
A Graphical User Interface Toolkit Approach
to Thin-Client Computing

Simon Lok, Steven K. Feiner, William M. Chiong and Yoav J. Hirsch
Dept. of Computer Science, Columbia University

1214 Amsterdam Ave.
New York, NY 10027

flok,feinerg@cs.columbia.edu, fwmc14,yjh9g@columbia.edu

ABSTRACT
Network and server-centric computing paradigms are quickly re-
turning to being the dominant methods by which we use comput-
ers. Web applications are so prevalent that the role of a PC today
has been largely reduced to a terminal for running a client or viewer
such as a Web browser. Implementers of network-centric applica-
tions typically rely on the limited capabilities of HTML, employing
proprietary “plug ins” or transmitting the binary image of an entire
application that will be executed on the client. Alternatively, im-
plementers can develop without regard for remote use, requiring
users who wish to run such applications on a remote server to rely
on a system that creates a virtual frame buffer on the server, and
transmits a copy of its raster image to the local client.

We review some of the problems that these current approaches
pose, and show how they can be solved by developing a distributed
user interface toolkit. A distributed user interface toolkit applies
techniques to the high level components of a toolkit that are sim-
ilar to those used at a low level in the X Window System. As an
example of this approach, we present RemoteJFC, a working dis-
tributed user interface toolkit that makes it possible to develop thin-
client applications using a distributed version of the Java Founda-
tion Classes.

Categories and Subject Descriptors
C.2.4 [Networks]: Distributed Systems; D.3.3 [Programming Lan-
guages]: Language Constructs and Features; H.5.2 [Information
Interfaces and Presentation]: User Interfaces

Keywords
User interface toolkit, remote method invocation, client-server sys-
tems, network computing

1. INTRODUCTION
Few would argue that the explosive growth in the computer in-

dustry is not closely tied to the rise in popularity of networks and,
in particular, the Internet. In 1990, an average person purchased a
computer for running application software such as word process-
ing, spreadsheets, and perhaps a drawing program. Today, that
same person would undoubtedly purchase a computer to access the
Internet. However, while computing is heading in radically new
directions, the techniques used to present graphical user interfaces
have remained the same.

Copyright is held by the author/owner(s).
WWW2002, May 7–11, 2002, Honolulu, Hawaii, USA.
ACM 1-58113-449-5/02/0005.

The vast majority of user interfaces are written using visual com-
ponents (often calledwidgetsor controls) that are gathered together
in libraries that are usually referred to asuser interface toolkits[6].
The most popular toolkit is MFC (Microsoft Foundation Classes)
[33], which, as its name implies, is used to construct user interfaces
for the various flavors of Microsoft’s Windows operating system.
A more recent toolkit that is gaining popularity because of its abil-
ity to create cross-platform compatible graphical user interfaces is
JFC (Java Foundation Classes) [23]. Complementing these are the
more mature user interface toolkits built for the X11 Window Sys-
tem [43], such as Athena [32], Motif [35], and Tk [37].

A user interface toolkit provides an abstraction layer for the low-
level drawing and interaction routines made available to program-
mers by the graphics subsystem that is usually bundled with the
operating system. This abstraction allows programmers to quickly
create commonly used visual components, such as buttons, scroll-
bars, menus, and text fields. End users also benefit, since most
of the applications they run on a particular operating system will
have roughly the same “look and feel” because the applications are
all built out of components from the same user interface toolkit.
However, despite these advantages, the tight binding of the user
interface toolkit to the underlying graphics subsystem presents sig-
nificant challenges when creating distributed applications in which
the application logic execution and user interface presentation oc-
cur on different computers.

Many approaches have been researched academically and de-
ployed commercially to support a distributed computing paradigm
in which the network separates the presentation of the user interface
from the application logic. Phrases such as “server-centric comput-
ing,” [28] “network computing” [3, 14], “thin clients” [50, 44, 14],
“distributed presentation” [14], and “remote presentation” [41] are
prevalent in the literature. In the remainder of this paper, we first
discuss in Section 2, two approaches to thin-client computing that
are commonly used in both industry and academia: Web-based app-
plications and graphics pipeline interception. We then describe an
alternative, distributed user interface toolkits, in Section 3, and in-
troduce in Section 4 our distributed user interface toolkit, Remote-
JFC, describing how it addresses many of the issues that arise from
using existing systems. Next, in Section 5, we present a perfor-
mance comparison, and, in Section 6, conclude with some remarks
about the directions in which our research is heading.

2. THIN-CLIENT COMPUTING

2.1 Web-Based Approaches
One of the most widely deployed approaches to thin-client com-

puting uses HyperText Transfer Protocol (HTTP) [5] and Hyper-



Client
Frame

Buffer

Web
Browser

Application
Logic

Web
Server

HTML

Rendering Web
API

Client Server

Figure 1: The architecture of a Web-based application. The
application must be written with a special Web API (e.g., CGI
[8], ISAPI [20], NSAPI [36], ASP [1], PHP [38], or JSP [24])
to communicate with a Web server. HTTP is used to negotiate
the transfer of HTML data between the client Web browser
and the Web server. The Web browser then renders the HTML
onto the client frame buffer.

Text Markup Language (HTML) [4, 10] to interact with the server
and display document database, commonly known as the World
Wide Web. The popularity and wide availability of browsers that
provide the front-end to view HTTP/HTML content has brought
about the rapid development and deployment of applications that
are accessible only through this format. The architecture of an ap-
plication developed using a Web-based methodology is depicted in
Figure 1.

One severe limitation of a Web-based application that relies solely
on HTTP/HTML is the “pull-only” data transfer methodology. Such
applications are prevented from generating events and thus cannot
provide a rich user experience. For example, when a user executes
a search on a Web search engine, the engine must ideally complete
the search in its entirety within a few seconds of when the request
was made because the user is expecting an immediate response and
the engine cannot notify the user that better results have been found
after the initial page has been displayed. A second problem is that
HTTP is stateless, which makes it difficult for programmers to cre-
ate even a simplistic notion of persistence between page accesses.
In addition, the user interface toolkit (HTML forms [4]) is also ex-
tremely rudimentary, providing only a handful of the most com-
monly used components.

Many attempts have been made to address these problems, in-
cluding sending entire applications over HTTP (e.g., Java applets
[22]), designing browser “plug-ins” that interpret their own lan-
guage to provide a richer user experience (e.g., Macromedia Flash
and Shockwave [31]), creating a 3D world in which the user can
navigate (e.g., VRML [49]), and providing an application program-
mer interface (API) for storing persistent session identification data
(e.g., cookies [27]). All these attempts to address the problems with
HTTP/HTML give rise to a host of new problems.

Java applets raise numerous security concerns because HTTP is
used to transport executable code to the client. Although the byte
codes transmitted across the network are in compiled form, Java
decompilers are readily available that will allow any user to have
access to the source code of the application. In addition, the use of
Java applets typically violates the thin-client principle of not run-
ning any application logic on the client. Flash and VRML define

Client
Frame

Buffer

Viewer

Application
Logic

Virtual
Frame

Buffer

Pixel
Data

Pixel
Copying

UI Toolkit
API

Client Server

Figure 2: The architecture of a remote frame-buffer–based ap-
plication. The application is typically written using a standard
UI toolkit API (e.g., JFC [23], MFC [33], Tk [37], or Motif [35])
and renders onto a remote virtual frame buffer. The resulting
pixel data is transported across the network, using a propri-
etary protocol (e.g., ICA [9], RFB [34], or RDP [40]), to the
client viewer, where the image is then reconstructed and copied
into the client frame buffer.

richer languages that have been built with user interactivity in mind,
but suffer from the problem that mature browsers for anything other
than the Microsoft Windows desktop operating systems are gener-
ally not available. HTTP cookies raise numerous security concerns
because they permit the server program to write data to the per-
manent storage device on the client. In addition, HTTP cookies
have been the target of severe criticism due to a recent surge in
public awareness regarding privacy concerns when using the Inter-
net. These issues make HTTP cookies an unattractive method for
programmers to add server-side state to the HTTP protocol.

2.2 Graphics Pipeline Interception
A second approach to delivering applications in a thin-client en-

vironment that has been gaining popularity involves intercepting
rendering commands sent to the graphics pipeline. One simple way
to implement this is to create a virtual frame buffer in the RAM of
the server on which the application can render it’s GUI and then
transporting the resulting raster image to the client. A more com-
plicated implementation would try to send higher level commands
(e.g. draw a line from xi, yi to xj , yj ) whenever possible in order
to reduce network traffice.

In essence, this approach attempts to bring the server’s desktop to
the user and thereby permits a full range of user interactivity. Prod-
ucts such as Citrix MetaFrame [9], Insignia NTrigue [19], SCO
Tarantella [46], Graphon RapidX [16] and Symantec PC-Anywhere
[47] are among those that have been providing this type of function-
ality for many years as an extension to the underlying operating
system. A recent explosion in the popularity of this approach oc-
curred when AT&T released their cross-platform VNC [29] system
to the public free of charge. Microsoft has now made this capability
a standard part of their Windows 2000 and XP operating systems
[34]. The architecture of an application that employs the remote
frame buffer approach for presentation on a thin-client is displayed
in Figure 2.

Although the approach of intercepting the graphics pipeline ad-
dresses many of the problems with a Web-based approach that uses
HTTP/HTML, it also introduces a number of other problems. While



the Web-based approach using HTTP/HTML is capable of oper-
ating reasonably well over relatively low-speed modem network
links, the graphics pipeline interception approach demands high-
bandwidth connections. This is because transporting the virtual
frame buffer from the server to the client is essentially sending a
video stream of computer-generated graphics. Although the use of
advanced lossy video compression algorithms (e.g. MPEG [21])
has been proposed [40], none of the existing systems employ such
techniques. This is because real-time encoding of MPEG streams
usually requires special hardware that can only handle one or two
streams at a time, thereby eliminating the possibility of using the
remote frame buffer approach on a current shared server. In ad-
dition, the use of lossy compression techniques would introduce
unwanted compression artifacts into the display, reducing the sys-
tem’s usability, particularly when working with text and detailed
graphics.

Some systems (e.g. RDP-based Citrix Metaframe and Microsoft
Windows Terminal Services) attempt to reduce bandwidth consump-
tion by trying to intercept high level drawing commands. However,
this doesn’t necessarily result into better performance. For exam-
ple, if the GUI employs many image labels for buttons, the band-
width consumed by transferring the images every time the display
needs to be redrawn dwarfs everything else. In addition, these sys-
tems often employ other optimizations such as not transferring dis-
play updates that are thought to be “unimportant” (e.g. animated
cursors). Although this technique appears to reduce the the band-
width consumed independent of all possible factors, it almost al-
ways causes the display on the client to not be updated properly,
ultimately resulting in user frustration. Users that experience this
will often start moving the mouse or windows around in order to
force the system to update the display. This can actually result in
more bandwidth being consumed than if the system had simply sent
the updates using the more naive approach. Finally, these systems
suffer from the overhead of bringing the entire user’s desktop from
the server to the client rather than just the application.

The existence of server-side state and asynchronous event gen-
eration by the server permits the graphics pipeline interception ap-
proach to provide a rich level of user interactivity that a Web-based
approach using HTTP/HTML cannot. However, there is a practi-
cal limitation caused by network latency. Figure 4 shows a typical
client “viewer” (the graphics pipeline interception analogue of the
Web browser) that displays two mouse pointers. One mouse pointer
represents where the cursor should be pointing, and is tied to the
local mouse. A second mouse pointer, which typically lags behind
the first, displays where the mouse position is on the server. When
a simple remote frame buffer system is run on anything other than a
high-speed LAN connection, there is always a noticeable difference
in position between the client (virtual) and server (real) mouse po-
sitions. More advanced graphics pipeline interception implemen-
tations (e.g. RDP systems) generally do not have the same mouse
pointer lag issue, but still stuffer from a similar problem when a
window is dragged. On a slow modem link, this makes highly in-
teractive user interfaces difficult to control, and, in extreme cases,
may even make the system unusable.

One important advantage of graphics pipeline interception sys-
tems are that they tend to be binary-compatible with a large set
of existing software packages intended for use with desktop com-
puters. Many industrial and academic institutions employ graphics
pipeline interception systems in production environments to pro-
vide users with thin-client access to some subset of the enterprise
or campus computing infrastructure. By intercepting graphics rou-
tine at the operating system level, little or no programming effort is
involved in deploying the system.

(a)

(b)

Figure 3: A screen shot that shows (a) the Windows XP RDP
implementation and (b) the AT&T reference VNC implemen-
tation not refreshing the screen properly. This can sometimes
prevent the user from actually being able to do accomplish the
task that they set out to do. Users will often try to randomly
move their mouse or windows around in an attempt to force
the screen to update, resulting in a large amount of bandwidth
being consumed.



Figure 4: A screen shot depicting the latency between the actual
position of the local mouse pointer (the small black square with
a white outline near the center of the image, just above and to
the right of the “xterm” window) and the position of the virtual
mouse on the server (the arrow icon to the right of the “xclock”
window) that is typically experienced in a remote frame buffer
thin-client system. This screen shot was taken using the AT&T
VNC [40] system with a 56K modem connection between the
client and server.

3. DISTRIBUTED UI TOOLKITS
Distributed user interface toolkits address the issues that arise

when employing Web-based HTTP/HTML and remote frame buffer
approaches by allowing a server to manipulate user interface toolkit
components directly on the client. The server can create, mod-
ify, and delete any of the components available in the distributed
toolkit as if it were working with a local application. One might
think of this as an implementation of a remote frame buffer with
an extremely efficient, lossless compression algorithm. Instead of
sending pixel data rendered on the server across the network, the
distributed user interface toolkit sends the semantics necessary to
render that pixel data on the client. In addition, since the mouse
is handled locally on the client, there is no additional perceived
latency beyond that caused by the processing that is necessary to
service users requests when the application is running locally.

The concept of creating architectures and toolkits that support
the development of distributed applications is not new. For exam-
ple, the X Window System [43] and the Network extensible Win-
dow System (NeWS) [15] were built with the network in mind, al-
though they transport low-level drawing commands. If a high-level
user interface toolkit is used with X or NeWS, it appears as if the
high-level commands are being transported across the network, al-
though this is not what is happening. Under X, the high-level user
interface toolkit commands (e.g., draw button) are actually trans-
lated into low-level commands (e.g., lines and rectangles) before
being transmitted across the network. In addition, the X Window
System stores state on the computer that is presenting the output
(unfortunately called the server). Consequently, it is very difficult
to “share” X Window System sessions between multiple users, and
if the X Window System server (running on the client computer)
fails, the user session is lost. It is for these reasons that a remote
virtual frame buffer system, such as VNC, is often employed to
transport an X Window System desktop from a UNIX server to an

Client
Frame

Buffer

Viewer
JAVA VM

Application
Logic

Server
JAVA VM

RMI

Rendering RJFC
API

Client Server

Figure 5: The architecture of an application written using the
RemoteJFC distributed user interface toolkit. The RemoteJFC
(RJFC) API closely parallels the standard JFC user interface
toolkit API. RJFC commands are interpreted on the server
Java VM and transported across the network using RMI. The
client Java VM then translates the RJFC RMI command se-
quences into standard JFC calls for rendering on the client.

X Window System viewer running on a UNIX workstation, rather
than relying on the built-in networking facilities of X.

Many research efforts have attempted to make systems more net-
work aware. For example, the mobile computing community has
looked into modifying the operating system to support network-
aware applications [25, 26]. The collaborative computing commu-
nity has also contributed numerous architectures and toolkits [12,
17, 39, 45]. In addition, the user interface community has been
exploring how the network can enhance the functionality of user
interface toolkits [18, 2], while the virtual reality research commu-
nity has developed distributed user interface toolkits for 3D graph-
ics [42, 30]. These architectures and toolkits are all designed with
the premise that most, if not all, of the application logic executes
on the client.

4. THE REMOTEJFC TOOLKIT
To determine how a distributed user interface could be constructed,

and to explore the advantages that it could make possible, we have
developed RemoteJFC (RJFC). Our primary goal for RJFC was to
create an API that tracks the design pattern and functionality of
the standard JFC API closely as possible, with the exception that
the presentation displays on a remote client, rather than the local
frame buffer. To accomplish this, we needed to create a well-
defined API and corresponding software development kit (SDK),
establish a protocol for client-server communication, and develop
a Java-based viewer that provides a graphical context on the client.
Figure 5 shows the architecture of a RJFC application.

4.1 RJFC API
When building the RJFC system, we wanted to make sure that

the system would be appealing to users. To accomplish that goal,
we concluded that we would need to provide an API that was both
familiar and rich in functionality. In other words, we need to emu-
late as much as possible of the JFC user interface toolkit provided
by Sun. Like many contemporary user interface toolkits, the JFC
API is extremely complex, with over 600 individual source files,
each providing between 10 to 100 methods for the programmer to



public void registerDisplay(RJFrame d,
RJFCFactory f) throws RemoteException {

RJTextArea TheArea = f.getRJTextArea(20,20);
TheArea.addKeyListener(new

TextAreaKeyListener());

RJScrollPane Pane = f.getRJScrollPane();
Pane.setViewportView(textArea);

RJTextField StatusBar = f.getRJTextField();
StatusBar.setEditable(false);

RContainer rc = d.getContentPane();
rc.setLayout(new BorderLayout());
rc.add(StatusBar, BorderLayout.SOUTH);
rc.add(CreateMenu(), BorderLayout.NORTH);
rc.add(Pane, BorderLayout.CENTER);

}

(a)

public MyJFrame() extends JFrame {

JTextArea TheArea = new JTextArea(20,20);
TheArea.addKeyListener(new

TextAreaKeyListener());

JScrollPane Pane = new JScrollPane();
Pane.setViewportView(textArea);

JTextField StatusBar = new TextField();
StatusBar.setEditable(false);

Container c = this.getContentPane();
c.setLayout(new BorderLayout());
c.add(StatusBar, BorderLayout.SOUTH);
c.add(CreateMenu(), BorderLayout.NORTH);
c.add(Pane, BorderLayout.CENTER);

}

(b)

Figure 6: A comparison of (a) the RemoteJFC API with (b)
the Sun JFC API. The registerDisplay method executes
on the server and creates a simple “notepad” application that
is displayed on the client using the RemoteJFC API. The
MyJFrame constructor creates the same notepad application
in a desktop (non-network-aware) environment using the JFC
API. Note the one-to-one substitution of RJFC components for
JFC components. In addition, where the JFC code callsnew
to instantiate a component, the RJFC code makes a remote
method invocation to anRJFCFactory object that resides in
the viewer’s memory space. The RemoteJFC API could have
been designed with calls tonew, but that would result in a per-
formance degradation as components would need to be serial-
ized and transported across the network. The syntax of RJFC
and JFC is sufficiently similar that we believe a code generator
could be written to convert any existing desktop JFC applica-
tion to a RJFC thin-client implementation.

use. It would be a daunting task for a small research team to write
wrappers by hand for all of this code. Since the source code to JFC
is readily available, we created a code generator, using the Java Do-
clet API [11], that reads in the JFC source and produces RJFC for
each JFC element. This approach allows us to generate different
versions of our RJFC system for various implementations and re-
leases of the Java SDK, making it possible to handle a broad range
of supported JVMs.

An example of code written using the RJFC API is shown in
Figure 6. We tailored our code generator so that the resulting RJFC
API is sufficiently similar to JFC that a programmer fluent in creat-
ing applications with JFC need only know that a capital “R” must
be prepended to the name of the toolkit component being refer-
enced. Although we could have defined component creation using
the “new” keyword, we use a RJFCFactory object for performance
reasons (discussed in Section 4.2).

Manipulation of the RJFC components (e.g., changing the text
of a label) and association of event handlers are syntactically iden-
tical to the JFC API. Although each RJFC component has an actual
associated JFC component that lives in the viewer’s memory space,
the programmer interacts with the display solely by making calls on
the RJFC components. The actual JFC components that are used to
create the display on the viewer are hidden from the programmer.
Since RJFC components track the JFC API and follow the Sun Java
Beans standard, they may also be easily used in graphical user in-
terface builders such as Sun Forte for Java [13], Borland JBuilder
[7], and WebGain VisualCafe [48].

4.2 RJFC Protocol
When a RJFC component is instantiated, modified, or deleted

on the server, the RJFC toolkit transparently informs the attached
RJFC viewer of the event that has occurred using remote method
invocation (RMI). The RJFC viewer then reacts to this by perform-
ing the exact same action on the viewer that would have occurred
on the server if the JFC API were used. For example, if the server
requests that a new RJButton be created, the RJFC toolkit would
transmit that command to the viewer Java VM. The viewer Java
VM then creates a JButton using the standard JFC API, thus caus-
ing the actual button to be rendered on the client. Similarly, when
the RJFC server installs an event handler into a RJFC component,
the server uses RMI to tell the viewer to install a proxy JFC event
handler into the associated JFC component that is actually being
displayed.

One key performance optimization in the RJFC Protocol is the
use of a RJFCFactory to create JFC components in the viewer’s
memory space while returning a RJFC reference to the server. The
RJFCFactory is a remotely accessible object (it extends Unicast-
RemoteObject and implements an interface that extends Remote)
that lives in the viewer’s memory space. When a viewer connects
to a RJFC server, the viewer passes a reference to the RJFCFac-
tory into the display registration method implemented on the RJFC
server. Once the RJFC server has a reference to the RJFCFactory,
the server can create JFC components that live in the viewer’s mem-
ory space and receive a remote reference to the associated RJFC
wrapper object rather than creating an object in the server’s mem-
ory space, sending the serialized object to the client and then send-
ing a remote reference to the wrapper object back to the server. Our
measurements show that a RMI call consumes five Ethernet pack-
ets, whereas sending a serialized JButton consumes more than ten
times that number.

The RJFC protocol uses a similar approach to accomplish event
handling. When an event handler is installed into a RJFC compo-
nent on the server, RJFC uses RMI to send a simple message that



Figure 7: A Microsoft Windows desktop with the RJFC viewer
accessing a remote notepad application. The window on the
left allows the user to enter a RMI URL to select a server and
application to display in the viewer window on the right.

tells the viewer to install a proxy event handler in the associated
JFC object. The proxy event handler makes a RMI call to the server
whenever a new event is generated on the client side. The actual se-
mantics of the event handler as defined by the application logic is
executed on the server when the server receives the RMI call from
the client. Server-generated events are supported by simply hav-
ing the RJFC server retain the reference to the RJFC component
returned by the RJFCFactory after the display initialization is com-
pleted. With a remote reference to the RJFC component, the server
is free to asynchronously generate events at will.

4.3 RJFC Viewer
The RJFC viewer, shown in Figure 7, provides a context in which

the RJFC server application can manipulate the client frame buffer.
The viewer is a hand-coded application that uses JFC and emulates
the functionality found in a typical thin-client system. The user of
the system invokes the viewer, at which point a JFrame window is
created with a form that allows the user to connect to a server. Once
a connection is established, another JFrame window is created for
the server to manipulate remotely. The server may also request
that additional windows be created by asking for dialogue boxes
using the RJFC API. Figure 8 shows screen shots of several small
applications being run in the RJFC viewer.

5. PERFORMANCE COMPARISON
The Web-based thin-client approach using HTTP/HTML con-

sumes very little bandwidth because HTML represents a presen-
tation’s semantics at an extremely high level. While a relatively
small amount of information is transported, this approach suffers
from the problem that HTTP was not designed for implementing
remote applications, but rather for sharing static data. In contrast,
the remote frame buffer approach operates on the premise that com-
patibility with existing applications is paramount at the expense of
network bandwidth. This is because many of the remote frame
buffer implementations were designed for corporate or lab network
environments whose administrators are trying to move users away
from desktop computers to a thin-client subsystem with a lower
total cost of ownership.

The RemoteJFC distributed user interface toolkit attempts to com-
bine the benefits of both approaches without their performance and
usability issues by transmitting the high-level semantics of a dis-
play using a standard toolkit API. Intuitively, one would expect the
network bandwidth consumed by RJFC to be closer to that of the
Web-based approach using HTTP/HTML than that of the remote

(a) (b)

(c)

(d)

Figure 8: Screen shots of (a) the RJFC viewer displaying (b) a
notepad demo, (c) a chat room demo, and (d) a virtual environ-
ment control system. The RJFC system is capable of providing
the rich user interaction that one would expect from a local
application, including dialog boxes, mouse-over detection and
server generated events.



Event VNC To Srv VNC To Client RDP To Srv RDP To Client RJFC To Srv RJFC To Client
Connect 724613 12553 12261 27343 69181 56623
Log In 0 0 82152 4687 0 0
Open Application 39607 9364 24613 4509 0 0
Idle (1 min, static mouse) 0 0 12660 6200 0 0
Idle (1 min, anim. mouse) 0 0 24810 9217 0 0
Idle (1 min, no mouse) 0 0 6390 2200 0 0
Idle (1 min, full screen) 0 0 1709 2960 0 0
Typing (1 min, 382 chars) 377159 135392 79617 74304 0 0
Cut Paragraph 125969 38786 79618 74304 0 0
Paste Paragraph 91811 29430 1437 1899 658 461
Copy Paragraph 153062 41224 2508 2979 295 460
Find in Paragraph 154306 40750 5157 2312 1390 1965
Save Document 187768 49384 10621 5684 1238 2004
New Document 60940 19498 1360 2123 689 875
Open Document 114686 25120 6590 3144 1423 1396
Resizing from full screen 741322 60056 180576 16185 0 0
Drag 1/4 size window 697433 64530 134016 212275 0 0
Drag mouse across screen 308324 99300 1471 3726 0 0
Tear down 9618 3006 1779 2097 1667 2210

Figure 9: A comparison of the number of bytes transmitted over the network by RJFC, RDP (as implemented in Windows 2000
Terminal Services) and VNC (the AT&T reference implementation) when simple operations were performed in a notepad application.
We determined that with VNC, the vast majority of the bytes being transmitted were caused by mouse movement. Therefore we had
an expert user perform the experiment to minimize the number of bytes sent. The VNC system was configured to use the standard
hextile encoding method for transmitting raster data between the server and client. It should be noted that the VNC system would
occasionally have difficulty knowing when to update the screen and would occasionally need to be “woken up” with mouse movements
that increased the amount of bytes transferred. A Web-based method using HTTP/HTML would not be able to provide the same
level of user interactivity and therefore was not included in the tests.

frame buffer approach, while permitting rich user interaction with-
out artificially introduced latency. Figure 9 is a comparison of the
bandwidth consumed by RemoteJFC and the AT&T VNC remote
frame buffer system.

All thin-client systems need some kind of software browser or
viewer that must reside in permanent storage on the client com-
puter. Because the Web-based approach and the RemoteJFC ap-
proach both transmit high-level information across the network, the
size of the client software package is much larger than that of the
VNC viewer. The size of a typical Web browser download is about
25 megabytes, as compared to the VNC viewer, which can be about
110 kilobytes. The RemoteJFC viewer lies somewhere in between:
the library adds 2.5 megabytes to a Java Runtime Environment,
which can vary in size from 3 to 15 megabytes. In addition, the
VNC viewer memory image when attached to an 800x600 desktop
computer consumes 1.5 megabytes of RAM, whereas both the Web
browser and RemoteJFC viewer require approximately ten times
that amount. This also results in faster startup times for the VNC
viewer than a Web browser or the RemoteJFC Viewer.

Overall, the remote frame buffer approach is much “thinner”
than the Web-based and RemoteJFC approaches and is capable of
running on less powerful hardware, but requires much more net-
work bandwidth to operate effectively.

6. CONCLUSIONS AND FUTURE WORK
We believe that the distributed user interface toolkit approach, as

embodied in RemoteJFC, represents a powerful competitor to the
existing methods of delivering thin-client applications to the user.
We are currently considering a number of possible directions in
which to extend our work.

One attractive possibility is the implementation of another Do-
clet API code generator to automatically convert desktop JFC ap-
plications to thin-client RemoteJFC applications. We will also at-
tempt to add new features to the RemoteJFC protocol. For example,
since our protocol is client-side stateless, it is possible to create a
collaborative groupware version of the RJFC toolkit. We would
then be able to compare our system directly with the rich body of
research in that area. In addition, we will consider augmenting the
RemoteJFC toolkit to support a hybrid client capable of handling
some events locally on the client while transmitting other events to
the server.

Finally, we believe that exploring how to optimize the RJFC pro-
tocol could provide insight into the information complexity of a
user interface. By knowing exactly how much information we are
transmitting across the network, we can gain a better understanding
of a user interface’s efficiency and how to improve it.

7. ACKNOWLEDGMENTS
This research is supported in part by NSF Grant IIS-98-17434

and gifts from Microsoft and Intel. Any opinions, findings, conclu-
sions, or recommendations expressed in this material are those of
the authors, and do not necessarily reflect the views of the NSF or
any other organization supporting this work.

8. REFERENCES
[1] An ASP you can grasp: The ABCs of active server pages.

http://msdn.microsoft.com/workshop/server/asp/ASPover.asp.
[2] D. Anderson. Experience with Flamingo: A distributed,

object-oriented user interface system. InConference
Proceedings on Object-Oriented Programming Systems,
Languages and Applications, pages 177–185, Oct 1986.



[3] A. Baratloo, M. Karaul, H. Karl, and Z. M. Kedem. An
infrastructure for network computing with Java applets.
Concurrency: Practice and Experience,
10(11-l3):1029–1041, Sep 1998. Special Issue: Java for
High-performance Network Computing.

[4] T. Berners-Lee and D. Connolly. Hypertext markup
language—2.0. RFC1866, 1995.

[5] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext
transfer protocol—HTTP/1.0. RFC1945, 1996.

[6] C. Binding. The architecture of a user interface toolkit. In
Proceedings of the ACM Symposium on User Interface
Software and Technology, pages 56–65, Oct 1988.

[7] Borland JBuilder. http://www.borland.com/jbuilder.
[8] The Common Gateway Interface.

http://hoohoo.ncsa.uiuc.edu/cgi/overview.html.
[9] Citrix Metaframe.

http://www.citrix.com/products/metaframe/.
[10] D. Conolly and L. Masinter. The text/html media type.

RFC2854, 2000.
[11] Doclet Overview. http://java.sun.com/j2se/1.3/docs/tooldocs/

javadoc/overview.html.
[12] W. Edwards, E. Mynatt, K. Peterson, M. Spreitzer, D. Terry,

and M. Theimer. Designing and implementing asynchronous
collaborative applications with Bayou. InProceedings of the
10th Annual ACM Symposium on User Interface Software
and Technology, pages 119–128, Oct 1997.

[13] Forte tools: Forte for Java. http://www.sun.com/forte/ffj.
[14] J. Golick. Network computing in the new thin-client age.

netWorker: The Craft of Network Comptuting, 3(2):30–40,
1999.

[15] J. Gosling, D. S. H. Rosenthal, and M. Arden.The NeWS
Book: an introduction to the Network/extensible Window
System. Springer-Verlag, Berlin, Germany / Heidelberg,
Germany / London, UK / etc., 1989.

[16] Graphon RapidX. http://www.graphon.com.
[17] R. Hill, T. Brinck, S. Rohall, J. Patterson, and W. Wilner. The

Rendezvous architecture and language for constructing
multiuser applications.ACM Transactions on
Computer-Human Interaction, 1(2):81–125, 1994.

[18] S. Hudson and I. Smith. Supporting dynamic downloadable
appearances in an extensible user interface toolkit. In
Proceedings of the 10th Annual ACM Symposium on User
Interface Software and Technology, pages 159–168, Oct
1997.

[19] Insignia Solutions Ntrigue. http://www.insignia.com.
[20] ISAPI Extensions Overview.

http://msdn.microsoft.com/library/psdk/iisref/isgu9kqf.htm.
[21] ISO/IEC JTC1/SC2/WG11. MPEG.ISO, Sept. 1990.
[22] Java Applets. http://java.sun.com/applets/.
[23] Java Foundation Classes: Now and the Future.

http://java.sun.com/products/jfc/whitepaper.html.
[24] JavaServer Pages: Dynamically Generated Web Content.

http://java.sun.com/products/jsp.
[25] J. Jing, A. Helal, and A. Elmagarid. Client-server computing

in mobile environments.ACM Computing Surveys,
31(2):117–157, 1999.

[26] A. Joseph, A. Lespinasse, J. Tauber, D. Gifford, and
M. Kaashoek. Rover: A toolkit for mobile information
access. InProceedings of the 15th ACM Symposium on
Operating System Principles, pages 156–171, Dec 1995.

[27] D. Kristol and L. Monulli. HTTP state management

mechanism. RFC2109, 1997.
[28] T. G. Lewis. Where is client/server software headed?IEEE

Computer, 28(4):49–55, Apr 1995.
[29] S. Li, Q. Stafford-Fraser, and A. Hopper. Integrating

synchronous and asychronous collaboration with VNC.
IEEE Internet Computing, 4(3):26–33, May-Jun 2000.

[30] B. MacIntyre and S. Feiner. A distributed 3D graphics
library. In SIGGRAPH 98 Conference Proceedings, pages
361–370. ACM SIGGRAPH, Addison Wesley, Jul 1998.

[31] Macromedia, Inc. http://www.macromedia.com/.
[32] J. McCormack, P. Asente, and R. Swick.X Toolkit

Intrinsics—C Language Interface, Aug 1991.
[33] Microsoft Corp.Microsoft Visual C++ MFC Library

Reference. Microsoft Press, Redmond, WA, 1997.
[34] Microsoft Windows 2000 Terminal Services.

http://www.microsoft.com/windows2000/guide/
server/features/terminalsvs.asp.

[35] Modular Toolkit Environment. IEEE 1295.
[36] NSAPI FAQ. http://developer.netscape.com/support/faqs/

champions/nsapi.html.
[37] J. Ousterhout.Tcl and the Tk Toolkit.Addison-Wesley, 1994.
[38] PHP: Hypertext Preprocessor. http://www.php.net.
[39] A. Prakash and H. Shim. DistView: Support for building

efficient collaborative applications using replicated objects.
In Proceedings of the Conference on Computer Supported
Cooperative Work, pages 153–164, Oct 1994.

[40] T. Richardson, Q. Stafford-Frasor, K. Woord, and A. Hopper.
Virtual network computing.IEEE Internet Computing,
2(1):33–38, Jan-Feb 1998.

[41] J. A. Rody and A. Karmouch. A remote presentation agent
for multimedia databases. InInternational Conference on
Multimedia Computing and Systems. IEEE Computer
Society, May 1995.

[42] K. Saar. VIRTUS: A collaborative multi-user platform. In
Proceedings of the 4th Symposium on VRML, pages
141–152, Feb 1999.

[43] R. Scheifler and J. Gettys. The X window system.ACM
Trans. on Graphics, 5(2):79–109, April 1986.

[44] B. K. Schmidt, M. S. Lam, and J. D. Northcutt. The
interactive performance of SLIM: a stateless, thin-client
architecture. InProceedings of the 17th ACM Symposium on
Operating Systems Principles (SOSP), pages 32–47, Dec.
1999.

[45] C. Schmuckmann, J. Kirchner, and J. Haake. Designing
object-oriented synchronous groupware with COAST. In
Proceedings of the ACM 1996 Conference on on Computer
Supported Cooperative Work, pages 30–38, Nov. 1996.

[46] SCO Tarantella. http://www.tarantella.sco.com.
[47] Symantec PC Anywhere. http://www.symantec.com.
[48] Visual Cafe. http://www.webgain.com/products/visualcafe.
[49] The Virtual Reality Modeling Language.

http://www.web3d.org/technicalinfo/specifications/.
[50] D. J. Zukowski, A. Purakayastha, A. Mohindra, and

M. Devarakonda. Metis: A thin-client application
framework. In USENIX, editor,The Third USENIX
Conference on Object-Oriented Technologies and Systems
(COOTS), June 16–19, 1997. Portland, Oregon, pages
103–114, Berkeley, CA, USA, June 1997. USENIX.


