
Evaluation of Visual Balance for Automated Layout

Simon Lok, Steven Feiner, and Gary Ngai
Dept. of Computer Science

Columbia University
1214 Amsterdam Ave
New York, NY 10027

{lok,feiner,gwn2003}@cs.columbia.edu

ABSTRACT
Layout refers to the process of determining the size and po-
sition of the visual objects in an information presentation.
We introduce the WeightMap, a bitmap representation of
the visual weight of a presentation. In addition, we present
algorithms that use WeightMaps to allow an automated lay-
out system to evaluate the effectiveness of its layouts. Our
approach is based on the concepts of visual weight and vi-
sual balance, which are fundamental to the visual arts. The
objects in the layout are each assigned a visual weight, and
a WeightMap is created that encodes the visual weight of
the layout. Image-processing techniques, including pyra-
mids and edge detection, are then used to efficiently ana-
lyze the WeightMap for balance. In addition, derivatives
of the sums of the rows and columns are used to generate
suggestions for how to improve the layout.

Categories and Subject Descriptors
H.5.2 [HCI]: User Interfaces—Screen Design; I.2.1 [AI]: Ap-
plications and Expert Systems; I.3.6 [Computer Graph-
ics]: Methodology and Techniques—Graphics data struc-
tures and data types; I.4.10 [Image Processing and Com-
puter Vision]: Image Representation—Hierarchical

General Terms
Algorithms, Design, Human Factors

Keywords
Automated Layout, Visual Balance

1. INTRODUCTION
Effective layout is one of the most important aspects of

creating a presentation. By layout, we mean both the pro-
cess of determining the position and size of each visual ob-
ject that is displayed in a presentation, as well as the re-
sult of that process. We use the term presentation to refer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’04, January 13–16, 2004, Madeira, Funchal, Portugal.
Copyright 2004 ACM 1-58113-815-6/04/0001 ...$5.00.

to material that is intended to be viewed and manipulated
by people; for example, graphical or textual user interfaces
(UIs), World Wide Web documents, and even conventional
newspapers and magazines.

The vast majority of layouts for information presentation
today are created “by hand”: a human graphic designer or
“layout expert” makes most, if not all of the decisions about
the position and size of the objects to be presented. Design-
ers typically spend years learning how to create effective
layouts, and may take hours or days to create even a single
screen or page of a presentation. Due to the explosion in the
amount of available information, there is a growing interest
in automating all or part of this process.

Automated layout is a difficult problem for many reasons.
Typical “computer-science” approaches, such as bin pack-
ing, tend to use the available real estate well, but fail to
take into account the visual appearance or usability of a
layout. Combinatorial explosion is also a problem; how-
ever, increases in processor speed have allowed the field to
make some strides, since most layouts designed for visual
consumption by people (e.g., as opposed to VLSI layouts)
involve a relatively small number of objects.

2. RELATED WORK
The tools and techniques that an automated layout sys-

tem can build upon include a wide range of approaches, such
as iterative constraint solvers, formal languages for express-
ing layouts, and machine learning of templates, as reviewed
in [15]. In addition, simpler techniques with some auto-
mated layout properties can be found in many commercial
software systems (e.g., Microsoft Word, Publisher, and Pow-
erPoint; Quark Express; and LaTeX) and in user interface
toolkits (e.g., Sun JFC/Swing [13], Microsoft Foundation
Classes [19], and their ancestors, such as Xtk [17] or Tk
[23]).

The vast majority of the existing research on automated
layout focuses on constraint systems [27, 2, 6, 9, 14, 8, 28,
22]. The idea that layouts can be presented as a set of con-
straints is very intuitive. One might imagine directly spec-
ifying spatial constraints, such as “Keep X above Y ” and
“Make X the width of the full page,” or specifying abstract
constraints, such as “X is related to Y ” and “X is impor-
tant.” A system that employs abstract constraints faces the
tremendous hurdle of translating the abstract notions into
constraints with real spatial meaning. This extraordinarily
difficult problem has been the focus of many systems to date
[6, 28, 22].

Systems that employ constraint techniques often use the

concept of a design grid to design more effective layouts [5].
Design grids are a well established technique used by the
visual arts community to enforce a regular pattern upon a
layout that improves the visual appearance and “consuma-
bility” of the presentation [20, 10]. Recently, the concept of
adaptive design grids has been demonstrated with remark-
able results [11].

An alternative to constraint-based automated layout meth-
ods is to employ machine learning and demonstration-based
techniques [21, 2]. These systems usually use a number of
templates or “good layouts” that are generated or validated
by a human designer as training sets. Some systems also
incorporate a model to represent a communicative goal to
provide additional parameters when creating the presenta-
tion [29].

Finally, there are evaluation techniques, the least explored
of the approaches to automated layout, and the category
that includes the WeightMap algorithm we present here. Ex-
isting evaluation techniques include examining the amount
of mouse movement needed to interact with a presentation
[26, 24, 25, 4, 12], as well as taking an information-theoretic
approach to analyzing the content of a presentation [3]. An
evaluation metric cannot generate a layout by itself, but it
can be combined with any of the other automated layout
approaches or used in a generate-and-test manner.

All previous automated layout techniques that we know
of take into account visual parameters, such as balance, by
leveraging input provided by a human designer (e.g., by ap-
plying templates [28]). The WeightMap algorithm is unique
in that it is based on the concept of automatically evaluat-
ing visual balance without human intervention, and thus we
believe that it provides a powerful new tool for automated
layout.

3. VISUAL BALANCE
A graphic designer typically approaches the problem of

creating a layout in a very different way from a computer
scientist. Whereas the computer scientist might employ a
constraint solver or use bin packing, the graphic designer
starts with the concept of what “looks right” and what does
not. A large part of what makes a layout “look right” is
whether or not it is visually balanced. In addition to being
one of the designer’s fundamental measures of correctness,
visual balance is also a critical aspect of the designer’s work-
flow, as it provides the designer some idea of where and how
to make modifications to the presentation.

Visual balance is a concept that is taught in virtually every
first-year undergraduate course in two-dimensional design,
a required course for most undergraduate degrees in visu-
als arts. Visual balance builds upon the notion of visual
weight, a perceptual analog to physical weight. An object
(or “form,” as it is called in the visual arts world) is visu-
ally heavy if it is dark or large. In addition, if an object
is textured, it appears to be heavier than if it is filled with
a solid color. It is also often the case that objects closer
to the center of a presentation appear visually heavier than
objects at the periphery. A designer applies these rules to
create effective layouts by manipulating the size and posi-
tion of the objects in a presentation until the visual weights
are balanced, as described below.

The established ontology prevalent in the visual arts de-
fines three types of visual balance: symmetric, radial, and
crystallographic [16]. Given a line, symmetric balance is the

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1: Examples of visual balance. (a–b) Sym-
metric balance. The center-line is clearly vertically
oriented and runs straight down the middle of (b).
(c–d) Asymmetric balance. The lighter colored, but
larger, vessel at the left of (c) balances the smaller
but darker mooring and shadow on the right. (e–f)
Radial balance. In (f), the eye is quickly drawn to a
center of attention near the lower left by the many
leaves that appear to be sprouting from the bot-
tle. (g–h) Crystallographic balance. The eye is not
attracted to any particular part of (g), but rather
to the overall landscape. The figure overall demon-
strates asymmetric crystallographic balance.

(a) (b)

Figure 2: (a) An example layout of two pictures and
a block of text. (b) A pseudocolored representation
of the WeightMap of (a), where brighter colors rep-
resent heavier weights.

measure of whether the visual weight of the layout is equal
on either side of the line. Some variants of this ontology
make a distinction between symmetric balance, in which the
actual shapes are repeated on either side of the chosen divid-
ing line, and asymmetric balance, in which the visual weight
is balanced, but the shapes themselves are not. Similarly,
radial balance is the measure of the visual balance around a
single point. Radial balance is typically employed to create
an immediate and obvious focal point. Crystallographic bal-
ance is the opposite of radial balance. The idea is to visually
balance the layout overall and attract the eye to the overall
presentation, rather than to a single point. Figure 1 shows
examples of presentations that are balanced symmetrically,
asymmetrically, radially, and crystallographically.

4. WEIGHTMAP
Our approach implements the crystallographic visual bal-

ance measure. This is accomplished by creating a bitmap
of the visual weight at each pixel coordinate of the pre-
sentation, which we call a WeightMap. In addition to be-
ing a simple measure of crystallographic visual balance, the
WeightMap can be manipulated using image-processing tech-
niques to extract suggestions about how to improve the pre-
sentation. This capability closely parallels the use of visual
balance in the workflow of the graphic designer.

Let us assume that we have a display list ~L with n objects
to display. For each object Li, we need to have an associated
visual weight Wi. For images, this visual weight can be
calculated using simple pixel-processing techniques, such as
taking the mean or median value of the histogram of the
grayscale pixel values of the rendered Li. In the case of
text, this visual weight would be more likely to depend on
the typographic parameters for the block (e.g., font, size,
leading, and color). A more sophisticated measure of visual
weight for a block of text would also take into account the
actual characters used, and their positions. In addition, one
should keep in mind that the absolute value of any Wi is not
important so long as one does not cause numerical overflow.
By convention, we have defined the range of W to be 0 ≤
W ≤ 255, where 255 is the heaviest possible weight.

4.1 Creating WeightMaps
To create the WeightMap of ~L, we first allocate a block

of memory ~M equal in size to ~R, the space to which we
would normally be rendering the presentation. We then loop

over each of the n elements and write the visible portions of
Li to the proper locations M(~p,q) using standard rendering
techniques. However, rather than writing the pixel value for
creating the rendered display, we write the value Wi to the
locations M(~p,q). Figure 2 shows an example of a layout and
its corresponding WeightMap.

Analyzing a WeightMap for crystallographic balance is
very intuitive. There is a direct relationship between the
uniformity of the WeightMap and the crystallographic visual
balance of the layout. In the limit, a perfectly balanced lay-
out would be one in which ∀x,yM(x,y) = Wk, where Wk is an
arbitrary value. Clearly this is not feasible in the construc-
tion described thus far, because most reasonable layouts will
incorporate white space (or “negative space,” as it is called
in the visual arts) between the objects being displayed.

4.2 WeightMap Pyramids
To address this issue, we employ the image pyramid tech-

nique from image processing [7]. Figure 3 shows an example
image pyramid built from a WeightMap. By creating an
image pyramid ~P from the weight bitmap ~M and dealing
primarily with {~Pi|i ≈ max(i)}, we work around numerous
problems simultaneously.

First, the values of ~Pi are the average weights of the sec-
tors in ~Pi−1. Thus, white space around an object in ~P0

simply reduces the overall weight of the sector in ~Pi that
an object occupies. This corresponds nicely with reality. In
addition, since the pixels of ~Pi are averages, it is possible
to satisfy the condition ∀x,yPi(x,y) = Wk, the measure of a
crystallographically balanced layout described earlier.

Second, since the overall size of the rendered presenta-
tion ‖Rx,y‖ may be in the megapixel range, running any
kind of analysis on the WeightMap Mx,y may be too com-
putationally intensive for a real-time automated layout sys-
tem. Clearly, processing {~Pi|i ≈ max(i)} will be signifi-
cantly faster than trying to analyze P0.

By dealing primarily with {~Pi|i ≈ max(i)}, we can effi-
ciently and robustly analyze the crystallographic balance of
an information presentation. The question is, what is the
best value of i? If the value of i is chosen to be too large
(i.e., too close to max(i)), then there is the possibility of
the subtlety of the layout being lost due to overly aggres-
sive averaging of the weights of objects. On the other hand,
if the value is too small, then one will encounter the white
space and performance issues described previously. We have
found through experimentation that satisfactory results may
be obtained by picking a value for i such that the pixels of
~Pi represent sectors of ~P0 that are ≈ 1

2
‖Lj‖ where Lj is the

member of ~L with the largest visible area in ~R.

4.3 Analyzing WeightMaps
Analyzing the {~Pi|i ≈ max(i)} bitmap for uniform value

is a trivial matter, both computationally and algorithmi-
cally, since ‖{~Pi|i ≈ max(i)}‖ will be relatively small. One

can develop a number of measures of visual balance for ~R
based on the metric ∆Pi(x,y) over the Euclidean product of
(x, y). For example, a simple measure of overall crystallo-
graphic balance can be obtained by calculating Σ(x,y)∆Pi(x,y)

and comparing that value to ∆Pi(0,0) × ‖∆~Pi‖. However,
getting a simple answer about the visual balance of a layout
is not enough. What we want are suggestions on how to
improve the layout.

One simple and efficient way to extract rules for improving

(a)

(b)

(c)

(d)

(e)

Figure 3: The highest levels of an image pyramid
built out of the WeightMap of the example layout
in Figure 2. (a) The fifth highest level. (b) The
fourth highest level. (c) The third highest level. (d)
The second level. (e) The top level. (The lower lev-
els are not shown because they would appear to be
substantially similar to the WeightMap image shown
in Figure 2.)

the crystallographic visual balance of a layout is to analyze
δ(∀qΣxPi(x,q)) and δ(∀pΣyPi(p,y)), the first derivatives of the
row and column sums of a WeightMap. The values of these
vectors can provide an idea of where to move objects within
the sector of ~R represented by Pi(p,q). Positive values in
δ(∀qΣxPi(x,q)) suggest that the visual weight of the sector is
skewed to the left, so we should move objects in that sector
toward the right. Similarly, positive values in δ(∀pΣyPi(p,y))
suggest that the visual weight of the sector is skewed towards
the top, so we should move objects in that sector toward the
bottom.

To illustrate this, let us consider the simple case in which
the display list ~L has a single member (‖~L‖ = 1) and that
member (L0) is an upright rectangle. In addition, let us

specify that ‖L0‖ = 1
4
‖~R‖ and the visual weight of L0 is

W0. Clearly, ~R would be visually balanced if the object L0

were placed in the center of ~R. In that case, the values of
{~Pi|i ≈ max(i)} would be:

24 W0
4

W0
4

W0
4

W0
4

35 .

As stated previously, uniform values in {~Pi|i ≈ max(i)}
is the criterion we use to determine if a layout is crystallo-
graphically balanced. Thus, the WeightMap concurs with
our intuitive understanding of visual balance. Now let us
place the object L0 in the upper left corner of ~R, so that the
values of {~Pi|i ≈ max(i)} are:

24 W0 0

0 0

35 .

We know this is not a balanced layout and WeightMap
concurs. In addition, since all the values of {~Pi|i ≈ max(i)}
are zero except for the Pi(0,0), the values of δ(∀qΣxPi(x,q))
and δ(∀pΣyPi(p,y)) trivially compute to W0. According to
the rules mentioned above, this tells us to move objects in
the top left sector of ~R towards the lower right.

Clearly, if we started L0 in the lower right corner, the
values of δ(∀qΣxPi(x,q)) and δ(∀pΣyPi(p,y)) would be (−W0)
which tells us to move to the upper left. A similar analysis
can be performed if we start L0 at any position and will
always result in a suggestion to move L0 towards the center.

One simple method of using these suggestions to improve
the layout of ~R would be to move L0 one pixel at a time in
the direction suggested by WeightMap. After each iteration,
one would simply repeat the process to determine the next
movement. When {~Pi|i ≈ max(i)} reaches a uniform value,
the layout is balanced and we can stop.

If multiple objects are present, one can generate sugges-
tions for each of the objects and move them one at a time.
In practice, we have found that it is best to move an object
three or four times before manipulating the next object. In
addition, it is clearly impossible for {~Pi|i ≈ max(i)} to be
truly uniform in any layout other than a trivial one. Thus, it
is necessary to “settle” for a best effort of close to uniformity
most of the time. In practice, if the automated layout sys-
tem is used in a real-time animated user interface, we have
limited the algorithm to a fixed number of iterations that is
small enough to maintain the desired frame rate. However,
if animation is not required, the system can stop when the

values of {∀(x,y)
~Pi(x, y)|i ≈ max(i)} differ by less than some

constant.
Finally, we note that moving L0 one pixel at a time is

somewhat inefficient. In practice, we base the amount to
move an object on a fraction of the values of ‖δ(∀qΣxPi(x,q))‖
and ‖δ(∀pΣyPi(p,y))‖. In general, the larger the delta, the
farther one should move. However, setting the step size
smaller is sometimes useful for animation in real-time user
interfaces. In addition, if the step size is too large, the sys-
tem can become “underdamped” and oscillate.

4.4 Complexity Analysis
Let m = ‖~R‖, the number of pixels in the area to be man-

aged, and n = ‖~L‖, the number of objects in the display
list. In addition, we will assume that ∀i‖Li‖ ≤ m. The
WeightMap algorithm is articulated around four computa-
tions:

1. Determination of Wi for each object in ~L.

2. Formulation of the base WeightMap ~M .

3. Assembly of the WeightMap pyramid ~P .

4. Analysis of {~Pi|i ≈ max(i)} to determine the visual
balance of the layout.

Let us assume that Wi is determined by the median of the
color histogram of the Li. In this case, we need to process
each pixel exactly once to place it into the appropriate his-
togram bucket. Thus, the time complexity of determining
the weight of a single object is Ω(m), and the time com-
plexity of determining the weight of all of the objects being
displayed is Ω(nm). If we assume the objects in ~L will not
overlap, the time complexity is O(m) because we will at
most have m pixels to draw. In many cases, we will not
need to use the histogram approach to determine Wi. The
value of Wi may be statically assigned or computable in con-
stant time using a simple equation, especially if the object
is a block of text.

To formulate the base WeightMap ~M , we need to loop
over each pixel of each object in ~L. For each pixel, we need
to do a simple comparison and potentially copy the value
of Wi into ~M . Thus the time complexity of creating ~M is
Ω(nm). Once again, if we assume that the objects in ~L do
not overlap, the complexity is O(m).

Assembling the WeightMap pyramid ~P is no different than
creating any other image pyramid. For each pixel at pyra-
mid level i, one must perform 5 operations on level i − 1.
The overall time complexity for assembling the pyramid is
roughly O(m).

The evaluation of visual balance takes constant time c,
once we have constructed our WeightMap pyramid. Since
we will be using {~Pi|i ≈ max(i)} for our computations, ‖~Pi‖
is going to be very small (typically something like 16 pixels).

Combining our results, we see that the time complexity
associated with using the WeightMap algorithm to evaluate
a layout is Ω(nm + nm + m + c) = Ω(nm). However, for

most layouts, we will not have overlapping objects in ~L, so
the time complexity is O(m + m + m + c) = O(m). If we
wish to improve the layout using the suggestions provided
by WeightMap, we will need to repeatedly evaluate the lay-
out after moving each object in ~L. We will need to move
each object at least once. In this case, the time complexity
becomes Ω(n2m) or O(nm) if we assume no overlap.

(a)

(b)

(c)

(d)

Figure 4: Screen shots of our BalanceManager test
harness. The layouts shown were automatically cre-
ated by BalanceManager. The initial position of the
objects was the origin (the upper left corner). The
test harness also displays pseudocolored uniformly-
sized images of the WeightMap pyramid on the
right.

The space complexity of the WeightMap algorithm is ap-
proximately O(m). This is because the memory resources
needed to run the WeightMap algorithm are dominated by
the need to store the pyramid ~P . Althought we also need
some space to keep track of δ(∀qΣxPi(x,q)) and δ(∀pΣyPi(p,y)),

these are dwarfed by ~P because i ≈ max(i), so ‖~Pi‖ is going
to be very small.

5. IMPLEMENTATION
We have implemented our WeightMap algorithm as a set

of JAVA classes, allowing any JAVA-based presentation sys-
tem to benefit from it. To make use of our implementation,
a user instantiates a BalanceManager, passing the size of
the total area to be considered in the constructor. The user
then informs the BalanceManager about all the objects that
are in the layout. This is accomplished by passing to the in-
stance of BalanceManager a set of objects that implement
the Box interface that we provide.

Once the BalanceManager has knowledge of all objects to
consider, the user can run functions to retrieve a suggestion
for a particular object under management or to execute our
algorithm iteratively until a crystallographically balanced
layout is reached. For the layout to be changed, the Box ob-
jects passed into the BalanceManager must be able to mod-
ify the coordinates that are used to render the objects. This
can sometimes be problematic when integrating the Bal-
anceManager with an existing application that uses its own
display list. In practice, we have therefore found ourselves
keeping a separate display list for the BalanceManager.

The BalanceManager uses the Cassowary constraint solver
[1] to maintain spatial constraints on the layout. We have
currently implemented constraints preventing Box objects
from being pushed outside the bounds of the managed area,
as well as preventing objects from overlapping one another.

6. RESULTS
We have developed a simple test harness program that

allows a user to add, move and resize objects in a managed
area, as well as query the BalanceManager for suggestions.
In addition, the test harness can ask the BalanceManager
to run repeatedly until completion. Figure 4 shows screen-
shots of our test harness and examples of the layouts it
can generate. On a PowerPC 7455 1GHz processor, the
test harness takes about one second to generate each of
the layouts shown in Figure 4, using a stopping criterion
of ∆{∀(x,y)

~Pi(x, y)|i ≈ max(i)} ≤ 5.
To further demonstrate the capability of the WeightMap

approach, we constructed a second test harness that uses the
BalanceManager to generate layouts that conform to a fixed
fixed design grid, being demonstrated here with a 3×2 grid.
The system first calculates the visual weight of each object
by determining the median of the color histogram. Then, the
BalanceManager is invoked to evaluate the balance of each
of the up to (3 × 2)! possible layouts. The highest ranked
layout is then displayed to the user. In the case of a tie, a
random choice is made amongst the highest ranked layouts.
Figure 5 shows screenshots of this second test harness and
examples of the layouts it can generate.

We have also begun to integrate the BalanceManager with
an experimental patient record navigation tool being devel-
oped for use at New York Presbyterian Hospital [18]. In
this project, we are using the BalanceManager to control

(a) (b)

(c) (d)

(e) (f)

Figure 5: Screen shots of a design-grid–based test
harness that show how the BalanceManager can be
used in conjunction with spatial constraints. In (a)
and (b), we have relatively few objects and the sys-
tem has chosen to place them near the center. In
(c) we see that the system has chosen to balance
the two lighter pictures on the right by placing the
darker one on the left. In (d), the system has chosen
to balance the two darker pictures by putting them
in opposite corners. (e) and (f) demonstrate how
the system continues to generate balanced layouts
when the layout is full of objects.

(a)

(b)

(c)

Figure 6: Screen shots of our patient record naviga-
tion user interface, as successively more objects are
added to the display. The objects under the con-
trol of the BalanceManager are located in the large
white area. The system initially places all objects at
the origin of the managed area, which is located at
the intersection of the timeline on the left and the
patient and physician selector at the top. The Bal-
anceManager automatically moves objects into the
places shown in the screenshots before the screen is
redrawn and presented to the user.

the placement of windows that display documents related
to the patient record. Figure 6 shows screenshots from this
application.

7. FUTURE WORK
We believe that the work presented here opens a large

number of possible directions.
Currently, the BalanceManager does not support margins

and alignment of the objects under management. To address
this, we will be adding more constraints to Cassowary to
support a full grid system, instead of our current approach
of requiring external support for geometric constraints. In
addition, we will be adding support for abstract constraints;
for example, this would make it possible for related objects,
such as a picture and its caption, to be kept close together.
These additions would make the BalanceManager a more
complete automated layout system, as opposed to its current
state in which it is single tool to be used in some larger
system.

We currently assume that each member of the display
list has a uniform weight, and therefore use the same value
for each of its pixels. We are planning to add support for
per-pixel visual weight to more accurately reflect the way
a human graphic designer would evaluate a layout and its
elements. In addition, we will be augmenting our weight
calculation approach to account for texture and smoothness
by using Fourier techniques to analyze the content of the
image.

We have concentrated thus far on crystallographic bal-
ance alone. We intend to expand our focus to include ra-
dial, symmetric, and asymmetric balance. For example, to
address radial balance, we will experiment with overlaying a
function on top of the initial WeightMap that depresses the
visual weight around some point. By fixing a single object
at that point, our existing algorithm will cause other objects
to cluster around it.

8. ACKNOWLEDGMENTS
This work is supported in part by the National Science

Foundation DLI Phase 2 Initiative under award IIS-98-17434
and by gifts from Microsoft and Intel.

9. REFERENCES
[1] G. J. Badros, A. Borning, and P. J. Stuckey. The

cassowary linear arithmetic constraint solving
algorithm. In ACM Transactions on Computer Human
Interaction, 2001.

[2] A. Borning and R. Duisberg. Constraint-based tools
for building user interfaces. ACM Trans. on Graphics,
5(4):345–374, Oct. 1986.

[3] T. Comber and J. Maltby. Investigating layout
complexity. In Proc. Graphics Interface ’88, pages
192–197, June 1988.

[4] T. Comber and J. Maltby. Evaluating usability of
screen design with layout complexity. In Proc. OZCHI
’95 (CHISIG Ann. Conf. on Human-Computer
Interact.), pages 175–178, 1995.

[5] S. Feiner. A grid-based approach to automating
display layout. In Proc. Graphics Interface ’88, pages
192–197, June 1988.

[6] W. Graf. Constraint-based graphical layout of
multimodal presentations. In T. Catarci, M. F.

Costabile, and S. Levialdi, editors, Proc. AVI ’92
(Advanced Visual Interfaces), pages 365–385. World
Scientific, May 27–29 1992.

[7] B. K. P. Horn. Robot Vision. MIT Press, Cambridge,
MA, 1986.

[8] S. E. Hudson and S. P. Mohamed. Interactive
specification of flexible user interface displays. ACM
Trans. on Info. Sys., 8(3):269–288, July 1990.

[9] S. E. Hudson and I. Smith. Ultra-lightweight
constraints. In Proc. UIST ’96 (ACM Symp. on User
Interface Software and Technology), pages 147–155,
1996.

[10] A. Hurlburt. The Grid. Van Nostrand Reinhold
Company, Melborne, Australia, 1978.

[11] C. Jacobs, W. Li, E. Schrier, D. Bargeron, and
D. Salesin. Adaptive grid-based document layout. In
ACM Transactions on Graphics, pages 838–847, July
2003.

[12] R. Jeffries, J. R. Miller, C. Wharton, and K. M.
Uyeda. User interface evaluation in the real world: A
comparison of four techniques. In Proc. ACM CHI ’91
Conf. on Human Factors in Comp. Sys., pages
119–124, 1991.

[13] Java foundation classes: Now and the future.
Whitepaper,
http://java.sun.com/products/jfc/whitepaper.html.

[14] S. Kochhar, J. Marks, and M. Friedell. Interaction
paradigms for human-computer cooperation in
graphical-object modeling. In Proc. Graphics Interface
’91, pages 180–191, June 1991.

[15] S. Lok and S. Feiner. A survey of automated layout
techniques for information presentations. In Proc.
SmartGraphics Symposium ’01, pages 61–68, Mar.
2001.

[16] B. Martinez and J. Block. Visual Forces, an
Introduction to Design. Prentice-Hall, New York, 1998.

[17] J. McCormack, P. Asente, R. Swick, and D. Converse.
X Toolkit Intrinsics—C Language Interface. Digital
Equipment Corporation, Maynard, MA, USA, 1985.

[18] K. McKeown, S.-F. Chang, J. Cimino, S. Feiner,
C. Friedman, L. Gravano, V. Hatzivassiloglou,
S. Johnson, D. Jordan, J. Klavans, A. Kushniruk,
V. Patel, and S. Teufel. PERSIVAL: A system for
personalized search and summarization over
multimedia healthcare information. In Proc. JCDL
2001 (ACM/IEEE Joint Conference on Digital
Libraries), pages 331–340, Roanoke, VA, June 24–28
2001.

[19] Microsoft Corp. Microsoft Visual C++ MFC Library
Reference. Microsoft Press, Redmond, WA, 1997.

[20] J. Müller-Brockmann. Grid Systems in Graphic
Design. Arthur Niggli Publishers, Niederteufen,
Switzerland, 1981.

[21] B. A. Myers, R. G. McDaniel, and D. S. Kosbie.
Marquise: Creating complete user interfaces by
demonstration. In Proc. INTERCHI ’93, Human
Factors in Comp. Sys., Apr. 1993.

[22] B. A. Myers et al. The Garnet user interface
development environment. In ACM CHI ’94 Conf.
Companion, pages 457–458, 1994.

[23] J. K. Ousterhout. Tcl and Tk Toolkit.
Addison-Wesley, 1994.

[24] A. Sears. Layout appropriateness: A metric for
evaluating user interface widget layout. IEEE Trans.
on Soft. Eng., 19(7):707–719, July 1993.

[25] A. Sears and A. M. Lund. Creating effective user
interfaces. IEEE Software, 14(4):21–24, July / Aug.
1997.

[26] T. S. Tullis. A computer-based tool for evaluating
alphanumeric displays. In Proc. IFIP INTERACT’84:
Human-Computer Interaction, pages 719–723, 1984.

[27] B. Vander Zanden and B. A. Myers. Automatic,
look-and-feel independent dialog creation for graphical
user interfaces. In Proc. ACM CHI’90 Conf. on
Human Factors in Comp. Sys., pages 27–34, 1990.

[28] L. Weitzman and K. Wittenburg. Automatic
presentation of multimedia documents using relational
grammars. In Proc. Second ACM Int. Conf. on
Multimedia (MULTIMEDIA ’94), pages 443–452, New
York, Oct. 1994. ACM Press.

[29] M. X. Zhou and S. Ma. Toward applying machine
learning to design rule acquisition for automated
graphics generation. In Proc. 2000 AAAI Spring
Symp. on Smart Graphics, pages 16–23, Stanford, CA,
March 20–22 1999.

