
Analyzing Consistency of Security Policies

Laurence Cholvy and Frédéric Cuppens
ONERA-CERT
2 Av. E. Belin

31055, Toulouse Cedex
France

email:
�
cholvy,cuppens � @cert.fr

fax: +(33) 62 25 25 93

Abstract

This paper discusses the development of a methodology
for reasoning about properties of security policies.

We view a security policy as a special case of regulation
which specifies what actions some agents are permitted,
obliged or forbidden to perform and we formalize a policy
by a set of deontic formulae.

We first address the problem of checking policy consis-
tency and describe a method for solving it. The second point
we are interesting in is how to query a policy to know the
actual norms which apply to a given situation. In order to
provide the user with consistent answers, the normative con-
flicts which may appear in the policy must be solved. For
doing so, we suggest using the notion of roles and define
priorities between roles.

1. Introduction

The primary goal of a security policy is to specify means
for facing a given environment of threats. All organizations
generally have designed security policies that apply to all
systems within the organization and define the security re-
lationship between the organization and the outside world.
In our approach, we view a security policy as a specific case
of regulation. The systems to be regulated are composed of
agents which can perform some actions on some objects. A
regulation on such a system aims at defining what actions
the agents are permitted, obliged or forbidden to perform.
This represents a set of constraints to be enforced by the
agents. We can actually divide these constraints into two
classes:

1. The constraints to be enforced by the agents when they
perform actions on the system objects.

2. The constraints to be enforced by agents when they
interact with other agents. In this case, the regulation
may use various concepts such as the concepts of re-
sponsibility, delegation, hierarchical authority and so
on...

This paper mainly focus on the first class of constraints. In
this context, our first goal is to provide a precise and non am-
biguous specification of a security policy. For doing so, we
use a deontic logic, also called logic of norms, for represent-
ing the concepts of permission, obligation and prohibition.
We then extend this formalism with the notion of role. In-
tuitively, each individual is associated with a set of roles,
each of them representing the ideal behaviour he should
have in a given situation. Each role defines the permissions,
obligations and prohibitions laid upon the role-holder.

The advantage of a representation based on formal logic
is that it is then possible to precisely define the axioms to
reason about a regulation. This enables one to develop tools
to analize the consequences of the norms used to define a
given regulation. In this paper, we especially focus on the
following functionalities:

1. Check the regulation consistency, i.e. check if the
regulation does not create conflicting situations, for
instance situations in which an agent is permitted to
perform a given action and, at the same time, forbidden
to perform this action.

2. Query a regulation to know which norms apply to a
given situation. Since some conflicting situations may
be created by the regulation and since our objective is to
provide consistent answers, we first need to solve these
conflicts. Our solution is the following. We consider
that there is no normative conflict within a given role.
Therefore, a conflict can only exist when an individ-
ual is playing two different roles and a conflict exists
between these two roles. In this case, the central idea

is to consider that it is possible to make a judgment of
priority between these two roles in order to evaluate the
actual norm which applies in the examined situation.

Analyzing these two functionalities is not completely
new. Abadi et al. [1] proposed a language for specifying
security policies based on access control lists. The authors
also include the possibility to deal with roles and delegation
and provide theories for deciding whether requests should be
accepted or not. In [10], Gong and Qian analyze the problem
of complexity and composability of secure interoperation.
They consider a context in which there are several systems,
each system having its own security policy. Two general
principles are then stated. (a) Principle of Autonomy: Any
access permitted within an individual system must be also
permitted under secure interoperation. (b) Principle of Secu-
rity: Any access not permitted within an individual system
must be also denied under secure interoperation. In this con-
text, the authors show that most problems are NP-complete
even for systems with very simple access control structures.
Another approach for combining components and policies
was proposed in [8]. The authors provide a means for show-
ing whether the combinations of components will satisfy
specified policies. In [3], Bertino et al. propose an au-
thorization mechanism that enables multiple access control
policies to be supported. The mechanism enforces a general
authorization model which distinguishes between positive
and negative authorizations. A positive authorization corre-
sponds to permission whereas a negative authorization cor-
responds to prohibition. It also distinguishes between weak
and strong authorizations. A strong authorization overrides
a weak authorization whereas strong authorization cannot
be overridden. In this model, only conflicts between weak
authorizations are manageable and, in this case, the authors
propose an approach to resolve conflicts.

Since our approach in based on deontic logic, we can di-
rectly reuse the formal and precise definition of the deontic
notions proposed in this kind of logic. It is an attractive can-
didate for expressing security policies which was first used
by Glasgow and McEwen to specify confidentiality policies
[9]. It enables one to consider security policies specifying
norms with obligation whereas other approaches only con-
sider permission and prohibition. Our model also includes
the possibility of dealing with conditional norms, for exam-
ple: “If it is during the day and if an individual is located
in room S155, this individual is permitted to access the sys-
tem. Otherwise, he is forbidden to do so”. As far as we
know, the only model dealing with conditional norms was
proposed in [16] but the problem of consistency checking is
not addressed in this paper.

Our final goal in this work would be to define a global
security model to deal with MAC (Mandatory Access Con-
trol), DAC (Discretionary Access Control) or RBAC (Role
Based Access Control) and which enables confidentiality,

integrity and availability requirements to be specified. Of
course, this is an ambitious goal and our studies may be
viewed as a first step in this direction.

This paper is organized as follows. In section 1, we de-
scribe an example of security policy we shall use along this
paper to illustrate our approach. In section 2, a first logic
based on SDL (Standard Deontic Logic) is defined and it
is shown how our example is formalized within it. In sec-
tion 3, the problem of regulation consistency is addressed.
In section 4, we refine the previous logic and describe our
approach to solve normative conflicts. We apply our so-
lution to the example. Finally, in section 5, we discuss
additional functionalities that may be developed to assist
security administrators, in their attempt to specify and for-
malize security policies. The study of these functionalities
remains to be done.

2. Example of regulation

The logical approach we propose to deal with a security
policy is based on the concept of role. Each role is as-
sociated with a set of norms (i.e. permissions, obligations
and prohibitions). Depending on circumstances, agents play
roles. When playing a role, an agent inherits the set of norms
associated with this role. An agent can play several roles
simultaneously. In this case, he inherits the union of the
norms associated with each role he plays.

Therefore, specifying a regulation by using the concept
of role leads to defining the set of permissions, obligations
and prohibitions associated with each role. This part of the
specification is what we call the normative specification of
a regulation.

Notice that is also necessary to specify the general con-
ditions which must be satisfied by an an agent in order to
say that he is playing a given role. These general conditions
must be included in the regulation specification. We shall
call this part the descriptive specification of a regulation.

Let us now informally specify the example security pol-
icy we shall use through the remainder of this paper: we
consider a security policy which defines obligations, per-
missions and prohibitions associated with the four follow-
ing roles: User, Secret User, SSO (System Security Officer)
and Bad User.

The normative part of our security policy is as follows:

� Any agent playing the role of User is:

– Permitted to read the public files.

– Permitted to write his own public files.

– Forbidden to downgrade a file.

– Obliged to change his password monthly.

� Any agent playing the role Secret User is:

2

– Permitted to read the secret files.

– Permitted to write his own secret file.

� Any agent playing the role SSO is:

– Permitted to downgrade a file.

� Any agent playing the role Bad User is:

– Forbidden to access the system.

The descriptive part of this security policy is as follows:

� Role “User” characterizes any agent who is using the
system.

� Role “Secret User” characterizes any agent using the
system and cleared at the secret level.

� Role “SSO” characterizes any secret user who is, addi-
tionally cleared to be a system security officer.

� Role “Bad User” characterizes users who do not per-
form what they should do, according to the norms as-
sociated with the role of User. In our example, this
is characterized by an agent who has not changed his
password for more than one month.

3. Logical formalization in SDL

In this section, we briefly present the logic SDL (Standard
Deontic Logic) which is the simplest logic designed for
reasoning about deontic notions. In order to model the
relationship between an agent and a role he is playing, we
introduce a binary predicate Play. We shall then show in
section 3 that SDL is adequate to analyze the problem of
regulation consistency.

3.1. The language of SDL

Let us denote the language of SDL by
�

. This is a
first order language without function symbols, but with one
modality denoted � . Therefore, the language

�
is defined

by the following rules:

� If � is a n-ary predicate and if � 1, ..., ��� are constants
or variables, then ����� 1 	�
�
�
	 ����� is a (atomic) formula.

� If � is a formula of
�

then ��� is a formula of
�

.

� If � and � are formulae of
�

then ����� is a formula of�
.

� If � is a formula and � a variable, then ����� is a formula.

� If � is a formula then ��� is a formula. ��� is to be read
“� is obligatory”.

� Nothing else is a formula of
�

.

Other deontic modalities are introduced by the following
definitions:

� ��� def� �������
�! � def� �����
�#" � def� �����

��� , � and " � are respectively to be read “� is permitted,
waived, forbidden”.

3.2. Axiomatics

The axiomatics of SDL is similar to the one of KD logic
[11, 4]. Axioms are:

� All axioms of first order logic.

� �����%$&�����
� �����������'$(�)��$&���

and inference rules are:

� The inference rules of first order logic.

� O-Necessitation: If *�� then *����
Due to space limitation, we shall not recall the complete

semantics of SDL. Let us just say that the interpretations of
SDL are standard Kripke interpretations of KD logic, i.e.
interpretations related by one accessibility relation which
has the property to be serial.

3.3. Specifying our example in SDL

We now propose a specification in SDL of the example
we informally presented in section 1. For this purpose, we
introduce the following predicates:

� Unary Predicates: File, Public, Secret, Old Passwd,
Access System, Change Passwd.

� Binary Predicates: Play, Owner, Password, Cleared,
Login, Read, Write, Downgrade.

The intuitive meaning of these predicates will become
clear through the following formulae used to specify our
security policy.

The normative part of the policy is as follows:

� (R1) Any agent playing the role User is permitted to
read any public file.

��+ 	 �-, 	 "�.0/21 �3+-�4����5-6 /2.87 ��+9�:��� / �<;<�0, 	>=@? 1BA �C $&�!D 1 �<EF�8, 	 +9�

3

� (R2) Any agent playing the role User is permitted to
write his own public files.

��+ 	 �9, 	"�.0/21 �3+-�>����5-6 /2.87 ��+9� ��� ����1�A ��+ 	 ,@� ��� / �<;<�8, 	 = ? 1�A �C $(� A).�� 1 �8, 	 +9�
� (R3) Any agent playing the role User is forbidden to

downgrade a file.

��+ 	 �9, 	 "�.8/ 1 �3+-�4� � / �<;<�8, 	 = ? 1�A �C $ "����	����
<A ��E 1 �8, 	 +9�
� (R4) Any agent playing the role User is obliged to

change his password if this password is more than one
month old.

�-, 	 ���9� ?�?�	
��� ?B? ���)A EF�0, 	 �-� ?B? ����� / E ��� ?�? � E ���-� ?�? � �
� / �<;<�0, 	>=@? 1BA �C $(����9� ��
<1 � � ?�? � EF�8, �

� (R5) Any agent playing the role Secret User is permit-
ted to read the secret files.

��+ 	 �9, 	"�.0/21 �3+-�4��� 1�7 A)1�� ��+9����� / �<;<�0, 	 � 1B7 A)1�� = ? 1�A �C $(� D 1 �<EF�8, 	 +9�
� (R6) Any agent playing the role Secret User is permit-

ted to write his own secret files.

��+ 	 �9, 	"�.0/21 �3+-�4��� 1�7 A)1�� ��+9����� ����1�A ��+ 	 ,@� �
� / �<;<�0, 	 � 1B7 A)1�� = ? 1�A �C $(� A).�� 1 �8, 	 +9�

� (R7) Any agent playing the role SSO is permitted to
downgrade a file.

��+ 	 �9, 	 "�.8/ 1 �3+-�4� � / �<;<�8, 	 ��� ���C $(� ���	����
<A ��E 1 �8, 	 +9�
� (R8) Any agent playing the role Bad User is forbidden

to access the system.

�-, 	 � / �<; �8, 	�� �<E =@? 1BA � C $ " , 7>7 1 ?�? � ; ? � 1�� �8, �
The classical approaches used to specify security policies

only consider norms with permission or prohibition to do
something. In our approach, we also want to consider norms
with obligation. Rule (R4) provides an example of such a
norm. One may argue that it would not be possible to
implement access controls in a system so that it is a certainty
that a user will change his password monthly. This is the
reason why the regulation makes provision for the case when
rule (R4) is violated, i.e. a user has not changed his password
when he should have. In this case, rule (R8) applies and the
user is no longer permitted to access the system1.

The descriptive part of this security policy is as follows:

1This kind of rule is generally called a contrary to duty norm

� (C1) Role “User” characterizes any agent who is using
the system.

�-, 	 � / ��; �8, 	 =@? 1�A ����� /21���1B/ 	 � ��
<.�� �0, 	 /21���1�/ �
� (C2) Role “Secret User” characterizes any agent using

the system and cleared at the secret level.

�-, 	 � / ��; �8, 	 � 1�7 A)1�� =@? 1BA ���
� /21 � A)1 EF�0, 	 ? 1�7 A)1�� �:� � ��
�.�� �8, 	 ? 1�7 A)1�� �

� (C3) Role “SSO” characterizes any secret user who is,
additionally cleared to be a system security officer.

�-, 	 � / ��; �8, 	 ��� �����
� / �<; �8, 	 � 1B7>A)1�� =@? 1�A �:��� / 1 � A)1 E �0, 	 ��� � �

� (C4) Role “Bad User” characterizes any agent who has
not changed his password for more than one month.

�-, 	 � / ��; �8, 	 � �<E =@? 1BA �!�
� / �<; �8, 	>=@? 1BA � �
�)�9� ?�?�	
����� ?�? �"�)A EF�8, 	 �-� ?�? �4��� / E � � ?�? � EF��9� ?�? � � �

����9� ��
�1 ��� ?B? � EF�0,@�
Finally, there are general rules which are not directly re-

lated to the regulation specification but to the domain of
application handled by this regulation. These general rules
include a specification of how the predicates are connected
together. In particular, in order to completely analyze the
consistency of our example, we need to add the three fol-
lowing general rules:

� (G1) An agent cannot read a file without accessing the
system.

��+ 	 �-, 	 D 1 �<EF�8, 	 +9� $&, 7 7 1 ?B? � ; ? � 1�� �8, �
� (G2) An agent cannot write a file without accessing the

system.

��+ 	 �-, 	 A).�� 1 �8, 	 +9��$, 7 7 1 ?B? � ; ? � 1�� �8,@�
� (G3) An agent cannot downgrade a file without access-

ing the system.

��+ 	 �-, 	 ���	����
<A ��E 1 �8, 	 +9��$, 7 7 1 ?B? � ; ? � 1�� �0,@�
In the remainder of this paper, rules (G1),(G2),(G3) are

called the domain constraints.
Let us notice that (G1),(G2),(G3) do not give a com-

plete description of the worlds ruled by the regulation. For
instance, we could add the following rule:

� (G4) The effect of downgrading a file is that the file
classification becomes public.

��+ 	 �-, 	 ���	����
<A ��E 1 �8, 	 +9��$&��596 /2.07 �3+-�
However, rules (G1),(G2),(G3) are sufficient to illustrate

how to verify regulation consistency.

4

4. Verifying regulation consistency

We restrict our study of regulation consistency to reg-
ulations which are sets of SDL formulae of the following
form: ��� �

i � 1 ��� n
�

� � 1 ��� 	
/�
 � $ �

� � 1 ���
� / �

where
���

are universally or existentially quantified vari-
ables, the /
 � ’s and the / � ’s are literals2 and

� �
� � 	 ��� � 	 ��� 	 " 	 � " 	 	 � �� . One can verify that rules
(R1)-(R8) previously defined are of this form.

These rules express what is obligatory or not, permitted or
not, forbidden or not, waived or not, and according to which
conditions. The main restriction is that we only consider
literals within the range of a deontic modality.

Intuitively, we want a regulation � to be consistent if
and only if there exists no world, ruled by � , in which �
leads to a contradiction (for instance, it is both permitted
and forbidden for someone to do something) or in which
� requires that someone face a moral dilemma (i.e, one is
obliged to do something and also obliged to do its contrary).
In other words, as soon as we can detect such a world, we
say that � is not consistent.

For instance, let us assume that one rule of a regulation
permits a user to read a secret-file and another one prohibits
him from accessing the file system. Since we know that
reading a file implies accessing the file system, we shall
consider that the regulation is not consistent. Indeed, as
soon as a user is logged in the system, he is faced with
a contradiction: he is permitted to read a secret-file and
therefore, to access the file system but he is also prohibited
from doing so.

This example shows us that, for defining the notion of
regulation consistency, we need to consider not only the
rules in the regulation (which express what is permitted,
obligatory or forbidden) but also the rules which constrain
the worlds ruled by the regulation, the so-called domain
constraints. As a matter of fact, if in the previous example,
we do not assume that reading a file implies accessing the
file system, then we do not have a contradiction.

4.1. Definition of regulation consistency

Let us denote ���	� the set of domain constraints and let
us denote SDL ��� 	 the logical system derived from SDL
by adding formulae of ���	� as proper axioms. � � ��� 	 will
denote the logical consequence in SDL ��� 	 .

Intuitively, regulation � is consistent if there is no world
in which it would not be possible to apply � . So, a trivial
case of regulation consistency is when there is a world, sat-
isfying the domain constraints ���	� , in which � $ " � / ? 1

2 i.e. a positive or negative atomic formulae

is satisfied. However, we also want to consider conditional
norms. For instance, we may have:

� 1 $&� � and � 2 $ " �
where � 1 and � 2 are two conditions. In this case, the incon-
sistency only appears in a situation where � 1 � � 2 is satisfied.
This is the reason why we proposed, in [6], the following
more complete definition of regulation consistency:

Definition 1 Let ���	� be a set of domain constraints. Let
� be a regulation.

� is consistent (according to domain ���	�) iff there is no
first order formula + , such that: � � ��� 	 ��� � +9��$ " � / ? 1
and ��+�� ���	� � satisfiable.

This definition says that, if there is a situation + (correspond-
ing to � 1 � � 2 in our previous example) compatible with the
domain constraints ���	� , in which � leads to a contradic-
tion, then we shall consider that � is not consistent.

4.2. Translating the problem into first order logic

In this section, we define a method for deciding if a given
regulation is consistent or not3. This method consists in
translating a regulation and a set of domain constraints into
a set of first order formulae. Let us denote � this translation.
We do not have enough place here to give the definition of
� but let us illustrate this translation through our example:

� (R1) a User is permitted to read public file is expressed
by the SDL formula:

��+ 	 �-, 	 "�.0/21 �3+-�4����5-6 /2.87 ��+9�:��� / �<;<�0, 	>=@? 1BA �C $&� D 1 �<EF�8, 	 +9�
It is translated into the following first-order formula:

��+ 	 �-, 	 "�.0/21 �3+-�4����5-6 /2.87 ��+9�:��� / �<;<�0, 	>=@? 1BA �C $&� � 6 /2.
 � � �)A ; � � � � � A)1 �<EF�8, 	 +9� � �
where � 6 /2.
 � � �)A ; is now a predicate, � � � and A)1 �<E are
two functions.

� (R8) a Bad User is forbidden to access the system is
expressed by the SDL formula:

�-, 	 � / ��; �8, 	 � �<E =@? 1BA � C $ " , 7 7 1 ?B? � ; ? � 1�� �8, �
It is translated into the first order formula:

�-, 	 � / ��; �8, 	 � �<E =@? 1BA �C $ � 6 /2.
 � � �)A ;<� � � � ��� 7 7 1 ?�? ? ; ? � 1�� �8, � � �
The translation � has the following property:

3The complete description of this method is described in [6]. This
technical report may be provided to the interested reader on request.

5

Proposition 1 Let us denote D the following axiom
schema:

D � � � 6 / .
 � � �)A ; ���F� � � � � � � 6 /2.
 � � �)A ;<� � � � ���F� � � �
A regulation � is consistent iff there is no formula + such
that:

1. + belongs to the language � � � ��� � � 6 /2.
 � � �)A ; �

2. � � � ��� �4� � � ���	� �4� D $&��+
3. + � � � ���	� � is satisfiable

4.3. Verifying consistency vs consequence genera-
tion

According to the previous proposition, we notice that
verifying the consistency of � comes down to ensuring that
� ��D �:� � � ���	� ����� has no consequence ��+ belonging to� � � ��� � � 6 /2.
 � � �)A ; � , such that + � � � ���	� � is satisfiable.
This comes to a problem of consequence finding [13, 12].

Since the consequences ��+ we want to generate belong to
the language � � � ��� � � 6 /2.
 � � �)A ; � (condition 1 of proposition
1) and satisfy a given condition (condition 3), we think
that it is adequate to apply the inference rule called SOL-
deduction, introduced by Inoue [12]. As a matter of fact, this
rule has especially been designed to generate consequences
of a given set of clauses which belong to a given language
and which satisfy a given condition.

We do not detail here the SOL deduction because de-
scribing an inference rule for consequence finding is out of
the scope of our paper. But we shall briefly present the SOL
deduction in the appendix.

Let us also notice that, in [14] and [15], Ong and Lee have
already shown that the problem of checking regulation con-
sistency reduces to a problem of abduction or equivalently,
a problem of consequence finding. In their papers, Ong and
Lee defined an ad-hoc algorithm when the regulation and
domain constraints are specified with Horn clauses. Our
approach is more general since it is not restricted to Horn
clauses and can be applied to general clauses.

This kind of algorithm which can be applied to general
clauses is of course time-consuming. But we argue that the
regulation consistency is not frequently checked; actually, it
is only checked when the regulation is defined or updated.
Thus, we are developing an off-line tool which does not
need real-time performance.

4.4. Application to our example

Running the algorithm which implements the SOL-
deduction, on our toy example provides us with the fol-
lowing answers:

� � +��<, "�.0/21 �3+-� ��� / �<; �8, 	 ��� ���
This means that, as soon as there is a security officer
, and a file + in the file-system, there is a contradic-
tion. Indeed, in this case, we can derive that , is both
permitted and forbidden to downgrade + .

� � +��<, "�.0/21 �3+-� ����596 /2.07 ��+9�:��� / ��; �8, 	 � �<E =@? 1BA �
This means that, as soon as there is a bad user , and
a public file + , there is a contradiction. Indeed, in
this case, we can derive that , is both permitted and
forbidden to access the system.

� � +��<, "�.0/21 �3+-����� 1�7 A)1�� ��+9� �%� / �<;<�8, 	 � ��E =@? 1�A ���
� / �<; �8, 	 � 1B7>A)1�� =@? 1�A �
This means that, as soon as there is a secret file + and a
secret user , who is a bad user, there is a contradiction.
Indeed, in this case, we can also derive that , is both
permitted and forbidden to access the system.

5. Solving normative conflicts

In this section, we address the problem of solving nor-
mative conflicts.

As said previously, our approach is to consider that each
individual is associated with a set of roles, each of them
representing the ideal behaviour the individual can play in
a given situation. Each role is associated with a set of
permissions, obligations, prohibitions, laid upon the role-
holder. Roles are defined separately from the individuals.
An individual inherits the set of norms associated with a role
when he plays this role. For instance, in our example, we
identified four roles: User, Secret User, SSO and Bad User.

We assume that the set of norms associated with a role
is conflict free. Therefore, a conflict can only exist when
an individual is playing different roles. For instance, the set
of norms associated with User, prohibits a user from down-
grading a file. However, a security officer is a particular
user and he is permitted to downgrade a file. So, playing
these two roles leads to a conflict: it is both permitted and
forbidden to downgrade a file.

So the problem is the following: given several sets of
norms corresponding to the different roles an individual
can play, what is the set of norms corresponding to the set
of roles he plays at a given time. For instance, what are
the obligations, permissions and prohibitions applying to
an individual who is both a user and a security officer? In
particular, is he permitted to downgrade a file or not?

In this section, we first refine the formalism we propose in
section 2 for checking regulation consistency. The deontic
operators are now indexed by roles and we also slightly
change the definition of permission. We then present the
axioms of the logic used for reasoning with composite roles,
i.e. roles obtained by merging several roles. For solving

6

the problem of conflicts between the different roles which
constitute a composite role, we suggest using an order for
merging the roles. This order represents a priority between
them. We assume here, that this order is total. The extension
to partial orders is discussed in [5].

In our example, the order imposed on the two roles User
and SSO comes from the structure of the two roles: a security
officer is a kind of user. So the preference is given to SSO
and the individual who is a security officer is permitted to
downgrade a file.

5.1. The language

Let us consider a finite set D �)/21 � � D 1 	 D 2 	�

�
�	 D � � of
roles. We shall use the following notation:

� If the roles to be merged are denoted D
 1 	�
�
�
	 D
 � , then
the role obtained by merging them using the order
D
 1 �
�
�
 � D
 � will also be denoted D
 1 �
�
�
 � D
 � .

� If � � D
 1 �

�
 � D
 � is a composite role obtained
by merging � roles, we shall denote � � D
 ��� 1 the
composite role obtained by merging D
 1 	�

�
�	 D
 � 	 D
 ��� 1

with the order D
 1 �
�
�
 � D
 � � D
 ��� 1 .

The language
���

we use is a refinement of language
�

we defined in section 2. It is defined as follows:

� If � is a n-ary predicate and if � 1, ..., � � are constants
or variables, then ����� 1 	�
�
�
	 � � � is a formula.

� If � is a formula of
���

then ��� is a formula of
���

.

� If � and � are formulae of
���

then � � � is a formula of���
.

� If � is a formula and � is any primitive or composite
role obtained by merging several roles, � �3� , � �3� and" �3� are formulae of

� �
. They will mean that, according

to the primitive or composite role � , � is respectively
obligatory, permitted or forbidden.

� Nothing else is a formula of
���

.

5.2. Axiomatics

In the following axioms, / represents a literal, � and �
represent formulae, D
 represents a primitive role and �
represents a primitive or composite role.

� (A0) All axioms of first order logic.

� (A1) ���3����������� $&�)��$&��� �
� (A2) � ���������)��$&� �3����� � �
� (A3) � � �%$ � � �

� (A4) ��� � $&��� � ���
� (A5) " � � � � � ���
� (A6) ��� / $&���
	��� /
� (A7) ���� / ����� � � / $ � ��	��� /
� (A8) ����	��� / $&��� / � ���� /
� (A9) � � / $&� �
	�� /
� (A10) � � / � ��� � � / $(� ��	�� /
� (A11) � �
	��� / $&� � / � ���� /

Axioms (A1)–(A5) are the axioms which characterize the
way of reasoning with obligations, permissions and prohi-
bitions inside a (primitive or composite) role.

The axiomatics for each modality � � is similar to SDL.
In particular, notice that from axioms (A3) and (A4) we can
derive: *���� � $&����� ��� .

On the other hand, we break with the tradition in deontic
logic which generally views obligation as dual of permis-
sion, i.e. *����3��� ��� � ��� . We only accept the implication
from the left to the right (A4) but not the converse. This is
because we consider that the set of norms associated with
a role generally does not represent a complete regulation of
the world, i.e. within a role, there may be sentences which
are neither permitted nor obligatory.

This assumption is important when we merge the regu-
lations associated with two different roles D
 and D � . As a
matter of fact, by merging the two roles, we want to consider
that the roles are in some sense complementary and this is
not possible if each role D
 and D � represents two different
but complete regulations of the world.

Axiom (A5) says that “it is forbidden that � ” is defined
as “it is obligatory that ��� ”.

Axiom (A6) expresses that if / is obligatory in role � , then
it is also obligatory according to the composite role � � D
 .

Axiom (A7) expresses that if / is obligatory in a primitive
role D
 and if � / is not permitted in role � , then / is obligatory
according to the role � � D
 .

Axiom (A8) expresses that if / is not obligatory in both
roles � and D
 , then it is not obligatory in role � � D
 .

Axiom (A9) expresses that if / is permitted in role � , then
it is also permitted in role � � D
 .

Axiom (A10) expresses that if / is permitted in a role D

and if � / is not obligatory in role � , then / is permitted in
role � � D
 .

Axiom (A11) expresses that if / is not permitted in both
roles � and D
 , then it is not permitted in role � � D
 .

The inference rules are:

� (I1) The inference rules of first order logic.

� (I2)
����������

7

� (I3)
������ � �

5.3. Deriving actual norms

Merging several roles together allows us to derive the ac-
tual norms which apply to an individual in a given situation
(For the sake of simplicity, we consider only one individual
called “the individual”). For this purpose we first need a
means for specifying which roles the individual is playing
in the situation we want to consider and the order of pri-
ority among these roles applies. Therefore, we add to the
language the following propositions:

� , /2/ D �)/ 1 ? ��D 1 	�
�

�	 D � for each subset
� D 1 	�

�
�	 D � of

the set of roles.

Intuitively, , /2/ D �)/21 ? �3D 1 	�
�
�
	 D � is to be read “ D 1 	�

�
�	 D
are all and only all the roles played by the individual and
these roles are prioritized in the order induced by D 1

�
�
�
 �
D ”.

We can now define which actual norms apply to the indi-
vidual in a given situation. For this purpose, we also add to
the language simple modalities � , � and " . Intuitively, ��� ,
��� and " � are respectively to be read: “� is an actual obli-
gation, permission or prohibition for the individual”. The
axioms defining � , � and " are the following:

� (A12)
, /2/ D �)/ 1 ? ��D 1 	�
�

�	 D ��$ ����� � ��� 1 	 ����� 	�� � �-�

� (A13)
, /2/ D �)/ 1 ? ��D 1 	�
�

�	 D ��$ ����� � ��� 1 	 ����� 	�� � �9�

� (A14) " � � �����
Axiom (A12) says that if D 1 	�
�
�
	 D are all and only all

the roles played by the individual and if D 1
�
�

 � D

represents the order in which these roles are prioritized,
then the actual obligations of the individual are derived by
merging all the roles according to this order of priority.

Axiom (A13) is a similar definition for the actual per-
missions. Axiom (A14) simply says that “� is an actual
prohibition” if and only if “ ��� is an actual obligation”.

5.4. Application to our example

To specify our example in language
� �

, we have sim-
ply to index the deontic modalities by role =@? 1�A in rules
(R1)...(R4), � 1�7 A)1�� =@? 1�A in rules (R5)-(R6), ��� � in rule
(R7) and � �<E =@? 1BA in rule (R8).

Let us now consider an agent , whose password is more
than one month old, i.e,

�)�9� ?�?�	 ��� ?�? �"�)A EF�8, 	 �-� ?�? �4��� / E ��� ?B? � EF���-� ?B? �

Let us also assume that there exists a file + 1 whose clas-
sification is secret, i.e.,

"�.0/21 ��+ 1 ����� 1B7 A)1�� ��+ 1 �
Finally, let us assume that the four following roles we

considered in the previous section are ordered as follows:

� ��E =@? 1�A � ��� � � � 1�7 A)1�� =@? 1�A � =@? 1BA

Figure 1 shows through several examples the answers we
obtain when our approach to query a regulation is applied.

For instance, let us assume that one wants to know if ,
is permitted to downgrade + 1.

In a situation where , is playing the role ��� � but not the
role � ��E =@? 1BA , the answer is

� A 5 1 . This is because, we can
derive from the regulation that ����� � ���	����
<A ��E 1 �8, 	 + 1 �
and, since � � � is the role having the highest priority among
the roles played by , in this situation, we can also derive
that � ���	����
�A �<E 1 �8, 	 + 1 � .

On the other hand, in a situation where , is play-
ing both roles ��� � and � �<E = ? 1�A , the answer is" � / ? 1 . This is because, we can now derive that"��	��
 ���� � , 7 7 1 ?�? � ; ? � 1�� �0,�� . And, by (G3), we can
also derive that:

� , 7 7 1 ?B? � ; ? � 1�� �8, � $&� ���	����
�A �<E 1 �8, 	 + 1 �
Therefore, from the prohibition to access the system, we can
derive the prohibition to downgrade + 1:

"��	��
 ���� � ���	����
<A ��E 1 �8, 	 + 1 �
This implies that downgrading + 1 is not permitted:

��� �	��
 ���� � ���	����
<A �<E 1 �8, 	 + 1 �
Since � �<E = ? 1�A is the role with the highest priority, we can
now derive that ��� ���	�"��
�A �<E 1 �0, 	 + 1 � and the answer is" � / ? 1 .

6. Conclusion

This paper investigates new directions for analyzing
some properties of security policies. We have found the
framework of deontic logic useful for this purpose espe-
cially when dealing with security policies which include
situations where some norms may be violated. We focused
on :

� How to check the security policy consistency.

� How to consistently query a security policy.

8

Roles played by ,
� 1�7 A)1�� =@? 1BA � ��� ��� ��� � �

Queries ����� ��� � � �<E =@? 1BA � �<E =@? 1BA
� � �<E =@? 1BA

��� -� ��
�1 ��� ?�? � E �0,@� � A 5 1 � A 5 1 � A 5 1
�#, 7 7 1 ?B? � ; ? � 1�� �3,@� � A 5 1 � A 5 1 " � / ? 1
� ���	�"��
�A �<E 1 �0, 	 + 1 � " � / ? 1 � A 5 1 " � / ? 1

Figure 1. Examples of queries

For these two aspects, support tools in Prolog have been
implemented. We have developped a consistency checker
based on the SOL-deduction as well as an algorithm for
solving normative conflicts based on the logic described in
section 4. Furthermore, we have applied this formalism to
analyse a regulation, used in the context of the National
Defense, which define means to protect secret data [7]. This
analyse revealed many subtleties and ambiguities of this
security policy.

This experiment also enables us to raise up several in-
teresting real-world problems which seem to require more
theoretical development. In particular, the analysis of this
regulation shows that the concepts of responsibility and del-
egation must be modelled. It also show that our formalism
must be extended in order to express temporal notions (see
[7]). For this purpose, it may be interesting to adapt the
approach proposed in [2].

There are several other functionalities that we plan to
investigate in the future. For instance:

� Functionality for checking if a given situation does not
violate the security policy. For instance, let us denote
? the following situation:

"�.0/21 �3+-�4��� / �<;<�0, 	>=@? 1�A �:����� / �<;<�8, 	 ��� ���
� ���	����
�A �<E 1 �8, 	 +9�

This is a problem of checking conformity because sit-
uation ? violates the prohibition for a user which is not
a system security officer to downgrade a file. In this
case, the formula to be checked to detect a conformity
problem is the following:

� � ��� 	 � ? � � ��$ " ?
where ? is the situation to be checked. It would be
also interesting to derive which sanction applies when
a policy violation occurs.

� Functionality for designing new security policies re-
sulting from the interoperability between several sys-
tems, each of them being associated with its own secu-
rity policy.

7. Acknowledgements

This work was carried out with the support of the DRET
(Contract No. 94002.012). The authors also wish to thank
Lee Benzinger for his helpful criticism.

8. Appendix: The SOL-deduction: a short
overview

Definition 2
A production field P is defined by a language LP and a
condition CondP.
A clause belongs to P iff it belongs to language LP and it
satisfies CondP.
A structured clause is a pair � � 	 � � where � and

�
are clauses.

Let Σ be a set of clauses, � a clause and P a production
field. A SOL deduction of a clause � from Σ � � and P is
a sequence of structured clauses �

0 	 � 1
�
�
 � � , such that:

1. �
0
� ��� 	 � �

2. � � � � � 	 � �

3. For each �
 � � � . 	 � . � 	 �
�� �
 is not a tautology.

4. For each �
 � � � . 	 � . � 	 �
�� �
 is
not subsumed by a clause � � � � � , where� � � � � � 	 � � � is a structured clause such that � � . .
This rule is not applied if �
 is generated form �
	�

1,
by application of the rule 5(a)i.

5. �
�

1
� � �
�
 1 	 �
�
 1

� is generated from �
 accord-
ing to the following steps:

(a) Let / be the left-most literal of
�
 . �
�
 1 and D
�
 1

are obtained by applying one of the following
rules :

i. (Skip) If �
 � � / � belongs to P, then �
�
 1
�

�
 � � / � and D
�
 1 is the new ordered clause
obtained by removing l from

�
 .

9

ii. (Resolve) If there is a clause �
 in Σ such that
� � �

�
 and / and � are unifiable with most
general unifier

�
, then �
�
 1

� �
 � and D
�
 1

is an ordered clause obtaining by concatenat-
ing �
 � and

�
 � , framing l
�

and removing
� � � .

iii. (Reduce) If either,

A. �
 or
�
 contains an unframed literal �

different from / (factoring), or

B.
�
 contains a framed literal � � (ances-
try)

such that / and � are unifiable with most
general unifier

�
, then �
�
 1

� �
 � and D
�
 1

is obtained from
�
 � by deleting / � .

(b)
�
�

1 is obtained from D
�
 1 by deleting every
framed literal not preceded by an unframed literal
in the remainder (truncation).

The production field considered in the problem of testing
of regulation consistency is the following:���

� �����
� � � � � � 6 /2.
 � � �)A ; � 	 � 7 : � 7 � ���	� is

satisfiable � �

References

[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A
Calculus for Access Control in Distributed Systems. ACM
Transactions on Programming Languages and Systems,
15(4), September 1993.

[2] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. Sup-
porting Periodic Authorizations and Temporal Reasoning in
Database Access Control. In Proceedings of the 22nd In-
ternational Conference on Very Large Data Bases, Bombay,
India, 1996.

[3] E. Bertino, S. Jajodia, and P. Samarati. Supporting Multi-
ple Access Control Policies in Database Systems. In IEEE
Symposium on Security and Privacy, Oakland, 1996.

[4] B. F. Chellas. Modal logic, an introduction. Cambridge
University Press, 1980.

[5] L. Cholvy and F. Cuppens. Solving normative conflicts by
merging roles. In Fifth International Conference on Artificial
Intelligence and Law, University of Maryland, USA, 1995.

[6] F. Cuppens and L. Cholvy. Etude des r glements de
s curit : formalisation et d veloppement d’un outil
d’interrogation. Rapport final 1/3521.00/DERI, Centre d’
tudes et de recherches de Toulouse,1995. Convention DRET
no 94002.012.

[7] F. Cuppens and C. Saurel. Specifying a Security Policy: A
Case Study. In Proc. of the computer security foundations
workshop, Kenmare, Co. Kerry, Ireland, 1996.

[8] G. Dinollt, L. Benzinger, and M. Yatabe. Combining Com-
ponents and Policies. In Proc. of the Computer Security
Foundations Workshop VII, Franconia, 1994.

[9] J. Glasgow and G. McEwen. Reasoning about knowledge
and permission in secure distributed systems. In Proc. of the
computer security foundations workshop, Franconia, 1988.

[10] L. Gong and X. Qian. The Complexity and Composability
of Secure Interoperation. In IEEE Symposium on Security
and Privacy, Oakland, 1994.

[11] G. E. Hughes and M. J. Cresswell. An introduction to modal
logic. Methren London and New York, 1972.

[12] K. Inoue. Consequence-finding based on ordered linear res-
olution. In proc of IJCAI, 1991.

[13] R. Lee. A completeness theorem and computer program for
finding theorems derivable from given axioms. PhD thesis,
University of California, Berkeley, 1967.

[14] K. Ong and R. M. Lee. Detecting deontic dilemnas in bureau-
cratic rules : a first-order implementation using abduction.
In A. Jones and M. Sergot, editors, Proc of DEON’94, Oslo,
1994.

[15] K. Ong and R. M. Lee. A decision support system for bu-
reaucratic policy administration : an abductive logic pro-
gramming approach. Decision Support Systems, (16), 1996.

[16] V. Varadharajan and C. Calvelli. Extending the Schematic
Protection Model - I Conditional Tickets and Authentication.
In IEEE Symposium on Security and Privacy,Oakland, 1994.

10

