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Abstract

This paper discusses the development of a methodol ogy
for reasoning about properties of security policies.

We view a security policy as a special case of regulation
which specifies what actions some agents are permitted,
obliged or forbidden to perform and we formalize a policy
by a set of deontic formulae.

We first address the problem of checking policy consis-
tency and describe a method for solvingit. The second point
we are interesting in is how to query a policy to know the
actual norms which apply to a given situation. In order to
providetheuser with consi stent answers, the normativecon-
flicts which may appear in the policy must be solved. For
doing so, we suggest using the notion of roles and define
priorities between roles.

1. Introduction

The primary goal of asecurity policy isto specify means
for facing agiven environment of threats. All organizations
generally have designed security policies that apply to all
systems within the organization and define the security re-
lationship between the organization and the outside world.
In our approach, we view asecurity policy as aspecific case
of regulation. The systemsto be regulated are composed of
agents which can perform some actions on some objects. A
regulation on such a system aims at defining what actions
the agents are permitted, obliged or forbidden to perform.
This represents a set of constraints to be enforced by the
agents. We can actually divide these constraints into two
classes:

1. Theconstraintsto be enforced by the agents when they
perform actions on the system objects.

2. The constraints to be enforced by agents when they
interact with other agents. In this case, the regulation
may use various concepts such as the concepts of re-
sponsibility, delegation, hierarchical authority and so
on...

This paper mainly focus on thefirst class of constraints. In
thiscontext, our first goal isto provideaprecise and non am-
biguous specification of a security policy. For doing so, we
useadeonticlogic, dso caled | ogicof norms, for represent-
ing the concepts of permission, obligation and prohibition.
We then extend this formalism with the notion of role. In-
tuitively, each individud is associated with a set of roles,
each of them representing the ideal behaviour he should
havein agiven situation. Each role defines the permissions,
obligationsand prohibitionslaid upon the role-hol der.

The advantage of a representation based on formal logic
isthat it is then possible to precisdy define the axioms to
reason about aregulation. This enablesoneto develop tools
to analize the conseguences of the norms used to define a
given regulation. In this paper, we especialy focus on the
following functionalities:

1. Check the regulation consistency, i.e. check if the
regulation does not create conflicting situations, for
instance situations in which an agent is permitted to
perform agiven action and, at the sametime, forbidden
to perform thisaction.

2. Query a regulation to know which norms apply to a
given situation. Since some conflicting situations may
becreated by theregulation and since our objectiveisto
provide consistent answers, wefirst need to solvethese
conflicts. Our solution is the following. We consider
that there is no normative conflict within a given role.
Therefore, a conflict can only exist when an individ-
ual is playing two different roles and a conflict exists
between these two roles. In this case, the centra idea



isto consider that it is possible to make ajudgment of
priority between thesetwo rolesin order to evaluate the
actual norm which appliesin the examined situation.

Analyzing these two functiondlities is not completely
new. Abadi et al. [1] proposed a language for specifying
security policies based on access control lists. The authors
also includethe possibility to deal with roles and delegation
and providetheoriesfor deciding whether requestsshould be
accepted or not. In[10], Gong and Qian anayzetheproblem
of complexity and composability of secure interoperation.
They consider a context in which there are several systems,
each system having its own security policy. Two genera
principles are then stated. (a) Principle of Autonomy: Any
access permitted within an individua system must be also
permitted under secureinteroperation. (b) Principleof Secu-
rity: Any access not permitted within an individual system
must be al so denied under secureinteroperation. Inthiscon-
text, the authors show that most problems are NP-complete
even for systemswith very simple access control structures.
Another approach for combining components and policies
was proposedin[8]. Theauthors provideameansfor show-
ing whether the combinations of components will satisfy
specified policies. In [3], Bertino et a. propose an au-
thorization mechanism that enables multiple access control
policiesto be supported. The mechanism enforcesageneral
authorization model which distinguishes between positive
and negative authorizations. A positive authorization corre-
sponds to permission whereas a negative authorization cor-
respondsto prohibition. It aso distinguishesbetween weak
and strong authorizations. A strong authorization overrides
a wesk authorization whereas strong authorization cannot
be overridden. In this model, only conflicts between weak
authorizations are managesble and, in this case, the authors
propose an approach to resolve conflicts.

Since our approach in based on deontic logic, we can di-
rectly reuse the formal and precise definition of the deontic
notionsproposed in thiskind of logic. Itisan attractive can-
didate for expressing security policies which was first used
by Glasgow and M cEwen to specify confidentiality policies
[9]. It enables one to consider security policies specifying
norms with obligation whereas other approaches only con-
sider permission and prohibition. Our model aso includes
the possibility of dealing with conditional norms, for exam-
ple: “If it is during the day and if an individual is located
in room S155, thisindividual is permitted to access the sys-
tem. Otherwise, he is forbidden to do s0”. As far as we
know, the only model dealing with conditional norms was
proposed in [16] but the problem of consistency checking is
not addressed in this paper.

Our final goa in this work would be to define a global
security model to ded with MAC (Mandatory Access Con-
trol), DAC (Discretionary Access Control) or RBAC (Role
Based Access Control) and which enables confidentiality,

integrity and availability requirements to be specified. Of
course, this is an ambitious goal and our studies may be
viewed as afirst step in thisdirection.

This paper is organized as follows. In section 1, we de-
scribe an example of security policy we shall use aong this
paper to illustrate our approach. In section 2, afirst logic
based on SDL (Standard Deontic Logic) is defined and it
is shown how our example is formalized withinit. In sec-
tion 3, the problem of regulation consistency is addressed.
In section 4, we refine the previous logic and describe our
approach to solve normative conflicts. We apply our so-
[ution to the example. Finaly, in section 5, we discuss
additiona functionalities that may be developed to assist
security administrators, in their attempt to specify and for-
malize security policies. The study of these functiondities
remains to be done.

2. Example of regulation

Thelogica approach we propose to deal with a security
policy is based on the concept of role. Each roleis as-
sociated with a set of norms (i.e. permissions, obligations
and prohibitions). Depending on circumstances, agentsplay
roles. When playingarole, an agentinheritstheset of norms
associated with thisrole. An agent can play severa roles
simultaneously. In this case, he inherits the union of the
norms associ ated with each role he plays.

Therefore, specifying a regulation by using the concept
of role leads to defining the set of permissions, obligations
and prohibitions associated with each role. Thispart of the
specification is what we call the normative specification of
aregulation.

Notice that is also necessary to specify the general con-
ditions which must be satisfied by an an agent in order to
say that heisplaying agivenrole. These general conditions
must be included in the regulation specification. We shall
call this part the descriptive specification of aregulation.

Let us now informally specify the example security pol-
icy we shall use through the remainder of this paper: we
consider a security policy which defines obligations, per-
missions and prohibitions associated with the four follow-
ingroles: User, Secret_User, SSO (System Security Officer)
and Bad_User.

The normative part of our security policy isasfollows:

e Any agent playing therole of User is:

— Permitted to read the publicfiles.

— Permitted to write his own publicfiles.

— Forbidden to downgrade afile.

— Obliged to change his password monthly.

e Any agent playing therole Secret_User is:



— Permitted to read the secret files.
— Permitted to write his own secret file.

e Any agent playing therole SSO is:
— Permitted to downgrade afile.
e Any agent playing therole Bad_User is:
— Forbidden to access the system.
The descriptive part of thissecurity policy isas follows:

e Role“User” characterizes any agent who is using the
system.

e Role “Secret_User” characterizes any agent using the
system and cleared at the secret level.

e Role“SSO” characterizes any secret user whoiis, addi-
tionally cleared to be a system security officer.

¢ Role“Bad_User” characterizes users who do not per-
form what they should do, according to the norms as-
sociated with the role of User. In our example, this
is characterized by an agent who has not changed his
password for more than one month.

3. Logical formalization in SDL

Inthissection, webriefly present thelogic SDL (Standard
Deontic Logic) which is the simplest logic designed for
reasoning about deontic notions. In order to modd the
relationship between an agent and a role he is playing, we
introduce a binary predicate Play. We shall then show in
section 3 that SDL is adequate to analyze the problem of
regul ation consistency.

3.1. Thelanguage of SDL

Let us denote the language of SDL by L. Thisis a
first order language without function symbols, but with one
modality denoted O. Therefore, the language L is defined
by thefollowing rules:

e If P isan-ary predicate and if a1, ..., a,, are constants
or variables, then P(ay, ..., a,) isa(atomic) formula

o If pisaformulaof L then —p isaformulaof L.

e If pand ¢ areformulae of L then p A ¢ isaformulaof
L.

o If pisaformulaand z avariable, thenVz pisaformula

o If pisaformulathen Opisaformula Op istoberead
“p isobligatory”.

e Nothingelseisaformulaof L.

Other deontic modalities are introduced by the following
definitions:

e Pp « -O—-p

o WWp o -Op

o Fp d:ef O-p
Pp, Wp and F'p arerespectively to beread “p is permitted,
waived, forbidden”.

3.2. Axiomatics

The axiomatics of SDL issimilar to the one of KD logic
[11, 4]. Axiomsare:

e All axioms of first order logic.
e O-p— —0p
* OpAO(p—q)— Oq
and inferencerules are;
e Theinference rules of first order logic.
e O-Necessitation: If - p then Op

Dueto space limitation, we shdl not recall the complete
semantics of SDL. Let usjust say that the interpretations of
SDL are standard Kripke interpretations of KD logic, i.e.
interpretations related by one accessibility relation which
has the property to be serial.

3.3. Specifying our examplein SDL

We now propose a specification in SDL of the example
we informally presented in section 1. For thispurpose, we
introduce the following predicates:

e Unary Predicates: File, Public, Secret, Old_Passwd,
Access_System, Change_Passwd.

e Binary Predicates: Play, Owner, Password, Cleared,
Login, Read, Write, Downgrade.

The intuitive meaning of these predicates will become
clear through the following formulae used to specify our
security policy.

The normative part of the policy isas follows:

¢ (R1) Any agent playing the role User is permitted to
read any publicfile.

VYA, File(f) A Public(f) A Play(A, User)
— P Read(A, f)



¢ (R2) Any agent playing the role User is permitted to
write hisown publicfiles.

VI, VA,
File(f)APublic(f)AOwner(f, A)APlay(A, User)
— P Write(A, f)

¢ (R3) Any agent playing the role User is forbidden to
downgrade afile.

VYA, File(f) A Play(A, User)
— F Downgrade(A, f)

¢ (R4) Any agent playing the role User is obliged to
change his password if this password is more than one
month old.
VA, Vpass,
Password(A, pass) A Old_Passwd(pass)A
Play(A, User)
— O Change_Passwd(A)

¢ (R5) Any agent playing therole Secret_User is permit-
ted to read the secret files.

VI, VA,
File(f) A Secret(f) A Play(A, Secret_User)
— P Read(A4, f)

¢ (R6) Any agent playing therole Secret_User is permit-
ted to write his own secret files.

VI, VA,
File(f) A Secret(f) A Owner(f, A)A
Play(A, Secret_User)

— P Write(A, f)

¢ (R7) Any agent playing the role SSO is permitted to
downgrade afile.
VYA, File(f) A Play(A, SSO)
— P Downgrade(A, f)

¢ (R8) Any agent playing therole Bad_User isforbidden
to access the system.

VA, Play(A, Bad_User) — F Access_System(A)

Theclassica approaches used to specify security policies
only consider norms with permission or prohibition to do
something. Inour approach, we & so want to consider norms
with obligation. Rule (R4) provides an example of such a
norm. One may argue that it would not be possible to
implement access controlsinasystem so that it isacertainty
that a user will change his password monthly. This isthe
reason why theregul ation makesprovision for the casewhen
rule(R4) isviolated,i.e. auser hasnot changed hispassword
when he should have. Inthiscase, rule (R8) appliesand the
user isno longer permitted to access the system?.

The descriptive part of thissecurity policy isas follows:

IThiskind of ruleis generally called a contrary to duty norm

¢ (Cl)Role“User” characterizes any agent whoisusing
the system.

VA, Play(A, User) = Jlevel, Login(A, level)

e (C2) Role"Secret_User” characterizes any agent using
the system and cleared at the secret level.

VA, Play(A, Secret_User) =
Cleared(A, secret) A Login(A, secret)

e (C3) Role“SSO" characterizes any secret user whoiis,
additionally cleared to be a system security officer.

VA, Play(A, SSO) =
Play(A, Secret_User) A Cleared(A, SSO)

¢ (C4)Role“Bad_User” characterizes any agent who has
not changed his password for more than one month.

VA, Play(A, Bad_User) =
Play(A, User)A
dpass,
(Password(A, pass) A Old_Passwd(pass))A
—Change_Passwd(A)

Finaly, there are general rules which are not directly re-
lated to the regulation specification but to the domain of
application handled by this regulation. These genera rules
include a specification of how the predicates are connected
together. In particular, in order to completely analyze the
consistency of our example, we need to add the three fol-
lowing general rules:

e (G1) An agent cannot read afile without accessing the
System.

VI, YA, Read(A, f) — Access_System(A)

¢ (G2) Anagent cannot writea filewithout accessing the
System.

VYA Write(A, f) — Access_System(A)

¢ (G3) Anagent cannot downgrade afile without access-
ing the system.

Vf,YA, Downgrade(A, f) — Access_System(A)

In the remainder of this paper, rules (G1),(G2),(G3) are
called the domain constraints.

Let us notice that (G1),(G2),(G3) do not give a com-
plete description of the worlds ruled by the regulation. For
instance, we could add the following rule:

e (G4) The effect of downgrading a file is that the file
classification becomes public.
Vf,YA, Downgrade(A, f) — Public(f)

However, rules (G1),(G2),(G3) are sufficient toillustrate
how to verify regulation consistency.



4. Verifying regulation consistency

We restrict our study of regulation consistency to reg-
ulations which are sets of SDL formulae of the following

form:
ox A\ V ti— \/ ML

i=l.nj=1..m r=1.k

where QX are universally or existentially quantified vari-
ables, the l;;'s and the [,’s are literds®> and M €
{0,-O P,-P, F,—F,W,=W}. One can verify that rules
(R1)-(R8) previoudly defined are of thisform.

Theserulesexpresswhat isobligatory or not, permitted or
not, forbidden or not, waived or not, and according to which
conditions. The main restriction is that we only consider
literal swithin the range of a deontic modality.

Intuitively, we want a regulation R to be consistent if
and only if there exists no world, ruled by R, in which' R
leads to a contradiction (for instance, it is both permitted
and forbidden for someone to do something) or in which
‘R requires that someone face a moral dilemma (i.e, oneis
obliged to do something and a so obliged to doitscontrary).
In other words, as soon as we can detect such a world, we
say that R is not consistent.

For instance, let us assume that one rule of a regulation
permitsauser to read a secret-file and another one prohibits
him from accessing the file system. Since we know that
reading a file implies accessing the file system, we shall
consider that the regulation is not consistent. Indeed, as
soon as a user is logged in the system, he is faced with
a contradiction: he is permitted to read a secret-file and
therefore, to access the file system but heis also prohibited
from doing so.

This example shows us that, for defining the notion of
regulation consistency, we need to consider not only the
rules in the regulation (which express what is permitted,
obligatory or forbidden) but aso the rules which constrain
the worlds ruled by the regulation, the so-called domain
constraints. As a matter of fact, if in the previous example,
we do not assume that reading afile implies accessing the
file system, then we do not have a contradiction.

4.1. Definition of regulation consistency

Let us denote Dom the set of domain constraintsand | et
us denote SDL p,n, the logica system derived from SDL
by adding formulae of Dom as proper axioms. =p o, Will
denote thelogical consequence in SDL p oy, -

Intuitively, regulation R isconsistent if thereisnoworld
in which it would not be possible to apply R. So, atrivia
case of regulation consistency iswhen thereisaworld, sat-
isfying the domain constraints Dom, inwhich R — False

2j e. apositive or negative atomic formulae

is satisfied. However, we aso want to consider conditional
norms. For instance, we may have:

pr—0q and pr— Fq

where p; and p, are two conditions. In thiscase, theincon-
sistency only appearsinasituationwherep; A p, issatisfied.
This is the reason why we proposed, in [6], the following
more compl ete definition of regulation consistency:

Definition 1 Let Dom be a set of domain constraints. Let
‘R bearegulation.

‘R isconsistent (according to domain Dom) iff thereisno
first order formula f, such that: =pom (R A f) — False
and (f A Dom) satisfiable.

Thisdefinitionsaysthat, if thereisasituation f (correspond-
ingto p1 A p2 inour previous example) compatible with the
domain constraints Dom, in which R leads to a contradic-
tion, then we shall consider that R is not consistent.

4.2. Translating the problem into first order logic

In thissection, wedefine amethod for deciding if agiven
regulation is consistent or not®. This method consists in
trand ating a regulation and a set of domain constraintsinto
aset of first order formulae. Let us denotet thistrandation.
We do not have enough place here to give the definition of
t but let usillustrate this tranglation through our example:

¢ (R1)aUser ispermittedto read publicfileisexpressed
by the SDL formula:

VYA, File(f) A Public(f) A Play(A, User)
— P Read(A4, f)

It istrandated into the followingfirst-order formula:

VYA, File(f) A Public(f) A Play(A, User)
— —obligatory(not(read(A, f)))

where obligatory isnow apredicate, not and read are
two functions.

¢ (R8) a Bad_User is forbidden to access the system is
expressed by the SDL formula:
VA, Play(A, Bad_User) — F Access_System(A)
Itistranslated into the first order formula
VA, Play(A, Bad_User)

— obligatory(not(access_system(A)))

The trandlation ¢ has the following property:

3The complete description of this method is described in [6]. This
technical report may be provided to the interested reader on request.



Proposition 1 Let us denote D the following axiom
schema:

D = —obligatory(a(X)) V —obligatory(not(a(X))

A regulation R is consistent iff thereisno formula f such
that:

1. f belongstothelanguaget(L) \ {obligatory}
2. Et(R)At(Dom) AD — —f

3. f At(Dom) issdtisfiable

4.3. Verifying consistency vs consequence gener a-
tion

According to the previous proposition, we notice that
verifying the consistency of R comes down to ensuring that
t(R) A t(Dom) A D has no consequence —f belonging to
t(L) \ {obligatory}, such that f A t(Dom) is satisfigble.
This comes to a problem of consequence finding [13, 12].

Sincethe consequences — f wewant to generate belong to
thelanguaget( L)\ {obligatory} (condition1 of proposition
1) and satisfy a given condition (condition 3), we think
that it is adequate to apply the inference rule called SOL-
deduction, introducedby Inoue[12]. Asamatter of fact, this
rule has especialy been designed to generate consequences
of agiven set of clauses which belong to a given language
and which satisfy a given condition.

We do not detail here the SOL deduction because de-
scribing an inference rule for consequence finding is out of
the scope of our paper. But we shall briefly present the SOL
deduction in the appendix.

Let usaso noticethat, in[14] and[15], Ong and L ee have
already shown that the problem of checking regulation con-
sistency reduces to a problem of abduction or equivalently,
aproblem of consequence finding. In their papers, Ong and
Lee defined an ad-hoc agorithm when the regulation and
domain constraints are specified with Horn clauses. Our
approach is more general since it is not restricted to Horn
clauses and can be applied to generd clauses.

This kind of agorithm which can be applied to genera
clausesis of course time-consuming. But we argue that the
regul ation consi stency isnot frequently checked; actualy, it
is only checked when the regulation is defined or updated.
Thus, we are developing an off-line tool which does not
need real-time performance.

4.4. Application to our example
Running the agorithm which implements the SOL-

deduction, on our toy example provides us with the fol-
lowing answers:

e 3f3A File(f) A Play(A, SSO)

This means that, as soon as there is a security officer
A and afile f in the file-system, thereis a contradic-
tion. Indeed, in this case, we can derivethat A isboth
permitted and forbidden to downgrade f.

e If3A File(f) A Public(f) A Play(A, Bad_User)

This means that, as soon as there is a bad user A and
a public file f, there is a contradiction. Indeed, in
this case, we can derive that A is both permitted and
forbidden to access the system.

e If3A File(f) A Secret(f) A Play(A, Bad_User) A
Play(A, Secret_User)

Thismeansthat, as soon asthereisasecret file f and a
secret user A whoisabad user, thereisacontradiction.
Indeed, in this case, we can also derive that A isboth
permitted and forbidden to access the system.

5. Solving nor mative conflicts

In this section, we address the problem of solving nor-
meative conflicts.

Assaid previoudly, our approach isto consider that each
individual is associated with a set of roles, each of them
representing the ideal behaviour the individual can play in
a given situation. Each role is associated with a set of
permissions, obligations, prohibitions, laid upon the role-
holder. Roles are defined separately from the individuals.
Anindividual inheritsthe set of normsassociated witharole
when he plays thisrole. For instance, in our example, we
identified four roles: User, Secret_User, SSO and Bad_User.

We assume that the set of norms associated with arole
is conflict free. Therefore, a conflict can only exist when
an individud is playing different roles. For instance, the set
of norms associated with User, prohibitsa user from down-
grading a file. However, a security officer is a particular
user and he is permitted to downgrade a file. So, playing
these two roles leads to a conflict: it is both permitted and
forbidden to downgrade afile.

So the problem is the following: given several sets of
norms corresponding to the different roles an individua
can play, what is the set of norms corresponding to the set
of roles he plays a a given time. For instance, what are
the obligations, permissions and prohibitions applying to
an individual who is both a user and a security officer? In
particular, is he permitted to downgrade a file or not?

Inthissection, wefirst refine theformalismwe proposein
section 2 for checking regulation consistency. The deontic
operators are now indexed by roles and we aso slightly
change the definition of permission. We then present the
axiomsof thelogic used for reasoning with compositeroles,
i.e. roles obtained by merging several roles. For solving



the problem of conflicts between the different roles which
congtitute a composite role, we suggest using an order for
merging the roles. This order represents a priority between
them. Weassume here, that thisorder istotal. The extension
to partial ordersisdiscussed in [5].

In our example, the order imposed on the two roles User
and SSO comesfromthestructureof thetworoles: asecurity
officer isakind of user. So the preference is given to SSO
and the individual who is a security officer is permitted to
downgrade afile.

5.1. Thelanguage

Let us consider afinite set Role = {R1, Ry, ..., R,} of
roles. We shall use the following notation:
o |f therolesto be merged are denoted R;,, ..., R;,, then

the role obtained by merging them using the order
R;, > ...> R;, will dsobedenoted R;, > ... > R;, .

o If o = R;, > ... > R;, isacomposite role obtained
by merging £ roles, we shal denote o > R;,,, the
compositeroleobtained by merging i;,, ..., R, , R, .,
withtheorder R;, > ... > R;, > Ry, ;.

The language L’ we use is a refinement of language L
we defined in section 2. It is defined as follows:

e If P isan-ary predicate and if a1, ..., a,, are constants
or variables, then P(ay, ..., a,) isaformula

e If pisaformulacf L’ then —p isaformulaof L'.

e If pand q areformulaeof L’ thenp A ¢ isaformula of
L.

e If pisaformulaand o is any primitive or composite
role obtained by merging severa roles, O,p, P,p and
F,pareformulaeof L’. They will mean that, according
to the primitive or composite role o, p is respectively
obligatory, permitted or forbidden.

e Nothingeéseisaformulaof L'
5.2. Axiomatics

In the following axioms, [ represents a literal, p and ¢
represent formulae, R; represents a primitive role and o
represents a primitive or compositerole,

e (A0) All axioms of first order logic.
e (A1) O,pAOu(p — q) — Ouq

e (A2) P,(pAgq) — P,pA Pyg

* (A3) Oop — Pop

* (A4 O,p — =P,—p

o (A5) F,p= 0,-p

o (AB) 0,1 — Opsp,l

o (A7) Or,lA—-Py=l — O,sp,l
o (A8) Ous il — 0,1V Og,l

o (A9) Pl — Pysp,l

o (A10) Pl A=0y=l — Pysp,l
o (A11) Pysp,l — P,IV Pg,l

Axioms(A1)—A5) arethe axiomswhich characterize the
way of reasoning with obligations, permissions and prohi-
bitionsinside a (primitive or composite) role.

The axiomaticsfor each modality O g, issimilar to SDL.
In particular, noticethat from axioms (A3) and (A4) we can
derive - O,p — —0,—p.

On the other hand, we break with thetraditionin deontic
logic which generally views obligation as dua of permis-
sion,i.e. - O,p — —P,—p. We only accept theimplication
from the left to the right (A4) but not the converse. Thisis
because we consider that the set of norms associated with
arolegeneraly does not represent a complete regulation of
theworld, i.e. within arole, there may be sentences which
are neither permitted nor obligatory.

This assumption is important when we merge the regu-
lations associated with two different roles 22; and ;. Asa
metter of fact, by merging thetwo roles, wewant to consider
that the roles are in some sense complementary and thisis
not possibleif each role R2; and 12; represents two different
but complete regulations of the world.

Axiom (Ab) says that “it is forbidden that p” is defined
as“itisobligatory that —p”.

Axiom (A6) expressesthat if / isobligatoryinroleo, then
itisalso obligatory according to the compositeroleo > R;.

Axiom (A7) expressesthat if [ isobligatory in aprimitive
role R; andif -/ isnot permittedinroleo, thenlisobligatory
according totheroleo > R;.

Axiom (A8) expresses that if [ is not obligatory in both
roleso and R;, thenitisnot obligatory inroleo > R;.

Axiom (A9) expressesthat if / ispermittedinroleo, then
itisalso permittedinroleo > R;.

Axiom (A10) expressesthat if [ ispermittedinarole R;
and if =/ is not obligatory in role o, then [ is permitted in
roleo > R;.

Axiom (A11) expresses that if [ isnot permitted in both
roleso and R;, thenitisnot permittedinroleo > R;.

Theinferencerules are:

¢ (I11) Theinference rules of first order logic.

e (12 5
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5.3. Deriving actual norms

Merging severa rolestogether allowsusto derivetheac-
tual norms which apply to anindividua in agiven situation
(For the sake of simplicity, we consider only one individua
caled “the individua™). For this purpose we first need a
means for specifying which roles the individud is playing
in the situation we want to consider and the order of pri-
ority among these roles applies. Therefore, we add to the
language the following propositions:

o All_Roles(Ra, ..., Ry) for each subset { Ry, ..., Ry} of
the set of roles.

Intuitively, All_Roles(Ry, ..., Ry) istoberead “ Ry, ..., Ry,
are dl and only all the roles played by the individua and
theserolesare prioritizedintheorderinduced by R1 > ... >
Ry".

We can now define which actual norms apply to theindi-
vidua inagiven situation. For this purpose, we aso add to
thelanguage simplemodaditiesO, P and F'. Intuitively, Op,
Ppand F'p are respectively to beread: “p isan actual obli-
gation, permission or prohibition for the individua”. The
axioms defining O, P and F' are thefollowing:

. (AL2)
All_Roles(Ry, ..., Ri) — (Op < ORr;> .. >Ry D)

e (A13)
All_Roles(Ry, ..., Rr) — (Pp < Pr;>  >R.D)

e (A1) Fp — O—p

Axiom (A12) says that if Ry, ..., R are al and only al
the roles played by the individual and if R1 > ... > Ry
represents the order in which these roles are prioritized,
then the actual obligations of the individual are derived by
merging al the roles according to thisorder of priority.

Axiom (A13) is a similar definition for the actual per-
missions. Axiom (A14) simply says that “p is an actual
prohibition” if and only if “—p is an actua obligation”.

5.4. Application to our example

To specify our example in language L/, we have sim-
ply to index the deontic modalities by role User in rules
(R1)...(R4), Secret_User in rules (R5)-(R6), SSO inrule
(R7) and Bad_U ser inrule (R8).

Let us now consider an agent A whose password ismore
than one month old, i.e,

Jpass, Password(A, pass) A Old_Passwd(pass)

Let us aso assume that there exists afile f1 whose clas-
sification is secret, i.e,

File(f1) A Secret(f1)

Finaly, let us assume that the four following roles we
considered in the previous section are ordered as follows:

Bad_User > S50 > Secret_User > User

Figure 1 showsthrough several examplestheanswerswe
obtain when our approach to query aregulationis applied.

For instance, let us assume that one wants to know if A
is permitted to downgrade f;.

Inasituationwhere A isplayingtherole SSO but not the
role Bad_U ser, theanswer is7True. Thisisbecause, wecan
derive from the regulation that Psso Downgrade(A, f1)
and, since SSO istherolehaving the highest priority among
the roles played by A in this situation, we can also derive
that P Downgrade(A, f1).

On the other hand, in a situation where A is play-
ing both roles SSO and Bad User, the answer is

False. This is because, we can now derive that
Fpad_user Access_System(A). And, by (G3), we can
aso derive that:

—Access_System(A) — ~Downgrade(A, f1)

Therefore, from the prohibitionto access the system, we can
derive the prohibitionto downgrade f;:

Fpad_vser Downgrade(A, f1)
Thisimpliesthat downgrading f; is not permitted:
“PBad_User Downgrade(A, f1)
Since Bad_U ser istherolewith the highest priority, we can

now derivethat =P Downgrade(A, f1) and the answer is
False.

6. Conclusion

This paper investigates new directions for analyzing
some properties of security policies. We have found the
framework of deontic logic useful for this purpose espe-
cialy when dealing with security policies which include
situations where some horms may be violated. We focused
on:

¢ How to check the security policy consistency.

¢ How to consistently query a security policy.



Rolesplayed by A
Secret_UserA SSON SSOA
Queries -SSOA —Bad_User | Bad_User
—Bad_User
O Change_Passwd(A) True True True
P Access_System(A) True True False
P Downgrade(A, f1) False True False

Figure 1. Examples of queries

For these two aspects, support toolsin Prolog have been
implemented. We have devel opped a consistency checker
based on the SOL-deduction as well as an agorithm for
solving normative conflicts based on the logic described in
section 4. Furthermore, we have applied this formalism to
analyse a regulation, used in the context of the Nationa
Defense, which define means to protect secret data[7]. This
analyse reveded many subtleties and ambiguities of this
security policy.

This experiment also enables us to raise up severd in-
teresting real-world problems which seem to require more
theoretical development. In particular, the analysis of this
regulation showsthat the concepts of responsibility and del-
egation must be modelled. It also show that our formalism
must be extended in order to express temporal notions (see
[7]). For this purpose, it may be interesting to adapt the
approach proposed in [2].

There are several other functionalities that we plan to
investigatein the future. For instance:

¢ Functionality for checking if agiven situation does not
violate the security policy. For instance, let us denote
s the following situation:

File(f) A Play(A,User) A —~Play(A, SSO)
A Downgrade(A, f)

Thisis aproblem of checking conformity because sit-
uation s violatesthe prohibitionfor a user whichisnot
a system security officer to downgrade afile. In this
case, the formulato be checked to detect a conformity
problem isthe following:

':Dom (S/\R) — F's

where s is the situation to be checked. It would be
also interesting to derive which sanction applieswhen
apolicy violation occurs.

e Functionality for designing new security policies re-
sulting from the interoperability between several sys-
tems, each of them being associated with its own secu-

rity policy.
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8. Appendix: The SOL-deduction: a short
overview

Definition 2

A production field P is defined by a language Lp and a
condition Condp.

A clause belongsto P iff it belongs to language Lp and it
satisfies Condp.

A structured clauseisa pair < P, > where P and )
are clauses.

Let > be aset of clauses, C' a clause and P a production
field. A SOL deductionof aclause S from> + C and P is
a sequence of structured clauses Dg, D;...D,,, such that:

1 Dy=<0,C >

2. D, =< 50>

3. Foreach D; =< Pi,Qi >, P; U Q; isnot atautology.
4

. For eech D;, =< Pi,Qi > P U @Q; is
not subsumed by a clause P; U Q;, where
D; =< F;,Q; >isastructured clausesuchthat j < «.

Thisruleisnot applied if D; is generated form D;_1,
by application of the rule 5(a)i.

5. Diy1 =< P41, Qi1 > isgenerated from D); accord-
ing to the following steps:

(8) Let!betheleft-mostlitera of @;. P;+1and R;41
are obtained by applying one of the following
rules:

i. (Skip) If P; u{l} belongsto P, then P; 1 =
P; U{l} and R; 1 isthe new ordered clause
obtained by removing | from @);.



ii. (Resolve) If thereisaclause B; in Z such that
—k € B; and [ and & are unifiablewith most
general unifier 4, then P; 1 = P;f and R; 41
isan ordered clause obtai ning by concatenat-
ing B;0 and @;8, framing 16 and removing
—kd.

(Reduce) If either,

A. P; or ); contains an unframed litera &
different from{ (factoring), or

B. @; containsaframed literal -k (ances-
try)

such that [ and & are unifiable with most

general unifier 4, then P;1 = P;if and R;41

isobtained from @ ;6 by deleting 6.

(b) Q;4+1 is obtained from R; 1 by deleting every
framed literal not preceded by an unframed literal
in the remainder (truncation).

The productionfield considered in the problem of testing
of regulation consistency isthe following:

PL, Dom = {L \ {obligatory} , {c:=cA Dom is
satisfigble} }
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