
45

Flexible Filters in Stream Programs

REBECCA L. COLLINS and LUCA P. CARLONI, Columbia University

The stream-processing model is a natural fit for multicore systems because it exposes the inherent locality
and concurrency of a program and highlights its separable tasks for efficient parallel implementations. We
present flexible filters, a load-balancing optimization technique for stream programs. Flexible filters utilize
the programmability of the cores in order to improve the data-processing throughput of individual bottleneck
tasks by “borrowing” resources from neighbors in the stream. Our technique is distributed and scalable be-
cause all runtime load-balancing decisions are based on point-to-point handshake signals exchanged between
neighboring cores. Load balancing with flexible filters increases the system-level processing throughput of
stream applications, particularly those with large dynamic variations in the computational load of their
tasks. We empirically evaluate flexible filters in a homogeneous multicore environment over a suite of five
real-word stream programs.

Categories and Subject Descriptors: D.1.3 [Programing Techniques]: Concurrent Programing; D.3.2 [Pro-
graming Languages]: Language Classification—Data-flow languages

General Terms: Design, Performance

Additional Key Words and Phrases: Stream programming, dynamic load balancing

ACM Reference Format:
Collins, R. L. and Carloni, L. P. 2013. Flexible filters in stream programs. ACM Trans. Embedd. Comput.
Syst. 13, 3, Article 45 (December 2013), 26 pages.
DOI: http://dx.doi.org/10.1145/2539036.2539041

1. INTRODUCTION

The properties of the stream-processing model naturally lend it to the challenge of
programming multicore platforms; in particular, the strict organization of stream pro-
grams as a sequence of filters communicating through FIFO data pipes mitigates
the complexity of scheduling tasks and intercore communication. Stream processing
has been deployed in a wide range of applications, including high-performance em-
bedded applications, signal processing, image compression, and continuous database
queries [Buck et al. 2004; Chandrasekaran et al. 2003; Gummaraju and Rosenblum
2005; Kapasi et al. 2003; Kudlur and Mahlke 2008; McCool 2006; Shah et al. 2003;
Thies et al. 2001].

The stream-processing paradigm decomposes an application into a sequence of data
items (tokens) and a collection of tasks (referred to as filters or kernels) that operate
upon the stream of tokens as they “flow” through. Filters communicate with each other
explicitly by exchanging tokens through point-to-point communication channels. This
model exposes the inherent locality and concurrency of the application and enables
the realization of efficient implementations based on mapping the filters onto paral-
lel processor architectures. Given a stream program and a target architecture, the

This research is partially supported by the National Science Foundation under awards 0644202 and 0811012.
Corresponding author’s email: rebecca.l.c@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1539-9087/2013/12-ART45 $15.00

DOI: http://dx.doi.org/10.1145/2539036.2539041

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

45:2 R. L. Collins and L. P. Carloni

Fig. 1. Stream graph of the Dedup benchmark
application.

Fig. 2. Histogram of execution times for Dedup’s
compress filter.

filters of the stream program are mapped to the cores of the architecture, and the
communication channels to the communication substructure of that architecture. The
communication mapping includes mapping input and output buffers to the (possibly
distributed) memory, and the communication events to underlying communication pro-
tocols, such as message passing. In this article, we work with a distributed memory
architecture where each core has its own local memory, which is shared by the data
and instructions associated with a task as well as communication buffers.

In general, it is a challenge to achieve an optimal mapping that maximizes the
program performance given data dependencies among the filters and the available
hardware resources (e.g., processing cores, memories, and interconnect). Moreover, the
execution time of a software task is often variable, making mapping more difficult
since the relative cost of filters with respect to each other is not constant. Consider
the Dedup benchmark, a parallel compression application [Bienia et al. 2008], that can
be implemented as a stream program with six main filters, as illustrated in Figure 1,
which shows the corresponding stream graph. A data-dependent execution time char-
acterizes the compress filter, illustrated by the histogram in Figure 2, which shows the
distribution of execution times over a sample of input on that filter. The execution time
to compress a data array varies by up to five milliseconds in the sample depending on
the data content.

This article presents flexible filters as a technique for balancing stream programs
on distributed-memory multicore platforms. Flexible filters combine static mapping of
the stream program filters with dynamic load balancing of their execution. The goal is
to increase the overall processing throughput of the stream program by reducing the
impact of bottleneck filters running on particular cores. A filter can cause a bottleneck
because either (a) its algorithmic characteristics make it disproportionately expensive
to run on a given core with respect to the other filters running on neighboring cores or
(b) at runtime, it may go through phases where it has to process a larger number of
tokens per unit of time. When a filter becomes a bottleneck, its neighboring upstream
or downstream filters, or both, may start suffering a loss of throughput, and ultimately,
this affects the data processing throughput of the overall stream. If a slow computation
creates a bottleneck by delaying the production of new tokens, the downstream filters
may become idle due to the lack of inputs. Alternatively, a filter can also be a bottleneck
if it cannot keep up with the data production of upstream filters. If this is the case,
the input buffers of its processing core start filling up. This eventually leads to the
emission of backpressure signals between the cores running the bottleneck filter and
its upstream neighbors, thus forcing the upstream filters to become idle to avoid a loss
of data from buffer overflows.

Figure 3 illustrates our proposed design flow to guide the application of flexible
filters. Bottleneck filters in a stream application are identified through profiling of

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

Flexible Filters in Stream Programs 45:3

Fig. 3. The design flow to guide the application of flexible filters.

the application with the target multicore platform or through modeling. Based on this
profiling, the graph is modified to include redundant copies of the flexible filter as
well as auxiliary code which leverages the backpressure mechanism to dynamically
activate the execution of the additional copies of the bottleneck filters when necessary,
while preserving the correct ordering of the tokens in the data stream. Finally, the
resulting stream graph is mapped to the target multicore architecture. This is a cyclical
process, since the first program profile depends on a mapping of the application, and
the modification to the original stream graph may give rise to new bottlenecks.

The main contribution of this article is a comprehensive presentation of flexible fil-
ters as an effective load-balancing technique for stream programs. The idea of flexible
filters was first presented at EMSOFT 2009 [Collins and Carloni 2009], and its ap-
plication to one particular high-performance embedded application was discussed in
an extended abstract at HPEC 2010 [Collins and Carloni 2010]. Additional contribu-
tions with respect to these publications include an extension of the library of auxiliary
functions to cover bottleneck filters with multiple input and output channels and a
comprehensive experimental evaluation of flexible filters with a suite of five real-world
stream programs.

The rest of this article is organized as follows: in Section 2, we describe how a stream
graph is modified once a bottleneck filter has been identified; in Section 3, we discuss
the implementation of the auxiliary functions, flex split and flex merge, which manage
dynamic flow redirection; in Section 4, we describe a compositional performance model
for stream programs which aids in profiling the trade-offs of different filter mappings
and the expected throughput improvement gained through flexibility; in Section 5, we
present experimental results to evaluate the performance gains that can be obtained
with flexible filters. Our experiments show that flexible filters achieve speedup over a
wide variety of application domains and in cases where the execution time of filters
varies during runtime. Finally, in Section 6, we discuss the related work.

2. FLEXIBLE FILTERS

The presence of a bottleneck filter may limit performance by preventing utilization
of the full capabilities of an architecture. This section first defines throughput as a
performance metric and then presents a small example to illustrate how performance
can be lost because of a bottleneck filter and how the incorporation of flexibility into a
program corrects for this loss.

In order to implement a stream program on a multicore architecture, each of its
filters must be mapped to at least one core. A core may host several filters and rely on a
scheduler to time-multiplex the core’s resources among the filters. The performance of a
given implementation can be measured by its maximum sustainable throughput (MST),

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

45:4 R. L. Collins and L. P. Carloni

Fig. 4. Example of the structure of a stream
program.

Fig. 5. Pipeline mapping.

Fig. 6. Flexible-filter mapping.

that is, the maximum rate at which data tokens can be processed under the assumption
that the environment is always willing to produce new tokens and never requires the
system to stall through a backpressure signal. In an ideal multicore architecture, (1) the
overhead of intercore communication and intracore context switching is negligible, and
(2) each core has unlimited local memory. An ideal mapping of filters would result in
a runtime execution where no core ever stalls and the MST scales linearly with the
number of cores.

Consider the simple example of a generic stream program whose structure is shown
in Figure 4: it consists of three filters a, b, and c with data tokens traveling between
them on communication channels (a, b) and (b, c). If the filters have execution times1

La = 2, Lb = 2, and Lc = 3, respectively, then the ideal MST (i.e., assuming that no
core is idle and performance scales linearly) is # cores

La+Lb+Lc
= 3

7 = 0.429.
Figure 5 illustrates a simple pipeline mapping: each filter is mapped to a separate

core. Using the same execution times as before, this mapping delivers an MST equal
to 1

3 = 0.333, lower than the ideal 0.429 MST, because filter c can process a new data
token only every three time steps, thus limiting the performance of the program. Once
the buffers between core2 and core3 (where b and c are located, respectively) fill up,
core3 requests core2 to stall occasionally through the emission of a backpressure signal
(and backpressure continues to propagate upstream).

However, suppose that core2 can also execute filter c. Then, instead of stalling, core2
can “work ahead” on the data tokens in its buffers. Now the rate at which data tokens
are processed by filter c increases, the load on core3 decreases, and as a result, the
system runs faster. Thus, load balancing based on flexible filters duplicates bottleneck
filters and maps the duplicate copies together with upstream filters. For instance, as
shown in Figure 6, adding flexibility to the stream program from Figure 5 makes
it possible to alleviate the bottleneck caused by filter c on core3. The new mapping
duplicates filter c on core2 so that core2 can share the load of filter c.

Besides increasing the code footprint in core2 with respect to the pipeline mapping,
flexible filters also add some complexity to the program, because now the data stream
is split and merged around core3. The two auxiliary filters, flex split and flex merge
accomplish the split and merge steps. These filters, which are represented as small
black boxes in Figure 6, can be added to the stream program without changing any of
the original filters. Flexible filters provide a notion of semantic preservation whereby
the final output of the program preserves the ordering of tokens, and lossless chan-
nels guarantee that no token is dropped so that the resulting output data stream is
unaltered when some filters are made flexible in the execution.

1The execution time of a filter is the time necessary to execute it on a given core as a stand-alone task. In a
heterogeneous multicore architecture, the same filter would have different execution times when executed
on different programmable cores. However, this example considers only homogeneous architectures.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

Flexible Filters in Stream Programs 45:5

2.1. Stateless Filters

Since the data splitting of flex split and flex merge around a filter f occurs agnostically
with respect to f ’s operation, to be eligible for flexibility, a filter must be stateless,
that is, given an input token x, a stateless filter will produce the same output token
regardless of what tokens came before x. Stateless, or functional, programming applies
to many classes of applications, including financial applications, telecommunications,
and digital signal processing [Däcker 2000; Graef et al. 2006; Minsky and Weeks 2008].

Besides statelessness, an additional requirement for a filter f to be eligible for
flexibility is that each firing of f consumes a constant number of input tokens. In our
implementation of flex split and flex merge, we also assumed that each firing produces
a constant number of output tokens; this, however, is not necessarily a requirement.
An extended implementation could support dynamic output by bookkeeping to keep
track of placeholders between sets of output tokens. Notice that a program may consist
of both flexible filter and regular filters: no restrictions apply to filters which are not
made flexible, since their output tokens are not rearranged.

Although stateful filters cannot themselves be flexible, the flexible filter approach can
still sometimes improve the performance of a stream program that includes stateful
filters. Only the bottleneck filter needs to be made flexible. Neighboring non-bottleneck
filters do not prevent the application of flexibility to the rest of the program. For
example, the Dedup benchmark described in Section 1 uses flexibility to speed up the
compression filter, notwithstanding the presence of a stateful hash map filter earlier
in the stream.

In some cases, it is possible to break a stateful bottleneck filter up so that the most
computationally expensive part is stateless, even if the original bottleneck filter was
stateful. Refactoring filters to remove their state is an application-dependent task
which is not addressed by the flexible filter methodology but is left to application
designers.

2.2. Static Load Balancing vs. Dynamic Load Balancing

The flexible filter solution combines a static mapping of stream tasks with dynamic
flow management so that the flow may be redirected at runtime around bottlenecks,
as allowed by flexibility in the static mapping. Note that in the example from Figure 6,
a static load-balancing split and join could achieve the same speedup as flexible filters
if each core always had the same execution time. Previous works have shown that
static splits and joins of the data flow can be used to balance the workload of cores and
improve performance [Gordon et al. 2006]. The decision of where to insert splits and
joins and to what extent a job should be split is left to the compiler. Hence, it is a static
optimization choice. On top of static load balancing, some systems analyze various
possible load scenarios and enable several choices of static mappings from which the
runtime system can dynamically choose in order to adapt to different scenarios [Chen
et al. 2005; Stuijk et al. 2011].

Flexible filter load balancing is able to handle an environment where constant exe-
cution times are not known, which includes both the case where bottlenecks are data
dependent as well as when the availability of resources in the system changes dynam-
ically due to contention with other applications. Moreover, one of the key advantages
of flexible filters is that they provide dynamic load balancing without any form of a
centralized control or runtime mapping readjustment.

Flexible filters differ from previous load-balancing approaches because backpressure
alone drives load balancing, and data dependencies across the filters in the stream pro-
gram guide the task reassignment to idle cores rather than random reassignment [Chen
et al. 2005; Fellheimer 2006; Hormati et al. 2009; Shah et al. 2003; Xing et al. 2005;

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

45:6 R. L. Collins and L. P. Carloni

Fig. 7. Relationship of flex split and flex merge.

Zhang et al. 2008]. The approach is entirely distributed and sends no extra messages
among cores beyond backpressure messages, which are already often present to prevent
the communication buffers from overflowing. Since the runtime load drives load bal-
ancing, flexible filters can be used not only to optimize the implementation of programs
whose filters have constantly unbalanced computational loads, but also to adjust tem-
porary imbalances due to spikes of activity, for example, detecting “bargains” during
the processing of real-time streaming stock-ticker data [Gedik et al. 2008].

3. IMPLEMENTATION OF FLEX SPLIT AND FLEX MERGE

After the programmer identifies potential bottleneck filters through profiling or other
program analysis, the original stream program is transformed into a flexible stream
program by duplicating these filters and by adding pairs of flex split and flex merge aux-
iliary filters around the flexible duplicates. Figure 7 shows the connections among the
filters. Flex split and flex merge can be provided by an application-independent library
because they do not depend on application-specific details. Furthermore, flex split and
flex merge do not require modification of the original stream filters.

Implementations of flex split and flex merge work with data blocks. Each data block
may consist of many data tokens, and the blocks, like tokens, form a stream and
follow an ordering that depends on their place in the bigger stream. One difference
between data tokens and data blocks with respect to scheduling the flow of data is
that it is possible to break a data block up into several pieces and process them in
parallel, while a data token is indivisible. Data blocks are a realistic abstraction, since
real-life implementations frequently buffer data in order to amortize the overhead of
communication.

A data token corresponds to the minimum data needed to fire the execution of a
filter. In practice, the minimum data needed varies from one filter to the next. For
example, one filter may require only a single integer for an input token, while another
may require an array of integers.

A data block is the input unit for flex split. The divisibility of data blocks is one
factor that enables load balancing with flexible filters, but data blocks can only contain
a finite number of data tokens and cannot be divided into arbitrarily-sized fractions.
Lower granularity (fewer tokens per block) can limit the benefits of flexibility in the
data stream because it puts more constraints on the possible data flow.

Flex split (pseudocode shown in Algorithm 1) dynamically reuses the backpressure
information on the current capacity of the downlink input buffers to manage load
balancing by dividing the data stream between out0 and out1. Specifically, it checks
how much space is available on the buffering queue for the primary copy of the flexible
filter, f , and divides the data stream by sending as much data to f ’s primary copy as
it can (stream out0) and then sending any leftover data to the flexible copy (stream
out1). Flex split also produces a select bitstream that contains information on how to
reconstruct the correct ordering of the stream. Flex merge (pseudocode in Algorithm 2)
takes the input streams in0 and in1 from both of f ’s copies along with the select
bitstream, which comes directly from flex split. The select bitstream indicates which of

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

Flexible Filters in Stream Programs 45:7

ALGORITHM 1: flex split (Input: stream in; Output: streams out0, out1, select)
pop data block b from in
n0 ← min(avail(out0), |b|)
n1 ← |b| − n0
for i = 0 to n0 − 1 do

push 0 to select
end for
for i = n0 to |b| − 1 do

push 1 to select
end for
push n0 tokens from b to out0
push n1 tokens from b to out1

ALGORITHM 2: flex merge (Input: streams in0, in1, select; Output: stream out)
pop i from select
if i is 0 then

pop token t from in0
else

pop token t from in1
end if
push t to out;

f ’s copies has the next data token, thus allowing flex merge to reassemble the stream
into its original order.

Backpressure plays a key role in the implementation of flexible filters. Before a
core can send data downstream, it must ensure the availability of adequate buffering
space for the data in the receiving core. A typical handshake protocol guarantees that
buffers do not overflow and proceeds through a sequence of phases: it starts with the
sending core placing a request to send data; then, the receiving core sends back an
acknowledgement with information on how much data it can receive (backpressure);
and finally the sending core sends the data. In practice, the various phases can be
overlapped to further improve performance by adding sufficient memory space.

If a flexible filter is inherently slower than its upstream neighbor, then the imbalance
will cause the input buffering queue of its primary copy to be full often, and flex split
will redirect the data flow to f ’s secondary copy at regular intervals. Instead, if f
experiences only occasional spikes of activity that cause it to slow down, or if f ’s
upstream neighbor occasionally creates extra data tokens on its output, then the flow
of data will usually behave as if there is no redundant flexible filter present, and
flex split will intervene sporadically when a spike arises.

Finally, notice that instead of having a distinct bit for every token, a compressed
format may reduce the select bitstream to counts of how many of the next tokens go
to out0 and then how many go to out1. In practice, if the data tokens are vectors or
other large data structures, using a distinct select bit for each token does not take up
a significant portion of memory.

3.1. Example

We now walk through the execution of a stream program at runtime when flexibility
is invoked to balance the load. Table I shows the timeline for the example shown in
Figure 5, using the same example execution times used in Section 2 (with La = 2,
Lb = 2, and Lc = 3). The table shows both the current step being executed on each core
and the contents of the core’s local buffering memory.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

45:8 R. L. Collins and L. P. Carloni

Table I. Baseline Pipeline Mapping Timeline

Time Steps t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

core1
Step a0,0 a0,1 a1,0 a1,1 a2,0 a2,1 a3,0 a3,1 a4,0 a4,1

Block(s) 0 0 1 1 2 2 3 3 4 4

core2
Step b0,0 b0,1 b1,0 b1,1 b2,0 b2,1 b3,0 b3,1

Block(s) 0 0 1 1 2 2 3 3

core3
Step c0,0 c0,1 c0,2 c1,0 c1,1 c1,2

Block(s) 0 0 0,1 1 1,2 1,2
Time Steps t10 t11 t12 t13 t14 t15 t16 t17 t18 t19

core1
Step a5,0 a5,1 a6,0 a6,1 a7,0 a7,1 a8,0 a8,1 a9,0 a9,1

Block(s) 5 5 6 6 7 7 8 8 8,9 9

core2
Step b4,0 b4,1 b5,0 b5,1 b6,0 b6,1 b7,0 b7,1 - b8,0

Block(s) 4 4 4,5 5 5,6 5,6 6,7 6,7 6,7 7,8

core3
Step c2,0 c2,1 c2,2 c3,0 c3,1 c3,2 c4,0 c4,1 c4,2 c5,0

Block(s) 2,3 2,3 2,3 3,4 3,4 3,4 4,5 4,5 4,5 5,6
Time Steps t20 t21 t22 t23 t24 t25

core1
Step a10,0 a10,1 a11,0 a11,1 - a12,0

Block(s) 9,10 9,10 10,11 10,11 10,11 11,12

core2
Step b8,1 - b9,0 b9,1 - b10,0

Block(s) 7,8 7,8 8,9 8,9 8,9 9,10

core3
Step c5,1 c5,2 c6,0 c6,1 c6,2 c7,0

Block(s) 5,6 5,6 6,7 6,7 6,7 7,8

Fig. 8. Flexible filter timelines.

In Table I, each filter completes processing a block i in the time of that filter’s
execution time. For example, filter a, whose execution time is two, computes block i in
two timesteps, denoted ai,0 and ai,1, respectively. Since filter c has an execution time
of three, it must compute blocks in three timesteps (ci,0, ci,1, and ci,2). Even though
the filters’ latencies are not equal, the buffer capacity allows the faster filters to work
ahead initially. However, at time step t18, core2 must stall. At this timestep, core2’s
memory contains Blocks 6 and 7, and even though core1 is ready to pass Block 8, core3
holds Blocks 4 and 5 and will not be ready to take the next block from core2 until it is
done processing Block 4. Therefore, core2 must wait until core3 is ready to accept the
next block before it can make space in its memory for Block 8. The state of the system
is the same at time steps t22 and t25 in terms of the state of each core with respect to
the blocks in that core’s memory. In fact, the system begins to cycle through a pattern
of states; in this case, the pattern from t22 to t24. During one cycle, this implementation
completes one block every three cycles, confirming that the MST is 1

3 , as calculated in
Section 2. Note that if the filter latencies are unbalanced, stalling will occur no matter
how much buffering space is available on the cores: additional memory simply extends
the time that it takes to initially fill up the buffers.

Figure 8 summarizes two timelines in a more abbreviated format that does not
include the current memory state. The timelines start at t16 using the same state of
t16 in Table I and continue until a cyclic pattern emerges. Figure 8(a) depicts the same

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

Flexible Filters in Stream Programs 45:9

Fig. 9. Timeline when filter c has a granularity of two tokens per block.

timeline as in Table I. Figure 8(b) shows the timeline for a flexible-filter mapping,
where filter c is made flexible and is mapped to core2 and core3 (same as Figure 6). The
cyclic pattern for this mapping begins at time step t26 and continues until t35. In the
example, when no filters are flexible, the MST is degraded by 22% compared to the ideal
throughput. When only filter c is flexible, the MST is increased to 4

10 = 0.400 (only 7%
degradation). If b were also made flexible, the MST would reach its ideal limit of 0.429.
Note that we are not simply duplicating a filter to achieve data parallelism (e.g., as
in [Gordon et al. 2006]); instead, data parallelism is used to balance load dynamically
as an alternative to stalling one of the processing cores in response to backpressure.
The cost of flexibility is that the code of the flexible filter must be present on more than
one core, and the flexible copy of the filter also shares communication buffers with the
other filters.

Granularity of Firing Constraints and Buffer Size. In the previous examples, we
assume that it is always possible to break one of c’s data blocks up into thirds. Suppose,
however, that the local data memory of each core only holds a block of two tokens for
c. Since data tokens are the minimum amount of data that a filter can fire on, it is
now only possible to break one of c’s data blocks up into two pieces. Figure 9 repeats
the mapping from Figure 8(b) to show the timeline when c has this constraint. There
are two cases shown. In Figure 9(a), we assume buffers of size two, just like in the
previous examples, while in Figure 9(b), we assume that the buffer has capacity for
one data block only. At t7 in Figure 9(b), core3 must wait for Block 1 until core2 is ready
to send it. Similarly, core1 must also wait to send Block 2 to core2. When buffers have
enough capacity for two blocks, the MST is 6

15 = 0.4, which is the same as the MST
when we did not have the additional granularity constraint. However, when the buffers
only hold one block, the MST is degraded to 2

5.5 = 0.364. This example shows that the
local buffering memory plays a critical role in insulating performance from granularity
constraints.

3.2. Practical Implementation Concerns

3.2.1. Multichannel Flexible Filters. The preceding discussion of flex split and flex merge
assumes that the flexible filter has exactly one input and one output channel. Filters
with multiple input and output channels may also be made flexible, but flex split and
flex merge are inserted differently into the graph, and in the case of a filter with more
than one input channel, flex split requires modification.

For a filter with several output channels but only one input channel, no modifica-
tion to flex split or flex merge is necessary: the flexible stream graph simply inserts a
separate flex merge for every output channel and copies the select bits of flex split to
each copy of flex merge, as illustrated in Figure 10. Because each copy of the flexible
filter produces data tokens to its output channels in the same order, the same select
bitstream is correct for every flex merge.

Adding flexibility around several input channels poses a greater challenge. Dupli-
cating flex split in the same way that flex merge is duplicated for the multiple-output
case does not result in a correct implementation, because flex split splits the data

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

45:10 R. L. Collins and L. P. Carloni

Fig. 10. Block diagram of a flexible filter with n output channels.

Fig. 11. Two alternative implementations of a flexible filter with n input channels.

stream and builds the select bitstream based on how much queue space is available
downstream. If multiple copies of flex split check for queue space separately at slightly
different times, they may get different answers, and thus the data tokens in the input
streams would be mismatched. Figure 11 illustrates two possible solutions. One option
is to create one centralized flex split that monitors all of the input queues for the copies
of the flexible filter (pseudocode in Algorithm 3) and then splits the data stream in a
way that is consistent across all input streams. The downside of this approach is that
it may create a bottleneck in processing.

ALGORITHM 3: Centralized flex split (Input: streams in0, in1, . . . , inn; Output: stream out00,
out01, . . . , out0n, out10, out11, . . . , out1n, select)

pop data blocks b0, b1, . . . 3 bn from in0, in1, . . . , inn {Assumes that this stream filter will block
until there is adequate data on each input channel to supply one data block of size |b|.}
n0 ← min(avail(out0i) over all i, |b|)
n1 ← |b| − n0
for i = 0 to n0 − 1 do

push 0 to select
for j = 0 to n do

push bj[i] to out0 j {where bj[i] denotes the ith token from bj}
end for

end for
for i = n0 to |b| − 1 do

push 1 to select
for j = 0 to n do

push bj[i] to out1 j
end for

end for

Another approach is to introduce a second version of the flex split implementation,
denoted βflex split (pseudocode in Algorithm 4). The original flex split is used for the
first channel, and then instead of building new select bitstreams, βflex split filters
reuse the original flex split’s select stream and wait for sufficient space on their out-
put queues before proceeding. This approach avoids forcing all of the input channels

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

Flexible Filters in Stream Programs 45:11

ALGORITHM 4: βflex split (Input: streams in, select; Output: stream out0, out1)
pop i from select
pop token t from in
if i is 0 then

push token t to out0
else

push token t to out1
end if

through a bottleneck but may result in extra stalling by the new βflex split filters. Con-
ceptually, βflex split mirrors flex merge, since they both follow the same select bitstream
to guarantee the correct ordering of tokens.

3.2.2. Implementation of Backpressure. Streaming programming languages typically ab-
stract away the backpressure mechanism that is implemented at the lower level of
the intercore communication stack [Barnes et al. 1993; Thies et al. 2001]. Hence,
programmers need not worry about the current state of the buffers between stream
functions and can focus on the computational aspects of the algorithm and data ma-
nipulation through higher-level functions, such as push and pop. At the same time,
the underlying message-passing API functions that support the handshake communi-
cation protocol and backpressure mechanism between communicating cores and that
are often specific to the target architecture may also be made available to allow per-
formance optimizations. Our implementation of flex split and flex merge rely on such
functions. In particular, the flex split implementation given in Algorithm 1 uses the
avail() function that returns how much buffering space is available in the next core’s
buffer.2 If the programmer does not use avail() to check the buffering availability of
its output channels at runtime, then the filter will automatically stall whenever there
is not sufficient space for the data to be sent on any of its output channels. Instead,
using avail() to check the available space on a channel allows the programmer to dy-
namically send only the right amount of data to that channel and then proceed to the
next instruction without stalling the filter. For instance, to avoid stalling when there is
not enough space to send the entire block to f ’s primary copy, flex split sends exactly
the amount of data equal to avail(out0) to out0. Then, the rest of the data is sent to
f ’s secondary copy without calling avail() on this channel but relying instead on the
underlying backpressure mechanism to regulate the stream out1. In our experience,
relying on the implicit backpressure of the channel instead of explicitly checking avail()
on out1 tends to produce better results, possibly because the leftover portion of the out-
put stream can move forward faster to the filter’s secondary copy in the presence of a
temporary input buffering shortage.

4. MODEL FOR FLEXIBLE FILTERS

When exploring the search space for a good mapping, the performance for new map-
pings can be evaluated through either experimentation or simulation. Empirically
implementing and testing a stream application on a target multicore platform can be
very time consuming. The implementation is challenging for several reasons, including
the usage of synchronization primitives and also low-level memory management such
as direct memory access operations and data alignment. Moreover, most multicore plat-
forms still lack sophisticated debugging tools, which further increases the time to de-
sign and test an application. For these reasons, a performance model may be preferable

2Though we refer specifically to the avail() function of the Gedae language, any stream language that exposes
backpressure will provide a similar function.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

45:12 R. L. Collins and L. P. Carloni

Fig. 12. Example of a stream program. Fig. 13. The stream program of Figure 12 repre-
sented as a Petri net.

over actual experiments to facilitate rapid design-space exploration of different filter
mappings. In this section, we describe the performance model we used for testing the
flexible filter design methodology.

The model is based on the Petri nets model of computation [Petri 1962]. Petri nets are
directed bipartite graphs with two kinds of nodes, transitions and places. Transitions
may only be connected to places, and vice versa. A place is a container for tokens
and starts with an initial marking, denoting how many tokens it initially contains. A
transition is a node that connects places to each other and is able to fire, consuming
tokens from each of the places on its incoming arcs and producing tokens on each of its
outgoing arcs. A transition is only enabled to fire when all of the places on its incoming
arcs have a sufficient number of tokens. Each arc is assigned a weight corresponding to
the number of tokens that are produced or consumed during one firing event. The rate
of production/consumption of tokens by the actors of a Petri net can be used to model
the data-processing throughput of the components of a computing system. In addition
to these constraints, we make the following assumptions.

—Firing semantics are discretized over time steps, and all transitions enabled at a
given time step will fire.

—When nondeterminism is present in the graph (i.e., more than one transition could
consume tokens from the same place, but the firing of one transition would preclude
that of others), the transitions follow a round-robin priority schedule.

—Communication latency between cores is uniform across the system and is a function
of the following message size.

latency = α + β ∗ message size, (1)

where profiling of the target architecture determines the α and β factors.
—We assign the same memory capacity μ to each core ci.

We now walk through the modeling of an example stream program, compositionally
building the implementation constraints with modular constructs, including the map-
ping of tasks to cores, data buffering, communication latency, and flexibility. Figure 12
illustrates a simple example of a stream program consisting of five computational tasks
which are composed with pipelined intertask communication. Each filter corresponds
to a Petri net transition (transitions are shown as rectangles, while places are large
empty circles, and tokens are small filled-in circles within the places). The execution
time, e, of a transition corresponds to the measured or estimated execution time of the
filter on the target hardware, and when a transition fires, it will not produce tokens
until e time steps have passed. Since we evaluate throughput by simulation of the
graph, irregular firing patterns are easily simulated by varying the execution time
of a transition. Pipelined communication paths and dependencies are illustrated as
directed edges in the figures, and places with an initial marking of zero are inserted
between transitions. Figure 13 illustrates the full set of places and arcs in the Petri
net representation of this example. In the case of feedback loops within the stream
program, it is necessary to insert tokens so that the Petri net can make progress. A
minimum of one token must be present in the initial marking of every cycle in the

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

Flexible Filters in Stream Programs 45:13

original graph, but more may be inserted depending on the initialization of filters in
the real program.

4.0.3. Mutual Exclusion. To capture the fact that each core only works on one filter at
a time, mutual exclusion (mutex) constructs are added for all filters co-mapped to the
same core. A mutex construct consists of a place initialized with one mutex token, such
that a filter must consume this token in order to fire and will not return the token
until it is done executing. Figure 14 adds a mutex construct between filters a and b.
Our simulator enforces a round-robin priority scheme when more than one filter is
simultaneously enabled but requires the same mutex token.

4.0.4. Data Buffering in Pipeline Communication. When two neighboring (pipelined) filters
are co-mapped on the same core, data may be passed between these filters via in-
place buffering (i.e., in the core’s local memory) and does not incur additional storage
cost. Consequently, there is never backpressure due to buffering between co-mapped
neighbors. However, when neighboring filters are not co-mapped, a data buffer of finite
size is maintained between them. We model backpressure, which is related to the
available buffer space, by adding a backwards arc and place between tasks. The place
is initialized with q tokens for a buffer of q size. The figures of this section follow
the convention of representing backpressure edges as dashed lines. In Figure 15, four
backpressure edges are added among filters b, c, d, and e. In this example, all back edges
have the same number q of tokens, though uniform buffer sizing is not mandatory.

4.0.5. Communication Latency. The model incorporates the cost of communication
through additional transitions, shown as darkened rectangles in Figure 16. These
transitions add additional latency based on the size of data being passed and on the
execution time of the tasks that follow them. The cost of pipeline communication may
be hidden when the data movement is overlapped with computation. This is known as
double buffering, a popular technique to optimize the execution of stream programs on
multicore architectures [Chen et al. 2007]. However, if the execution time of a filter is
relatively low compared to the latency of communication, the communication overhead
may not be hidden. Notice that Figure 16 imposes mutual exclusion constraints on the
communication transitions. The latency of these transitions corresponds to the com-
munication overhead which is not hidden through double buffering. Multiple incoming
communication streams do typically overlap, such as the two incoming communication
transitions of filter e. In this case, it is not necessary to add a mutex loop to the second
communication transition. Notice that the backpressure arcs bypass the communica-
tion overhead. This reflects the difference in latency between sending a block of data
and a control message. Depending on the hardware platform, the properties of commu-
nication latency and how it changes with data size may vary; example communication
latencies for the Cell processor are discussed in Section 5.4.2.

4.0.6. Flexibility. Flexible filters are modeled with the flex split and flex merge struc-
tures shown in Figure 17. (For clarity, places with an initial marking of zero and mutex
loops to communication transitions are omitted from the rest of the figures.) The con-
struction of flex split has two transitions (shown shaded gray in Figure 17), one with an
execution time of zero and one with a small positive execution time, ε. The difference
enforces a permanent priority of the original copy of c over c f lex. Our implementation
of flex merge buffers incoming data from c and c f lex separately (see Section 3). The per-
formance model abstracts this into a shared backpressure place where both tasks may
consume tokens from the buffer. The overhead in latency and communication cost of
flex split and flex merge is added to the flex merge transitions (labeled v in Figure 17).
Figure 18 depicts the overall model representation of the program from Figure 12,
including mutual exclusion, buffering, communication overhead, and flexibility.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

45:14 R. L. Collins and L. P. Carloni

Fig. 14. Modeling mutual exclusion.

Fig. 15. Modeling backpressure.

Fig. 16. Modeling communication overhead.

Fig. 17. Modeling flex split and flex merge.

Fig. 18. Overall Petri net performance model
representation of a stream program.

5. EXPERIMENTS

In this section, we evaluate flexible filters over several benchmarks on the Cell BE
platform and then compare the application throughput observed in the experiments to
the throughput derived by the flexible filter model presented in Section 4.

We performed all of our experiments on a Sony PlayStation3 (PS3) which hosts
one Cell BE processor [Nanda et al. 2007]. The Cell architecture is a heterogeneous
multicore system-on-chip originally designed for high-performance embedded appli-
cations [Kahle et al. 2005; Pham et al. 2005]. It features one PowerPC processing
core called the PPU, eight synergistic SIMD processing units called SPUs, and the
Element Interconnect Bus (EIB), an on-chip communication network capable of sus-
taining 205 GB/s of data transfers. Each SPU core has a 256KB local memory that
is shared between code and data. The Cell processor is a good architecture for test-
ing the performance of flexible filters since it exposes the trade-off between program
code and data buffering when we make filters flexible. Because the PS3 architecture
enables only six of the eight SPUs, this is the maximum number of cores used in our
experiments.

To program the Cell, we took advantage of Gedae, a dataflow language that also
provides an abstraction of the communication layer for our implementation by han-
dling low-level details like direct-memory access (DMA) alignment and double buffer-
ing [Barnes et al. 1993; Lundgren et al. 2005]. Gedea provides a fully dynamic model
for stream programming where stream filters can have either fixed or dynamic rates
of data I/O. Gedae’s API contains functions to implement communication channels,
including an avail() function that gives information on how much space is available in
a channel’s input and output buffers.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

Flexible Filters in Stream Programs 45:15

Table II. Suite of Benchmark Applications to Test Flexible Filters

Benchmark Name Field Description
Constant False Alarm
Rate Detection (CFAR)

Signal Processing From the HPEC benchmark suite, CFAR identifies
targets in a stream of incoming data given a noisy
background, using an adjustable threshold value that
changes based on the background noise so that the
false alarm rate is constant [Haney et al. 2005].

Dedup compression Information Theory From the PARSEC benchmark suite, Dedup is a
pipeline compression algorithm that breaks a file
up into blocks according to the Rabin fingerprinting
method and then compresses on a block-by-block ba-
sis, checking the hash of each block beforehand so
duplicate blocks are only compressed once [Bienia
et al. 2008].

DES encryption Security A block cipher algorithm.
JPEG encoder Image Processing Implements the baseline grayscale JPEG en-

coder [Gonzalez and Woods 2001].
Value-at-Risk (VAR) Finance Calculates the value-at-risk for a portfolio of stocks

(or other assets) averaged over a number of random
walks over a discrete number of time steps, assuming
that the stocks change at each time step according to
a random correlated set of moves .

Fig. 19. Block diagrams of benchmarks used for the experiments of Sections 4 and 5 together with their
mapping on the IBM Cell multicore processor (the nonflexible case).

5.1. Benchmark Applications

By examining real-world benchmark applications, including several libraries which
were incorporated into our implementations unmodified, we gain perspective on where
flexible filters are most helpful as well as insight into practical implementation con-
cerns. Table II lists several benchmarks that were implemented and tested with flexible
filters. Figure 19 shows block diagrams of the filters of each benchmark together with
how they are mapped to cores of the IBM Cell, and Figure 20 shows profile information
for the filters of each benchmark based on their implementation without flexibility. The
profiles represent the average execution time of each filter and is the value we use to
determine which filters are bottlenecks. In the VAR benchmark, where the complexity
of the Cholesky filter depends on the input size, the Cholesky filter profile represents
the time when the input size is 128 stocks. In each benchmark, we map filters only to
the SPU cores so that the testing environment is effectively homogeneous.

The Dedup, JPEG, and VAR benchmarks all include one bottleneck filter that is sig-
nificantly more computationally expensive than the others. For example, Figures 21(a)
and 21(b) show a Gedae trace table for the VAR benchmark before and after the

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

45:16 R. L. Collins and L. P. Carloni

Fig. 20. Profile of tasks for each benchmark.

Fig. 21. Gedae trace tables of the VAR benchmark. A core’s timeline is black when it is busy working on a
task. Green and red marks show send and receive events.

Cholesky filter has been made flexible. In the trace table, the black rectangles show
when a core is busy working on a task, and the smaller red and green rectangles show
send and receive events. In Figure 21(a), core 3, which is assigned the Cholesky filter,
is always working, while the other cores spend most of their time waiting for data to
arrive. In Figure 21(b), core 2 assists core 3 and reduces its load. Notice that the times-
pan is actually different in the two timelines. When flexibility is added, we found it
often necessary to reduce the overall data block granularity to reach optimal speedup.
Therefore, compute tasks are broken up more frequently by send and receive events in
Figure 21(b).

Table III reports the speedup gained in the benchmarks through the application of
flexibility in cases where a flexible filter is present. This speedup reflects the perfor-
mance gain compared to a parallel pipeline implementation. The DES benchmark is
an example where there is no bottleneck. Even though there is some variation in the
latencies of DES filters, once its eighteen filters are mapped to the six cores of the PS3,
the load becomes fairly balanced, and adding flexibility to one or more of the filters
does not benefit performance. In general, however, our results show that flexible filters

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

Flexible Filters in Stream Programs 45:17

Table III. Speedup Results for Benchmarks Where One Bottleneck
Filter is Made Flexible

Benchmark Input Data Speedup

CFAR

% targets/workload
7.3/16μs 1.45
7.3/32μs 1.39
7.3/63μs 1.47
1.3/16μs 0.82
1.3/32μs 1.06
1.3/63μs 1.27

Dedup
Rabin block/max chunk size

4,096/512 2.00
DES - (no speedup)

JPEG

image width × height
128 × 128* 1.31
256 × 256* 1.16
512 × 512* 1.25

VAR

stocks/walks/timesteps
16/1,024/1,024 0.98
32/1,024/1,024 1.34
64/1,024/1,024 1.56
96/1,024/1,024 1.54
128/1,024/1,024 1.55
160/1,024/1,024 1.81

*Individual benchmark images, each with different content.

provide speedup to an application whenever there is a bottleneck filter as long as the
relative cost of communication to computation is not too high.

In some cases, a better implementation may alleviate the bottleneck. However, in
reality, software is often designed using preexisting libraries. This was the case for the
Dedup benchmark in these experiments. Our Gedae implementation invoked the same
libraries as the original Dedup benchmark.3

When a filter is made flexible (one redundant copy) as described here, potential
speedup is limited to a factor of two compared to the original parallel performance (the
overall parallel speedup may be higher from pipelining). Flex split could be extended
to a three- or four-way split to take advantages of other available cores by increasing
the data-parallelism of the bottleneck filter mapping. However, a few caveats on higher
degree splits should be kept in mind: (1) in an architecture like Cell, where application
code and data occupy the same memory, there may not be room for additional code and
data buffers to accommodate the flexible filter, even if a core is not as busy with com-
putation; (e.g., the hash table filter in the Dedup benchmark is not compute-intensive,
but it is memory-intensive, and the less space available for building the table, the more
times the downstream and compute-intensive compress filter must execute); (2) the
pipeline nature of stream applications forces dependencies between the buffers of dif-
ferent filters, and adding extra channels within the stream may place higher buffering
burdens on those parts of the stream graph.

Although in some cases, speedup is ideal, as with the Dedup benchmark in our ex-
periments, it should be noticed that adding flexibility may not always achieve a full 2X
speedup even if the bottleneck filter is much more expensive than its neighbors. The

3The hash table library required a minor modification in one of its constants so that the table would be
guaranteed to fit within an SPU’s local memory.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

45:18 R. L. Collins and L. P. Carloni

overhead of communication and changes in data block granularity required by flexi-
ble filters are additional costs of flexibility that can impact the performance speedup
gained. Going by the profiles, we can sketch out the ideal flexible filter speedup based on
the bottleneck filter and its immediate upstream neighbor. Consider the JPEG bench-
mark, where the DCT and quantize filters have execution times of 859 and 5,550 μs,
respectively. The ideal throughput is approximately 2

859+5550 tokens per microsecond.
Compared to the throughput of quantize (1

5550), this is a speedup of approximately 1.73.
Since the maximum observed speedup for the JPEG benchmark was only 1.31, over-
head had a large impact for this benchmark. On the other hand, the ideal throughput
estimate for the VAR benchmark (for an input size of 128 stocks) is 1.65, which is closer
to the observed speedup of 1.55. Section 5.2 evaluates the impact of communication
overhead on the CFAR benchmark in more detail.

5.2. Balance of Communication vs. Computation

This section explores the balance of communication and computation with respect to
the speedup gained by adding flexibility to an application. Adding flexibility to a stream
filter typically adds more communication overhead compared to the original pipeline
implementation, because flex split and flex merge require additional buffers, which re-
duce the space per buffer available on the cores. This may translate to data blocks with
fewer data tokens and thus slightly higher communication overhead. There is also ad-
ditional data movement between the buffers of the filter and flex split and flex merge,
even when some are co-located on the same core. The experiments in Figure 22 syn-
thetically vary the latency of the Cholesky and BoxMuller filters in a subset of the
VAR benchmark. By increasing the execution time of the filters while the relative ratio
between them stays the same, these tests examine how the speedup changes as the
relative cost of communication and computation changes. The flexible copy of Cholesky
is mapped to the same core as BoxMuller, and the latency of Cholesky is approximately
three times that of BoxMuller so that the optimal speedup in any case possible is about
50% (shown with a dashed line in Figure 22). The speedup approaches 50% as the
computation cost of the filters becomes very large, overshadowing the cost of commu-
nication. At the other end of the spectrum, speedup drops off as the execution time of
the bottleneck filter, Cholesky, is reduced. When the execution time of the Cholesky
filter is less than 560 microseconds, no improvement is observed. The point at which
speedup tapering-off occurs in this benchmark is a result not only of the execution
latency of the bottleneck filter, but also of the data block size (vector of 128 floats) and
task granularity (3 data blocks in the flexible case, 50 data blocks in the nonflexible
case).

5.3. Adapting to Data-Dependent Flow

One of the strengths of flexible filters is that they can adapt load dynamically at runtime
when there are data-dependent spikes of activity that may cause temporary bottlenecks
in the flow of execution. The CFAR benchmark provides an example to explore data-
dependent flow volume. As shown in Figure 20(a), all filters of CFAR have a relatively
lightweight execution time with respect to the communication overhead, and initially,
the program did not benefit from the addition of flexibility. In particular, the find
targets filter in our original implementation does no additional work after a target
is detected, and so has relatively constant execution time regardless of the content
of the data stream. However, in practice, it is possible that once a target is found,
additional processing, such as target classification and tracking is needed [Novak et al.
1997]. To capture this fact, we add an additional synthetic workload to find targets
every time a target is detected in the CFAR experiments reported in Table III. Since

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

Flexible Filters in Stream Programs 45:19

Fig. 22. Speedup as the relative cost of a bot-
tleneck filter increases with respect to the cost
of communication.

Fig. 23. Histogram of workload per 114 cells,
with % targets/workload = 7/32μs.

Table IV. Size of the Flexible Filter Model Graph Compared to the Original
Task Graph

Benchmark (Orig) Tasks (Orig) Arcs Transitions Places
VAR 5 4 9 11
VAR-flexible 5 4 15 21

the location of targets is data dependent and may not be uniformly distributed in the
stream, the workload of find targets may change dynamically, and spikes in the number
of targets detected could cause bottlenecks. The percent of targets detected is varied
by adjusting the sensitivity threshold for the input data sets provided by the HPEC
challenge [Haney et al. 2005]. Figure 23 plots a histogram of the time it takes to process
a data block of 114 cells, where 7% of the cells are targets, and an additional workload
of 32 microseconds is added for each target. The speedup gained by applying flexible
filters in this case depends both on the percentage of data tokens that require extra
processing and on the amount of extra work required. While it would likely be possible
to achieve similar results for any one instance of CFAR with a static stream split and
enough buffering, the strength of flexible filters is that the same implementation will
adapt to changing load in the same stream without modification (i.e., a stream that
switches from one distribution of execution times to another).

5.4. Model Experiments

For the remainder of the experimental section, we evaluate the compositional perfor-
mance model for flexible filters to understand how closely it approximates actual ex-
periment data collected. The experiments draw from the set of benchmarks described
in Section 5.1 as well as synthetic benchmarks generated with the Task-Graphs for
Free (TGFF) tool [Dick et al. 1998]. The performance on given instances is estimated
using a Petri-Net simulator that tracks the movement of tokens around the graph
as transitions become enabled and fire. As described in Section 4, the model adds
new transitions and arcs to the task graphs of applications. Table IV reports the total
number of transitions and places in the experiments for the VAR benchmark.

5.4.1. Mutual Exclusion. Figure 24 illustrates how effectively the model captures mu-
tual exclusion. The benchmarks tested are synthetic stream graphs generated by TGFF
and implemented with Gedae for the Cell processor. The mappings tested are illus-
trated in Figure 25. TGFF provides relative execution times of the different tasks.
For this experiment, they are set large enough so that the communication latency is
completely absorbed into double buffering in the communication channels. The commu-
nication buffers between the pipelined stream tasks are also set large enough so that

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

45:20 R. L. Collins and L. P. Carloni

Fig. 24. Estimated vs. actual
throughput testing mutual
exclusion.

Fig. 25. Estimated vs. actual throughput testing
alternative mapping options.

backpressure does not impact performance and the model of mutual exclusion is high-
lighted by the results. For all mappings, the flexible filter model’s simulated throughput
came within 2% of the throughput of the experimental model.

5.4.2. Communication Latency. Based on the Cell BE profiling experiments of Kistler
et al. [2006], we estimate constants α and β from Equation (1) and use the following
equation,

latency(nanoseconds) = 91 + 0.04 ∗ message size (bytes), (2)

to calculate the latency of a DMA data transfer between cores. The effective latency
added by a communication operation in a pipeline communication, accounting for dou-
ble buffering, may be calculated with Equation (3) where the computational operation
has execution time t.

pipeline latency = max(latency(message size) − t, 0). (3)

Equations (2) and (3) provide a lower bound for the latency of programs running on
the Cell written with the Cell SDK. In practice, we observed larger latencies in the
benchmarks run on the Cell on top of Gedae, which adds more runtime operations.
Latency is better approximated for Gedae applications using Equation (4).

latency(microseconds) = 56 + 0.15 ∗ message size (bytes). (4)

Note that the time units of Equation (4) are in microseconds instead of nanoseconds. It is
likely that there are some computational operations taking place in the Gedae runtime
environment that account for the increase, and there may also be some inefficiencies in
the implementation of our benchmarks (e.g., how data is packed into 128-bit chunks).

Profile data collected from the flexible filter benchmarks reported in Section 5.1
populate the flexible filter model for the following sets of experiments (with the gran-
ularity remaining fixed when flexibility is added in the model). Figure 26 shows the
comparison of the estimated and measured throughput for all of the VAR benchmark’s
input data sets when communication latency is not included in the model. The discrep-
ancy between the simulator and experiments is largest for the smallest portfolio size
which is equal to 16. Figure 27 plots the same data when communication latency is
included in the flexible filter model, using the communication latency estimate from
Equation (4). Most of the simulations are fairly accurate, with greater accuracy in the
data points which correspond to larger portfolio size. The benchmark requires steps
that grow with the square of the portfolio size. Thus, with the smaller portfolio sizes,
the cost of communication plays a greater role.

5.4.3. Flexibility. Figure 28 shows how well the simulator predicts trends of speedup
when flexible filters are applied to the stream programs for the CFAR, JPEG, and VAR
benchmarks. In most cases, the simulation accurately captures trends in performance
gains when flexibility is added to a benchmark. The CFAR benchmark results demon-
strate the largest differences when comparing the simulation and experiments. Notice

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

Flexible Filters in Stream Programs 45:21

Fig. 26. Estimated vs. actual throughput for
VAR (no communication latency.)

Fig. 27. Estimated vs. actual throughput for
VAR.

Fig. 28. Estimated vs. actual speedup across several benchmarks.

Fig. 29. Estimated vs. actual throughput for
CFAR.

Fig. 30. Estimated vs. actual
throughput for JPEG.

that CFAR presents challenges to simulation since it is a data-dependent benchmark
and its filters have a fairly light workload, and thus communication plays a bigger role.
Figure 29 and Figure 30 report the estimated and experimental throughput for the
CFAR and JPEG benchmarks that Figure 28 is based on.

6. RELATED WORK

Work Stealing. Flexible filters balance load using a version of work stealing for
stream programs. Work stealing is a technique used in a variety of parallel systems to
balance load by allowing idle cores to “steal” tasks from busy cores [Bender and Rabin
2002; Frigo et al. 1998; Kakulavarapu et al. 2001]. Most work-stealing techniques go
through stages of load evaluation, reassignment, and task migration, and their “victim”
processors (from whom tasks will be stolen) are selected randomly. In contrast, flexible
filters do not steal randomly but use the knowledge that neighbors of a bottleneck filter
will be idle because they depend on this filter to continue processing data tokens. Items
are never migrated between buffering queues of different processors; instead, when
queues become full, new items are redirected elsewhere. With flexible filters, tasks

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

45:22 R. L. Collins and L. P. Carloni

are not “stolen” per-se, but rather the dataflow is rerouted when a bottleneck arises.
Whichever filters have been mapped with flexibility determine the available routes for
data during runtime. Flexible filters are specialized to pipeline dataflow because the
pipeline stream dependencies narrow down good candidates for redundant-code place-
ment by exposing which tasks will become idle when another becomes a bottleneck.

Load Balancing with Pipeline Parallelism. Load balancing approaches specific to
stream programs can be categorized depending on whether the stream models rely
on data parallelism or pipeline parallelism (in practice both approaches can be used
simultaneously [Gordon et al. 2006]). In data parallel stream systems, there can be
many producers that feed many consumers, and there may be many instances of pro-
ducer and consumer functions [Arpaci-Dusseau et al. 1999; Ranger et al. 2007]. Load
balancing is achieved by routing data to different instances of consumers based on their
current load and productivity. On the other hand, in pipeline-parallel stream systems,
the data may need to flow through a series of pipelined filters, where each filter can
be viewed as a producer and consumer of input and output data. The order of filters
constrains the order in which tasks may be executed.

Flexible filters are a solution for load balancing in pipeline-parallel stream programs.
Many related works addressing this problem involve a central control and/or phases
where the compute nodes collect statistics which are used by the control to direct
reorganization [Fellheimer 2006; Shah et al. 2003; Xing et al. 2005]. The number of
filters is designed to outnumber the number of cores, and load balancing is typically
achieved by moving filters from nodes with heavy loads to nodes with lighter loads,
similar to work stealing. Flexible filters simulate filter migration by duplicating some
filters on the cores and invoking duplicates when the load becomes unbalanced.

Combining Static and Dynamic Scheduling. Several works explore the combination
of static and dynamic scheduling. There is a great variety in the possibilities in this
space. With respect to these works, if there is a scale based on the weight of the dynamic
online scheduler, flexible filters exists at the lightweight end of the spectrum. These
techniques complement each other and are combined for cumulative benefit.

Flextream is a compilation framework that combines static and dynamic scheduling
to adapt to changing resource availability. The static scheduler creates a schedule for
a virtual architecture, and the dynamic scheduler adapts at runtime to the actual
architecture where the program is running by adjusting filter mappings, schedule, and
memory allocation [Hormati et al. 2009].

Zhang et al. designed a stream programming framework for the Cell processor based
on StreamIt, which takes advantage of the Cell’s high memory bandwidth by main-
taining filter buffers in main memory instead of the individual cores’ local memories
and dynamically swaps filters to the cores at runtime based on the overall progress
of the program. In this framework, filters must declare their rates in advance, and
during static offline scheduling, the compiler creates a steady state schedule based on
the rates [Zhang et al. 2008].

Chen et al. perform load balancing for stream programs by compiling several alterna-
tive filter mappings [2005]. During runtime, the system can “context-switch” between
the alternatives based on the properties of the data. Flexible filters, on the other hand,
dynamically adapt to the current flow behavior of the system.

In the DIAMOND system, data tokens are forwarded based on threshold values in the
input and output queues [Huston et al. 2005]. Load balancing with flexible filters,
similarly, is an outcome of the state of the queues but differs in that flexible filters
balance the load based on backpressure. Moreover, DIAMOND is optimized for distributed
search which relaxes several constraints of stream programs, namely, that the filters

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

Flexible Filters in Stream Programs 45:23

need not be executed in a particular order because they are used to eliminate unwanted
data (rather than transform the data) and that data can be processed in any order.

Split and Join Operations. Many stream programming languages, such as StreamIt
include split and join nodes in their supporting library that are used to transform the
stream programs [Fellheimer 2006; Gordon et al. 2006; Thies et al. 2001]. Split and
join nodes in StreamIt can be used in two ways. First, the programmer may use them
while writing a new stream program. Second, the StreamIt compiler may introduce
split and join nodes to optimize the program by increasing data parallelism. This
accomplishes static load balancing because the dataflow is split at runtime regardless
of the loads on the various cores. In contrast, the Flexible-Filter flex split and flex merge
filters described in Section 3 are not intended for use when building a stream program
but are application-independent library filters that are introduced at a later stage
when flexibility is added. Dynamic load balancing in our approach is based only on
the insertion of flex split and flex merge. These are statically added during compilation
but achieve dynamic load balancing via the backpressure mechanism applied to the
dataflow.

Modeling Dataflow. The performance model for flexible filters described in Section 4
which uses Petri Nets is based on a combination of previous works, many of which
use synchronous dataflow (SDF) to model the flow of data. SDF represents a subset of
Petri nets with fixed rates of data production and consumption [Lee and Messerschmitt
1987]. Static analysis can be used to derive the maximum sustainable throughput of a
dataflow graph [Karp 1978; Dasdan and Gupta 1998]. An extensive body of literature
exists on throughput analysis of SDFs; here we mention a few that are relevant to this
research. The modeling of schedulers by Wiggers et al. [2007] and Staschulat and
Bekooij [2009] can be used to represent precise arbitrated communication channels,
and resource trade-offs are evaluated by Moreira et al. [2005] and Stuijk et al. [2006].

Modeling mutual exclusion by adding additional arcs to the SDF is an approach
used in several previous works [Poplavko et al. 2003; Moreira and Bekooij 2007]. In
particular, our compositional performance model for flexible filters is based on work
by Bonfietti et al., who modify the SDF to include multicore mapping by the addition
of arcs in order to create a cycle between filters mapped to the same core such that
the cycle has only one token since only a single filter can execute one the core at a
time [2010, 2009]. The mutex loops added to the flexible filter model allow arbitrary
order of execution of the filters, depending on when they are enabled. The technique of
modeling buffer space with the addition of back edges and tokens to the SDF has been
also applied in several previous works including [Poplavko et al. 2003; Hölzenspies
et al. 2007; Moreira and Bekooij 2007].

7. CONCLUSIONS

Stream processing is a promising paradigm for programming multicore systems for
high-performance embedded applications. Flexible filters combine static mapping of
stream program tasks with dynamic load balancing of their execution in order to im-
prove system-level processing throughput of the program when it is executed on a
distributed-memory multicore system as well as the local (core-level) memory utiliza-
tion. The flexible filters technique is scalable because it is based on distributed point-
to-point handshake signals exchanged between neighboring cores. Flexibility may be
applied to any stateless filter without any modification to the filter itself, and only
altering the overall stream program with the addition of the application-independent
auxiliary filters flex split and flex merge around the filter and its flexible duplicate. The
experiments in this article apply flexible filters to five stream benchmarks and achieve
performance speedup higher than 30% in most cases.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

45:24 R. L. Collins and L. P. Carloni

The flexible filter model performs well in matching the absolute throughput and
performance trends for different mappings and flexibility assignments. In future work,
more research to understanding how buffering and granularity impacts performance
in the system would be necessary, both experimentally and in the flexible filter model.
In these tests, the buffer sizes and granularity for each filter was selected manually
through trial and error. An algorithm for determining the best buffer and granularity
through the performance model could simplify and automate this design stage.

ACKNOWLEDGMENT

We would like to thank IBM for providing us with access to Cell-Blade servers and Gedae, Inc., for granting
us a software license through their university program.

REFERENCES

ARPACI-DUSSEAU, R. H., ANDERSON, E., TREUHAFT, N., CULLER, D. E., HELLERSTEIN, J. M., PATTERSON, D., AND YELICK,
K. 1999. Cluster I/O with River: Making the fast case common. In Proceedings of the 6th Workshop on
I/O in Parallel and Distributed Systems. 10–22.

BARNES, K. B., CHEN, Y. N., LUNDGREN, W. I., PRIDMORE, J. S., RIVERA, J. A., SCHAMING, W. B., AND TOOMBS, L. E.
1993. Data flow graph-programming environment for embedded multiprocessing. Proc. SPIE, Vol. 1957,
297–304.

BENDER, M. A. AND RABIN, M. O. 2002. Online scheduling of parallel programs on heterogeneous systems with
applications to Cilk. Theory Comput. Syst. 35, 3, 289–304.

BIENIA, C., KUMAR, S., SINGH, J. P., AND LI, K. 2008. The PARSEC benchmark suite: Characterization and
architectural implications. In Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques. 72–81.

BONFIETTI, A., BENINI, L., LOMBARDI, M., AND MILANO, M. 2010. An efficient and complete approach for
throughput-maximal SDF allocation and scheduling on multi-core platforms. In Proceedings of the
Conference on Design, Automation and Test in Europe. 897–902.

BONFIETTI, A., LOMBARDI, M., MILANO, M., AND BENINI, L. 2009. Throughput constraint for synchronous data
flow graphs. In Proceedings of the International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems. 26–40.

BUCK, I., FOLEY, T., HORN, D., SUGERMAN, J., FATAHALIAN, K., HOUSTON, M., AND HANRAHAN, P. 2004. Brook for
GPUs: Stream computing on graphics hardware. In International Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH). 777–786.

CHANDRASEKARAN, S., COOPER, O., DESHPANDE, A., FRANKLIN, M. J., HELLERSTEIN, J. M., HONG, W., KRISHNAMURTHY,
S., MADDEN, S., RAMAN, V., REISS, F., AND SHAH, M. 2003. TelegraphCQ: Continuous dataflow processing
for an uncertain world. In Proceedings of the Conference on Innovative Data Systems Research. 668–668.

CHEN, J., GORDON, M. I., THIES, W., ZWICKER, M., PULLI, K., AND DURAND, F. 2005. A reconfigurable architecture for
load-balanced rendering. In Proceedings of the SIGGRAPH/ EUROGRAPHICS Conference on Graphics
Hardware. 71–80.

CHEN, T., SURA, Z., O’BRIEN, K., AND O’BRIEN, J. K. 2007. Optimizing the use of static buffers for DMA on
a CELL chip. In Proceedings of the International Conference on Languages and Compilers for Parallel
Computing. 314–329.

COLLINS, R. L. AND CARLONI, L. P. 2009. Flexible filters: Load balancing through backpressure for stream
programs. In Proceedings ACM International Conference on Embedded Software (EMSOFT). 205–214.

COLLINS, R. L. AND CARLONI, L. P. 2010. Flexible filters for high-performance embedded computing. In Pro-
ceedings of the High Performance Embedded Computing Workshop.

DÄCKER, B. 2000. Concurrent functional programming for telecommunications: A case study of technology
introduction. In Licentiate Thesis, KTH Royal Institute of Technology.

DASDAN, A. AND GUPTA, R. K. 1998. Faster maximum and minimum mean cycle algorithms for system perfor-
mance analysis. IEEE Trans. Comput. Aid. Design Integr. Circuits Syst. 17, 10, 889–899.

DICK, R., RHODES, D., AND WOLF, W. 1998. TGFF task graphs for free. In Proceedings of the 6th International
Workshop on Hardware/Software Co-Design (CODES). 97–101.

FELLHEIMER, E. T. 2006. Dynamic load-balancing of StreamIt cluster computations. M.S. Thesis, Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

Flexible Filters in Stream Programs 45:25

FRIGO, M., LEISERSON, C. E., AND RANDALL, K. H. 1998. The implementation of the Cilk-5 multithreaded
language. In Proceedings of the SIGPLAN Conference on Program Language Design and Implementation.
212–223.

GEDIK, B., ANDRADE, H., WU, K.-L., YU, P. S., AND DOO, M. 2008. Spade: The system S declarative stream
processing engine. In Proceedings of the ACM SIGMOD International Conference on Management of
Data. 1123–1134.

GONZALEZ, R. C. AND WOODS, R. E. 2001. Digital Image Processing. Addison-Wesley Longman Publ. Co., Inc.,
Boston, MA.

GORDON, M. I., THIE, W., AND AMARASINGHE, S. 2006. Exploiting coarse-grained task, data, and pipeline paral-
lelism in stream programs. SIGOPS Oper. Syst. Rev. 40, 5, 151–162.

GRAEF, A., KERSTEN, S., AND ORLAREY, Y. 2006. DSP programming with Faust, Q and Supercollider. In Proceed-
ings of the Linux Audio Conference.

GUMMARAJU, J. AND ROSENBLUM, M. 2005. Stream programming on general-purpose processors. In Proceedings
of the International Symposium on Microarchitecture (MICRO). 343–354.

HANEY, R., MEUSE, T., KEPNER, J., AND LEBAK, J. 2005. The HPEC challenge benchmark suite. In Proceedings
of the High-Performance Embedded Computing Workshop.

HÖLZENSPIES, P. K. F., SMIT, G. J. M., AND KUPER, J. 2007. Mapping streaming applications on a reconfigurable
mpsoc platform at run-time. In Proceedings of the International Symposium on System-on-Chip (SoC
’07). 74–77.

HORMATI, A., CHOI, Y., KUDLUR, M., RABBAH, R. M., MUDGE, T. N., AND MAHLKE, S. A. 2009. Flextream: Adaptive
compilation of streaming applications for heterogeneous architectures. In Proceedings of the Interna-
tional Conference on Parallel Architectures and Compilation Techniques. 214–223.

HUSTON, L., NIZHNER, A., PILLAI, P., SUKTHANKAR, R., STEENKISTE, P., AND ZHANG, J. 2005. Dynamic load balancing
for distributed search. In Proceedings of the International Symposium on High Performance Distributed
Computing. 157–166.

KAHLE, J. A., DAY, M. N., HOFSTEE, H. P., JOHNS, C. R., MAEURER, T. R., AND SHIPPY, D. 2005. Introduction to the
cell multiprocessor. IBM J. Res. Develop. 49, 4-5, 589–604.

KAKULAVARAPU, P., MAQUELIN, O., AMARAL, J. N., AND GAO, G. R. 2001. Dynamic load balancers for a multi-
threaded multiprocessor system. Parallel Process. Lett. 11, 1, 169–184.

KAPASI, U. J., RIXNER, S., DALLY, W. J., KHAILANY, B., AHN, J. H., MATTSON, P., AND OWENS, J. D. 2003. Pro-
grammable stream processors. IEEE Computer 36, 8, 54–62.

KARP, R. M. 1978. A characterization of the minimum cycle mean in a digraph. Discrete Math. 23, 3, 309–311.
KISTLER, M., PERRONE, M., AND PETRINI, F. 2006. Cell multiprocessor communication network: Built for speed.

IEEE Micro 26, 3, 10–23.
KUDLUR, M. AND MAHLKE, S. 2008. Orchestrating the execution of stream programs on multicore platforms.

ACM SIGPLAN Not. 43, 6, 114–124.
LEE, E. AND MESSERSCHMITT, D. 1987. Synchronous data flow. Proc. IEEE 75, 9, 1235–1245.
LUNDGREN, W., STEED, J., AND BARNES, K. 2005. Integrating the hardware description with gedae’s single

sample language to generate efficient code. In Proceedings of the Electro Magnetic Remote Sensing
Defence Technology Centre Conference.

MCCOOL, M. D. 2006. Data-parallel programming on the Cell BE and the GPU using the RapidMind devel-
opment platform. In Proceedings of the GSPx Multicore Applications Conference.

MINSKY, Y. AND WEEKS, S. 2008. CAML trading - experiences with functional programming on Wall Street.
J. Functional Program. 18, 4, 553–564.

MOREIRA, O. AND BEKOOIJ, M. 2007. Self-timed scheduling analysis for real-time applications. EURASIP J. Adv.
Signal Process.

MOREIRA, O., MOL, J.-D., BEKOOIJ, M., AND VAN MEERBERGEN, J. 2005. Multiprocessor resource allocation for
hard-real-time streaming with a dynamic job-mix. In Proceedings of the IEEE Real Time on Embedded
Technology and Applications Symposium. 332–341.

NANDA, A. K., MOULIC., J. R., HANSON, R. E., GOLDRIAN, G., DAY, M. N., D’ARNORA, D. B., AND KESAVARAPU, S. 2007.
Cell/B.E. blades: Building blocks for scalable, real-time, interactive, and digital media servers. IBM J.
Res. Develop. 51, 5, 573–582.

NOVAK, L. M., OWIRKA, G. J., BROWER, W. S., AND WEAVER, A. L. 1997. The automatic target-recognition system
in SAIP. Lincoln Lab. J. 10, 2, 187–202.

PETRI, C. A. 1962. Kommunikation mit automaten (“communication with automata”). Ph.D. thesis, Darmstadt
University of Technology.

PHAM, D., ASANO, S., BOLLIGER, M., DAY, M. N., HOFSTEE, H. P., JOHNS, C., KAHLE, J., KAMEYAMA, A., KEATY,
J., MASUBUCHI, Y., RILEY, M., STASIAK, D., SUZUOKI, M., WANG, M., WARNOCK, J., WEITZEL, S., WENDEL, D.,

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

45:26 R. L. Collins and L. P. Carloni

YAMAZAKI, T., AND YAZAWA, K. 2005. The design and implementation of a first-generation CELL processor.
In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC). 184–185.

POPLAVKO, P., BASTEN, T., BEKOOIJ, M., VAN MEERBERGEN, J., AND MESMAN, B. 2003. Task-level timing models
for guaranteed performance in multiprocessor networks-on-chip. In Proceedings of the International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems. 63–72.

RANGER, C., RAGHURAMAN, R., PENMETSA, A., BRADSKI, G., AND KOZYRAKIS, C. 2007. Evaluating MapReduce for
multi-core and multiprocessor systems. In Proceedings of the Symposium on High Performance Computer
Architecture. 13–24.

SHAH, M. A., HELLERSTEIN, J. M., CHANDRASEKARAN, S., AND FRANKLIN, M. J. 2003. Flux: An adaptive parti-
tioning operator for continuous query systems. In Proceedings of the International Conference on Data
Engineering. 25–36.

STASCHULAT, J. AND BEKOOIJ, M. 2009. Dataflow models for shared memory access latency analysis. In Proceed-
ings of the International Conference on Embedded Software. 275–284.

STUIJK, S., GEILEN, M., AND BASTEN, T. 2006. Exploring trade-offs in buffer requirements and throughput
constraints for synchronous dataflow graphs. In Proceedings of the Design Automation Conference 899–
904.

STUIJK, S., GEILEN, M., THEELEN, B. D., AND BASTEN, T. 2011. Scenario-aware dataflow: Modeling, analysis and
implementation of dynamic applications. In Proceedings of the International Symposium on Systems,
Architectures, Modeling and Simulation. 404–411.

THIES, W., KARCZMAREK, M., GORDON, M., MAZE, D., WONG, J., HOFFMANN, H., BROWN, M., AND AMARASINGHE, S.
2001. StreamIt: A compiler for streaming applications. Tech. rep., MIT-LCS Technical Memo TM-622,
MIT, Cambridge, MA.

WIGGERS, M. H., BEKOOIJ, M. J. G., AND SMIT, G. J. M. 2007. Modelling run-time arbitration by latency-rate
servers in dataflow graphs. In Proceedings of the International Workshop on Software and Compilers for
Embedded Systems. 11–22.

XING, Y., ZDONIK, S., AND HWANG, J.-H. 2005. Dynamic load distribution in the Borealis stream processor. In
Proceedings of the International Conference on Data Engineering. 791–802.

ZHANG, D., LI, Q. J., RABBAH, R., AND AMARASINGHE, S. 2008. A lightweight streaming layer for multicore
execution. SIGARCH Comput. Archit. News 36, 18–27.

Received July 2011; revised January, April 2012; accepted July 2012

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 45, Publication date: December 2013.

