COMS 1001 Spring 2006

Introduction to Computers

Operating Systems

What's Ahead

* Introduction to Operating Systems
— Shell

- Kernel
— Support for applications
— System call interface

— Files, threads, processes, memory, devices

What 1s an Operating System?

* A program that manages the execution of other
programs

* A program that abstracts away the detail of
handling hardware (resource abstraction)

* A layer between software applications and the
underlying hardware (CPU, memory, disks,
devices)

* Tl

ne operating system 1s an interface.

* Tl

e “real” operating system is the kernel.

Properties of an OS

* The most critical piece of software in a computer
system, but also “underappreciated”: the
application 1s king.

— Performance, Functionality, Invisibility

* Application software 1s designed to solve a
specific problem

* System software (like an OS) 1s designed to
provide a support environment for application
software

Design Factors

* Performance cost: how much does the OS
abstraction cost me?

* Protection: can the OS protect the hardware and
data from the user?

®* Correctness: 1s the OS stable and reliable? Is 1t
accurate, predictable, and precise?

* Maintainability: 1s the OS easy to upgrade and
fix?

Protection

* Allowing unfettered control of the hardware 1s an
invitation for abuse

* Hardware can execute 1n 2 modes: supervisor and
normal (in theory, there are more, the Pentium
allows for 4 modes)

® This division 1s reflected in the OS. Certain
operations are privilaged (any type of 1/0)

* Protection seeks to 1solate applications and users

Some Protection Mechanisms

* Supervisor/user mode (hardware)

* Base and limit registers (define memory region
for program execution)

* System calls (ask OS to execute supervisor code
on user behalf 1n a well-defined manner)

History of Operating Systems

* Programming for early computers used punch
cards and other archaic techniques to directly
manipulate the hardware

* Programmers had to load the program (cards) in,
run the job, and remove their output.
Programmers had to manage the tedious details of
hardware manipulation and 1/0O

* First OS's were batch operating systems: ran a
series of 'jobs' without involving the programmer
manually loading 1n cards.

History of the OS (cont.)

* Batch operating systems were good b/c they
required no interaction with the user and

abstracted away some details of hardware usage
and job scheduling

* Timesharing systems: these OS's provided
support for multiple interactive sessions

— Key was response time to user

— A CPU can only do 1 task at a time, need to
repeatedly switch tasks fast enough for a human to be

fooled 1nto thinking many things are happening at
once

History (cont.)

* PC's or personal computers were introduced as an
alternative to the timesharing mainframes. The
PC provided a multi-programmed environment
for one user

* Eventually, PC's were made to support multiple
users

OS Responsibilities

* Resource Management ©® Provide an API

* Process Scheduling (App lication'
Programmer's
* Memory Management Interface)

* Filesystem * Implement the API via

management system calls and
* Networking and I/0 interrupts.
handling * Protection!

Resource Sharing

* One of the most important jobs of the OS 1s
managing resources

— Space-multiplexed: the resource can be divided into
two or more logical distinct units.

— Time-multiplexed: the resource 1s not divided 1nto
units, but rather 1s dedicated during short time slices.

— Memory 1s space-multiplexed

— CPU 1s time-multiplexed

Processes: the basic unit of
computation

* A basic OS abstraction that represents a job

® Usually defined as a program 1n execution

— Program code

— Address space (chunk of memory dedicated to the
process)

— Program Counter
— Stack

— All this info contained 1n a PCB (Process Control
Block) (in Linux, the PCB 1s named a 'task_struct’
object.)

Process (cont.)

* Processes represent user code that the OS needs
to manage.

* Processes request resources (memory, disk, other
I/0O devices, CPU time)

* Processes are created in Unix/Linux via a special
function: fork()

* Fork() clones the current process and then loads
all the information into the cloned process.

Files

* Files are an abstraction that represent a collection
of bytes under one name

* In Unix, everything that 1s not a process is a file.
(for the most part)

* Files store information and can be organized or
formatted according to the needs of the
application using them. (ex. Java file reader)

®* But files themselves need to be stored on some
underlying medium and 1n some consistent
format

The Filesystem

* Linux supports a number of filesystems

* There are many available filesystems, because
there are many different ways to store
information on a magnetic disk (the hard disk)

* Linux provides the VFS (virtual file system)
which 1s an interface or abstraction layer. It
represents the common operations that can be
performed on files. The implementation details
are up to the specific file system.

Filesystems and Hard Disks

* Hard disks are usually split up into sectors and
tracks to provide some logical grouping.

* Most filesystems overlay a specific directory
structure or directory tree on the underlying
physical organization.

* Sectors are broken up into blocks, usually about
4096 bytes (4k). Files are stored 1n collections of
blocks. Keeping track of which blocks belong to
which files 1s the job of the file system part of the
OS. An OS can use many filesystems at once.

The Kernel

* The Operating System ® Usually does not

kernel 1s the piece of include graphics,
code that implements GUTI's, and higher

all this low-level level user-interaction
functionality. software.

Usually written in C, ® These basic

some critical pieces applications are often
are written 1n the packaged with the
assembly language of kernel to provide a

the target CPU complete distribution.

* Tl

Kernel (cont)

ne kernel 1s the core of any OS.

* Tl

ne kernel 1s privilaged and can do anything to

the hardware.

°0

S 1s split into 2 basic regions:

— Userland (said in a nice way, sometimes)

— Kernel space (executing OS code 1n privileged

mode)

®* What are some arguments for putting user-level
applications into the kernel? (like a web browser,
for example)

The Linux Kernel

®* A Unix clone that aims towards POSIX
compliance

* Released under the GPL

* Small and compact (fits on 1 floppy)
®* Monolithic (vs mico-kernel)

* Support for dynamic module loading
* Support for multiple CPUs

* Kernel threads

* Support for application level threads

What Happens When a Computer
Turns On?

* BIOS (basic input-
output system) runs
some checks of the
hardware and then
loads some program
from the beginning of
the hard disk into
memory. Tells CPU to
execute this program.

® This program 1s often
a boot-loader and 1s
read from the Boot
Sector

* The boot loader knows
where to find the code
for the operating
system on the disk and

tells the CPU to
execute that code.

* Tl

System Startup

ne OS creates the first process

* Tl

n1s process executes the OS startup code, often

ending 1n the creation of a tty (in Unix), which 1s
basically a command-line interface, or shell for a
user to log 1n and enter commands.

* Commands are simply the names of programs
somwhere 1n the filesystem

* Example: the shell

— A simple program written in C, executed by a

process

Introducing Processes Into the OS

* At any given time, a number of processes are
present in the system

®* The OS must manage them: giving them
resources, letting them run, creating them, killing
them, etc.

* The OS is responsible for process scheduling

* Remember, the CPU can only do 1 thing at a time
(which 1s why a lot of high-end machines have
more than one CPU)

The Process Lifecycle

* Processes can be in a number of states depending
on their relationship to the CPU and resources

* PLC:

— Processes are born or created

— Processes are made runnable

— A process can block or be put to sleep

— A process can terminate and become a zombie

— Finally, a process can be cleaned up

Process Scheduling

* The OS needs some mechanism (algorithm) for
putting processes on the CPU (making them
Runnable and then allowed the CPU to execute
their code)

* There are many ways to accomplish this task, and
each algorithm represents some of the contlicting
goals

* Goals of process scheduling?

— Fairness, priority, max resource utilization, real time

Scheduling Algorithms

* First come, first served (FCFS, FIFO)
* Shortest Job Next (SJN)
* Priority (highest priority job next)

* Round-robin (give each process one small slice of
CPU time, known as a time quantum)

* All schemes involve a context switch (overhead)

Threads

* Threads are sometimes known as lightweight
processes

* Processes often involve a lot of overhead to deal
with (mostly due to their process address space,
which includes the object code for the program
and the data the program operates on)

* Threads are much like processes except they
share an address space

* Threads can be built into the kernel or supplied at
the user level

Java Threads

* Java has support for threads in the language.

* The JVM implements threads according to the
underlying operating system

— Linux JVM uses green threads (each thread 1s a
separate process)

— Native threads are implemented 1n a user-level library
where one process maps to many executing threads

— Windows JVM (depends on version) uses windows
threads (probably)

* Example: Java threads, race

Back to Protection

* The kernel implements the interface layer via
system calls

* The system calls are essentially a list of functions
that encapsulate or abstract away the details of
particular tasks

* Common system calls: open, read, write, exit,
fork, brk/malloc

* All represent tasks that a programmer needs to
write programs, but cannot be trusted to perform
by themselves in supervisor mode

The System Call Mechanism

®* When a system call 1s invoked, the kernel jumps
from user mode to supervisor mode and then
executes trusted code on behalf (but not under the
control) of the user.

* System call bodies are carefully implemented to
check their input and output for illegal use

* An interrupt 1s used to trap to a specific place in
the OS code in memory and begin executing the
system call service routine

Summary

* An OS 1s an abstraction or interface between
application software and system hardware

®* The core of an OS 1s the kernel

* The kernel implements the interface via system
calls

* The kernel 1s responsible for managing hardware
resources, memory, files, and processes and for
providing protection between processes

