bononi received the Laurea (summa cum
laude) and Ph.D. degrees in computer science from
the University of Bologna, Bologna, Italy, in 1997
and 2002, respectively.

In 2000, he was a Visiting Researcher with the
Department of Electrical Engineering, University of
California, Los Angeles. In 2001, he joined Uni-
versity of Bologna as a Post-Doctoral Researcher,
and since 2002, he has been an Assistant Professor
with the Department of Computer Science at the
same university. He is the author of more than

60 conference and journal publications and five book chapters on topics related
to mobile and wireless network protocols, standards and architectures.

Dr. Bononi serves as an Associate Editor of six international journals. He

has served as the Chair and the Technical Program Committee Member of
more than 10 and 100 international conferences and workshops, respectively.

Michael Soulié received the Engineer degree
from the Institut Polytechnique de Grenoble,
École Nationale Supérieure d’Électronique et de
Radioélectricité de Grenoble, Grenoble, France, in
2006.

Since 2006, he has been a Member of the
Spidergon ST Network-on-Chip (SSTNoC) Team
of Antonio-Marcello Coppola, Department of Ad-
vanced Search Technology, STMicroelectronics,
Grenoble, France. He has been working on network-
on-chip for the past four years under the supervision

of Dr. R. Locatelli, focusing particularly in the architecture of the Spider-
gon STNoC, an STMicrolectronics proprietary efficient on-chip interconnect
technology. His current research interests include high-level modeling of the
SSTNoC and intellectual property protocol interoperability.

Riccardo Locatelli received the Laurea degree
(summa cum laude) in electronic engineering, and
the Ph.D. degree in information engineering from
the University of Pisa, Pisa, Italy, in 2000 and 2004,
respectively.

In 1999, he was a Research Intern with the Micro-
electronics Section of the European Space Agency,
the Netherlands, and a Visiting Researcher with the
Advanced Search Technology Grenoble Laboratory
of STMicroelectronics, Grenoble, France, in 2003.
At Pisa University, he worked on definition and

prototyping of video architectures with emphasis on low-power techniques
and system communication. He was a Digital Design Engineer with CPR-
TEAM, a microelectronic design house in Pisa, where he worked on advanced
signal processing schemes for VDSL applications. Since 2004, he has been
a Technical Leader and an Architecture and Design Team Leader with
STMicroelectronics, Grenoble, France, and the Spidergon ST Network-on-
Chip (SSTNoC) Interconnect Processing Unit (IPU), where he introduced
novel concepts beyond networks-on-chip (NoC). He has published about 30
papers in international journals and conference proceedings and has filed nine
international patents on NoC. He is the co-author of a book on Spidergon
STNoC technology (Boca Raton, FL: CRC Press, 2008).

Dr. Locatelli is a member of the technical program committee the NoC
Symposium and the Design, Automation and Test in Europe, a Reviewer of
the IEEE Transactions on Computer-Aided Design journal and of several
International Conferences.

Luca P. Carloni (SM’09) received the Laurea de-
gree (summa cum laude) in electrical engineering
from the University of Bologna, Bologna, Italy, in
1995, and the M.S. and Ph.D. degrees in electrical
engineering and computer sciences from the Uni-
versity of California, Berkeley, in 1997 and 2004,
respectively.

He is currently an Associate Professor with the
Department of Computer Science, Columbia Uni-
versity, New York, NY. He is the author of over
70 publications and holds one patent. His current

research interests include the area of design tools and methodologies for
integrated circuits and systems, distributed embedded systems design, and
design of high-performance computer systems.

Dr. Carloni received the Faculty Early Career Development (CAREER)
Award from the National Science Foundation in 2006, and was selected as
an Alfred P. Sloan Research Fellow in 2008. He is the recipient of the 2002
Demetri Angelakos Memorial Achievement Award “in recognition of altruistic
attitude toward fellow graduate students.” In 2002, one of his papers was
selected for “The Best of the International Conference on Computer Aided
Design (ICCAD),” a collection of the best IEEE ICCAD papers of the past
20 years. He is a Senior Member of the Association for Computing Machinery.

Authorized licensed use limited to: Columbia University. Downloaded on June 02,2010 at 19:47:53 UTC from IEEE Xplore. Restrictions apply.

