
Windowed Key Revocation in Public Key Infrastructures

Patrick McDaniel Sugih Jamin
Electrical Engineering and Computer Science Department

University of Michigan
Ann Arbor, MI 48109-2122�

pdmcdan,jamin � @eecs.umich.edu

October 12, 1998

Abstract

A fundamental problem inhibiting the wide acceptance of
a Public Key Infrastructure (PKI) in the Internet is the lack
of a mechanism that provides scalable certificate revoca-
tion. In this paper, we propose a novel mechanism called
Windowed Revocation. In windowed revocation, certifi-
cate revocation is announced for short periods in periodic
Certificate Revocation Lists (CRLs). Due to the assur-
ances provided by the protocol over which certificates are
retrieved, we bound the amount of time that any certificate
is cached by users. Thus, we can limit the announcement
of revocation only to the time in which the certificate may
be cached; not until its expiration. Because the time in
which certificate are announced is short, CRLs are sim-
ilarly small. By limiting the size of CRLs, we are able
to integrate other mechanisms that increase the scalability
of the PKI. One such mechanism is the use of “pushed”
CRLs using multicast. We include a proof of the correct-
ness of our approach.

1 Introduction

Over the past several years, the use of distributed ap-
plications has grown immensely. These applications al-
low geographically distant users to communicate, leading
to social, educational, and commercial interactions that
were previously impossible. Unfortunately, because of
the openness of the Internet, the form and content of these
interactions is vulnerable to attack. Limiting these vulner-
abilities is essential to the future success of these applica-
tions.

A popular approach to securing communication over
large networks is to use public keys. Researchers and
standards bodies have argued at great length over possi-
ble architectures for providing an authentication service
under which public key certificates can be securely dis-
tributed. A central point of contention in these discussions
is the mechanisms over which public keys are revoked.

A certificate is a data structure that defines an associ-
ation between an entity (the principal) and a public key.
A trusted authority, called a Certificate Authority (CA),
states its belief in the validity of the association by digi-
tally signing the certificate. Certificate revocation is the
mechanism under which a CA can revoke the association
before its documented expiration. The CA may wish to
revoke a certificate because of the loss or compromise of
the associated private key, in response to a change in the
owner’s access rights, or strictly as a precaution against
cryptanalysis. As stated by the CA, the revocation state
of a certificate indicates the validity or cancellation of
its association. A verifier determines the revocation state
through the verification of the certificate.

In this paper we investigate windowed revocation, a
novel approach to certificate revocation within a global
certificate distribution service, called a Public Key Infras-
tructure (PKI). The central design objectives of windowed
revocation are:

1. Correctness - All entities within the PKI must be
able to correctly determine the revocation state of a
certificate within well-known (time) bounds.

2. Scalability - The costs associated with the manage-
ment, retrieval, and verification of certificates should
increase at a slower rate than the size of the serviced
community.

3. Flexibility - Windowed revocation must be able to
support mechanisms consistent with existing secu-
rity policies and requirements.

As with many security solutions, certification revoca-
tion mechanisms are subject to the fundamental tradeoff
between security and scalability. Solutions with strict
security objectives require more resources than systems
with more relaxed security objectives. Thus, security re-
quirements have a direct influence on scalability. Our pro-
posed architecture provides a flexible framework for man-
aging this tradeoff by incorporating the following design
principles into the key revocation mechanism:

1

1. Revocation window: By bounding the time over
which the revocation of a certificate is announced,
we limit the size of such announcements.

2. Push delivery: With limited revocation announce-
ment size, we can contemplate the active delivery of
this information to verifiers. This reduces the load on
the CAs by curtailing the number of verifier initiated
retrievals.

3. Certificate caching: A cached certificate may be
used until it expires, is revoked, or the issuer speci-
fied TTL is reached. The expiration of a time-to-live
indicates that the associated entity’s policy requires
the certificate to be re-validated.

4. Scheduled Announcement: By stipulating that CAs
generate revocation announcements at a documented
schedule, we allow verifiers to detect lost announce-
ments.

5. Multicast delivery: Given verifiers’ ability to detect
missing revocation announcements, we can use unre-
liable transport protocol without sacrificing the secu-
rity of certificate revocation. This allows us to use
IP multicasting, where available, to further reduce
the bandwidth requirements of the revocation mech-
anism.

6. Lazy verification: Verification of a cached certifi-
cate’s revocation state may be postponed until the
certificate is to be used.

7. Revocation aggregation: Revocation announce-
ments from multiple sources are aggregated by
higher level authorities.

In the next section, we discuss the design tradeoffs of
revocation mechanisms in general and outline the advan-
tages of our windowed revocation mechanism over other
approaches proposed in the literature. In Section 3 we de-
scribe the working of windowed revocation and provide a
formal proof of the correctness of the mechanism. Sec-
tion 4 discusses protocol issues and presents windowed
revocation as a X.509 v3 [HFPS98] extension. Section 5
gives a brief overview of related work. We conclude this
paper in Section 6.

2 Design Tradeoffs

We recognize two fundamental approaches used to dis-
tribute revocation state: explicit and implicit. Systems us-
ing explicit revocation require all parties to verify the state
each time a certificate is used. In X.500 based systems,
such as Privacy Enhanced Mail (PEM) [Ken93], each CA
periodically generates a list of certificates that have been

revoked, but have not yet expired. The presence of the
certificate in the list,1 called a Certificate Revocation List
(CRL), explicitly states revocation.

Verifiers retrieve and cache the latest CRL during the
certificate verification process. Thus, the frequency with
which the CA generates CRLs bounds the time in which
a revoked certificate can be used. A revoked certificate is
included in a CRL from the time it is revoked until it ex-
pires. Because the length of time a certificate may be valid
is commonly measured in years, CRLs can become large.
In an effort to reduce the costs of CRL processing, some
systems present revocation information in authenticated
dictionaries [NN98, Koc98, Mic96]. Using authenticated
dictionaries, verifiers interactively construct a proof of the
presence or absence of the certificate in the CRL. They
need not retrieve the entire CRL, but request only enough
information to validate the certificate. However, these ap-
proaches are not without cost; they often involve heavy-
weight cryptographic operations, long interactive proto-
cols, and/or significant CA resources.

In PKI architectures that employ implicit revocation,
the revocation state is implicitly stated in a verifier’s abil-
ity to retrieve the certificate. Any certificate retrieved
from the issuing CA is guaranteed to be valid at the time
of retrieval. Associated with each certificate is the TTL
which represents the maximum time the certificate may
be cached. This bounds the time that a revoked certifi-
cate may be used without detection. The Secure DNS
(DNSSec) [Gal96, EK99] architecture uses implicit key
revocation.

A central parameter to PKIs employing implicit revo-
cation is the length of the certificate TTL. PKI adminis-
trators must trade-off security (as stated by the bound on
revoked certificate use) with the frequency of retrieval. A
long TTL may expose the verifier to a revoked certificate.
A short TTL requires the verifier to retrieve the certifi-
cate frequently, thus limiting the scalability of the PKI. In
extant systems, each retrieval requires heavyweight oper-
ations by the verifier, the CA, or both.

Windowed revocation uses a hybrid of both explicit
and implicit revocation. Similar to explicit approaches,
windowed revocation uses CRLs to announce revocation.
CRLs are generated at a documented rate, and revocation
is indicated by the presence of the certificate’s associated
serial number. Similar to implicit approaches, windowed
revocation requires the successful retrieval of a certificate
to implicitly state the validity and freshness of the cer-
tificate. Also similar to implicit approaches, windowed
revocation allows verifiers to re-acquire certificates at fre-
quencies commensurate with their security requirements.

1The entire certificate is generally not present in the list, but is refer-
enced by some unique identifier. This identifier is commonly known as
a serial number.

2

t4

C1 Revoked

Explicit Revocation
(Traditional CRL)

Windowed
Revocation

notBefore (t0) notAfter (t8)

C1 Reported
in CRL

Revocation
Window

Implicit Revocation

t1 t2 t7t3 t5

Certificate Lifetime

TTL

Periodic CRL
Publication

...

t6

Time

Figure 1: Implicit, explicit, and windowed revocation in
PKI architectures.

Different from implicit approaches, windowed revo-
cation does not require re-acquisition of certificates at
fixed intervals. Instead, windowed revocation allows for
the freshness of a certificate to be re-asserted with each
statement of its validity via CRL. Different from explicit
approaches, windowed revocation limits the period over
which a certificate’s revocation is announced. In win-
dowed revocation, the size of a certificate’s revocation
window is assigned by the issuing authority and is doc-
umented within the certificate. By bounding the time that
each revoked certificate must be included in the periodic
CRLs, we reduce the size of each individual CRL. Be-
cause of the small CRL size, we can actively deliver CRLs
to verifiers.

We illustrate implicit, explicit, and windowed revoca-
tion in Figure 1. In the figure we show the lifetime of
a certificate

���
, which has a documented validity period

from notBefore (���) to notAfter (���). At time ��� ,� �
is revoked. Assume

� �
is verified at times �

�
and ��	 in

each example.
In implicit revocation, the user securely retrieves and

caches
���

at time �
�
. No further verification is performed

between �
�

and ��
 . After the freshness TTL expires at time
��
 , the certificate is dropped. The certificate need not be
re-acquired until it is needed again at time ��	 . Because
verification is performed only during retrieval, the revo-
cation of

� �
will not be discovered until it is dropped at

time ��� and re-acquired afterward. We call the bound on
the longest time a revoked certificate may be used the win-
dow of vulnerability. For implicit revocation, the window
of vulnerability is exactly the freshness TLL (��������).

In explicit revocation, the certificate and last gener-
ated CRL is retrieved at time �

�
. Each subsequent use

(��) of the certificate requires that the most recent CRL
be checked for a revocation announcement. Because a

cached certificate is only authenticated as required by use,
there is no bound on the time in which a CRL will be re-
trieved by the user. Therefore, the CA must announce the
revocation from the CRL immediately following the re-
vocation until the certificate expires (��� to ���). Because
CRLs are the only medium from which revocation state
can be obtained, the window of vulnerability in explicit
revocation is equal to the periodicity of CRL publication
(see Section 3.4 for a correctness proof).

Windowed revocation bounds the time at which a cer-
tificate may be cached through the revocation window.
When the certificate is retrieved (�

�
) it is guaranteed to be

fresh and unrevoked. After revocation (���), the CA need
only include the certificate in the CRL for the revocation
window (��� to ���). The CA knows that one of the follow-
ing cases occurred for every host caching the certificate:
1) a CRL was received within the revocation window, and���

was dropped, or 2) the revocation window has expired,
and

���
was dropped. In either case, windowed revocation

stipulates that the certificate will no longer be cached by
any host at the end of the revocation window, hence the
CA can discontinue announcing the revocation. After the
revocation window has been reached, the CA may remove
the revoked certificate from its internal lists. No master
list of revoked certificates is required. Similar to explicit
revocation, the window of vulnerability in windowed re-
vocation is equal to the periodicity of CRL publication.

For reasons of policy or inter-operability, a CA may
wish to provide exclusively implicit or explicit revocation.
These requirements can be met by the proper manipula-
tion of the revocation window. By setting the revocation
window equal to or greater than the validity period of a
certificate, explicit revocation can be achieved. A con-
verse manipulation of the window yields strictly implicit
revocation. We detail the operation and implications of
revocation window configuration in Section 3.5.2.

3 Architecture

In this section we describe the design and operation of
our key revocation mechanism. For investigative and il-
lustrative purposes, we define a simple Public Key In-
frastructure architecture called Key Distribution Hierar-
chy (KDH). While we study the operation of windowed
revocation within KDH, windowed revocation is not de-
pendent on KDH.

3.1 Key Distribution Hierarchy

The hierarchy of KDH is similar to the ICE-TEL [CY97]
PKI, but avoids many of the complexities of its con-
struction. We provide a more thorough comparison of
KDH and ICE-TEL, as well as a thorough description of

3

NASA

NSFNCAA

U
E

C
A

sia-
B

an
k

ACM

IETF

Sony

IBM-
CA

USC

NASA

Xerox

MS

OhioUUMich

IBM-
NY

Sun UCLA

Air
IndiaHP

Key-Servers

Enterprises

Figure 2: Internet Level Architecture

the architecture, the certificate retrieval protocol, and re-
lated policy issues in [MJ98].

KDH introduces a two level hierarchy consisting of the
keyserver level and the enterprise level. The keyserver
level contains a set of servers from which enterprise and
keyserver certificates can be retrieved. The enterprise
level contains independent hierarchies of end users. In
ICE-TEL parlance, each keyserver corresponds to a PCA,
and each enterprise corresponds to a security domain. Fig-
ure 2 describes an Internet-centric view of one possible
configuration of the architecture. In the figure, a link be-
tween two entities represents an exchange of digital signa-
tures, where each end-point signs and permanently caches
the other’s certificate. The exchange of certificates and
signatures is called registration.

KDH stipulates that keyservers form a fully-connected
graph of peers, where all keyservers have exchanged cer-
tificates with all others. By mandating a fully-connected
graph, we limit the length of certification path used in
the retrieval and verification of a certificate. An authen-
ticated certificate of any keyserver can be retrieved from
any other keyserver.2

2The requirement that all keyservers exchange signatures is used to
bound the transitivity of trust during certificate authentication. The effect
of relaxing this requirement would be the introduction of additional in-
termediate keyservers into the authentication process (certification path),
which may lower confidence in the process. In the degenerate case,
the retrieval process would become similar to authentication in the PGP
[Zim94] system.

Enterprises register with keyservers using an out-of-
band channel. It is from these keyservers that the enter-
prise later retrieves authenticating certificates. In essence,
the exchange of signatures between a keyserver and an
enterprise states that the enterprise trusts the keyserver to
advertise correct certificates. However, this trust need not
be absolute. Later, during authentication, multiple key-
servers may be consulted.

Keyservers are intended to be administered indepen-
dently by regional, national, or global organizations. In
terms of hardware and administrative practices, these
servers should have many of the same characteristics as
those defined for the PCA services in RFC 1422 [Ken93].
These practices define procedures used for mutual authen-
tication before enterprise registration. An enterprise pro-
vides its certificate to each keyserver with which it wishes
to register. After appropriate mutual validation of creden-
tials, the keyserver signs and caches the enterprise certifi-
cate and the enterprise root signs and caches the keyserver
certificate. A thorough description of the use of digital
signatures can be found in [DH76].

Each enterprise encompasses some organization of end
users. The enterprise is intended to represent a group of
geographically close local area networks under control of
a single administrative authority. A distinct host, called
the enterprise root, is logically the single point of contact
for requests for certificates of the enterprise. The enter-
prise root corresponds to the organizational certification
authority (CA) in the ICE-TEL systems. We stipulate that

4

each enterprise contains only one enterprise root. In larger
enterprises, it may be necessary to replicate this service.

As determined by need, users and hosts may belong to
multiple enterprises. For example, users may belong to
different enterprises in which they perform professional
and personal related activities. All certificates for entities
within an enterprise are permanently stored at the enter-
prise root. When a local host registers its public key with
the enterprise, they mutually authenticate and sign each
other’s certificates. When an external entity requests a
certificate for one of these hosts, the enterprise root will
respond with the stored certificate. If the root is properly
placed (e.g. at a network border), very little traffic should
be generated by external requests on the enterprise net-
work.

Hosts internal to the enterprise directly contact the lo-
cal service (enterprise root) to make requests for internal
or external certificates. Retrieved certificates are cached
at the enterprise root and each end user host. Detection of
the revocation of cached certificates is described in Sec-
tion 3.3.

While in the preceding architectural overview we have
described each CA as a single entity, in practice it con-
sists of two components: a CA3 and a directory service
[BAN90]. The CA performs the mission critical duties of
certificate signing and CRL generation, communicating
only with the directory service. The directory service acts
as the distribution point for certificates and CRLs. When
retrieving certificates, verifiers assume complete trust in
the CA, and a limited form of trust in the directory ser-
vice. The directory is trusted to correctly advertise cer-
tificates and CRLs, and the CA is trusted to comply with
procedures outlined in its policy statement. We see policy
compliance failures [Dav96] as orthogonal to our investi-
gation. For ease of exposition and without loss of correct-
ness, we continue to treat the CA and directory as a single
logical entity in the remainder of this paper.

3.2 Certificate Retrieval Protocol

As is the case with most PKIs, certificate retrieval in
KDH is accomplished by the collection and authentica-
tion of signed certificates. The verifier logically traverses
a graph representing signature exchanges between the en-
terprises and keyservers, collecting certificates at each
hop. Each certificate’s signatures is verified and the ap-
propriate CRLs are consulted. If all certificates are au-
thentic and unrevoked, the user is free to use them. We
now present a step by step description of this process.

3In KDH, both keyservers and enterprise roots perform CA duties,
but the type of certificates managed and the generation of CRLs differ.
Throughout this paper, we use the term CA only when the context ap-
plies to both keyserver and enterprise root.

Enterprise B

Enterprise A

ER B

H1

1 - Req:
H2

3 - Resp:
 {H 2}ER B

2 - Req: H 2

4 - Resp:
{H2}ERB

6 - Req: B

7 - Resp:
{B}KS1

5 - Req:
B

8 - Resp:
{B}KS 1

9 - Req:
KS 1

10 - Resp:
{KS 1}ERA

ER A

KS 1

H2

Figure 3: The certificate request process.

Each enterprise root node begins operation with perma-
nent entries for the certificates of entities within the enter-
prise, the enterprise certificate, and the certificates of each
keyserver with which it has registered.

When an enterprise root node receives an external re-
quest for a certificate belonging to an entity within the
enterprise, it returns the certificate and a list of keyservers
with which it has exchanged signatures. The list of key-
servers associated with the enterprise is always cached
with the certificate.

When a verifier request cannot be serviced by the lo-
cal host cache, the request is forwarded to the enterprise
root node. If the request is for a certificate external to
the enterprise, it is forwarded by the enterprise root to the
external enterprise. The response is cached and returned
to the requesting host. A similar process is used for key-
server certificates, with the originating verifier specifying
from which keyserver it wishes to retrieve the certificate.4

It is worth noting that we do not specify a mechanism
for locating the enterprise root node of an external enter-
prise. There are several existing designs for scalable net-
work directory services, such as DNS [Moc87a, Moc87b].
These services are readily available within today’s Inter-
net infrastructure, and as such are beyond the scope of this
paper.

We illustrate the retrieval process through an example
in Figure 3. Assume all nodes initially have empty caches,
save the permanent entries. We state that the enterprise
root nodes

�����
and

�����
have exchanged signatures

with keyserver �
	 � . In Figure 3, we show the request
process used by enterprise host � �

in enterprise � to ob-

4We note the possibility of reducing the number of round-trips during
the retrieval/verification process by consolidating requests. For clarity,
the operational descriptions below will treat each request independently.

5

tain and authenticate the certificate of a host �
 in enter-
prise

�
. � �

begins by requesting from
�����

the certifi-
cate of �
 (step 1 in Figure 3).�����

forwards the request to
�����

, returning the re-
sults to � �

(steps 2-4). � �
then determines that the cer-

tificate of
��� �

is needed, and repeats the request pro-
cess, specifying that the certificate be retrieved from the
keyserver � 	 � (steps 5-8). Based on the keyserver in-
formation returned in the �
 request, � �

notes that both
enterprises shared the keyserver. As stated in the local
host policy, � �

determines that this is an acceptable rela-
tionship because they share a common keyserver, which it
trusts. Finally, � �

requests and receives the certificate for
keyserver � 	 � (steps 9 and 10 in Figure 3). Having as-
sembled all the certificates, � �

recursively authenticates
the digital signatures. Based on the results of the authenti-
cation, � �

may initiate some secure action using the cer-
tificate.

In [MJ98], we discuss the cases when the enterprise of
a verifier host and the enterprise of the requested certifi-
cate do not share a common keyserver (in terms of reg-
istration) and when more than one certificate for a single
target is received with valid signatures. For brevity, we do
not include the discussion of these cases here.

3.3 Certificate Revocation Protocol

In windowed revocation, we use explicit notification as
the primary revocation mechanism. CRLs are generated
per the schedule documented in the associated certificate.
These CRLs are then delivered on keyservers’ announce-
ment groups. We require each entity holding a cached
certificate to listen for revocation announcement from the
corresponding keyserver. We explore two other CRL dis-
tribution mechanisms and evaluate their potential scala-
bility problems in Section 3.5.1.

The generation and delivery of CRLs from source en-
terprise to verifier host is demonstrated through the fol-
lowing example. The key distribution hierarchy used in
the previous example is depicted in Figure 4 along with
the keyserver’s announcement group. The hierarchy con-
sists of a keyserver �
	 � , two enterprises (

��� ��� ��� �
),

and two hosts (� �
of enterprise � and �
 of

�
).

Continuing with the example in the previous section, at
some point after host � �

acquired certificate
�����

,
�����

is
revoked. Subsequent to the revocation of

� � �
, requests

for �
 ’s certificate will return either a newly generated������
(with a unique serial number), or an error if no new

certificate for �
 has been created. Whether a new certifi-
cate for �
 is generated or not, the next scheduled CRL
from

��� �
will include the revocation of the old

� � �
.

Each CRL generated by
�����

is reliably unicast to all
keyservers with which it has registered, which in this ex-
ample is only � 	 � (step 1). The keyserver � 	 � stores the

Enterprise B

Enterprise A

ER B

H1

ER A

KS 1

H2

1 - CRL{ER B}

KS 1 Announce
Group

2 - CRL{KS 1}

Figure 4: Certificate revocation delivery. After its revoca-
tion, certificate

� � �
is included in subsequent CRLs gen-

erated for the local enterprise (
�

). Each CRL is reliably
unicast by the enterprise root (

��� �
) to all keyservers

with which the enterprise has registered (� 	 �). The en-
terprise CRL is summarized (with CRLs from other en-
terprises) and included in the keyserver CRL. The result-
ing keyserver CRL is multicast to all interested parties.

CRL from enterprise
�

in preparation for the publication
of the next keyserver CRL (see Section 3.3.1).

When the next keyserver CRL is generated, the CRL
from enterprise

�
containing the revocation of

�	���
is in-

cluded. The keyserver then multicasts the CRL over the
keyserver announcement address (step 2). The scalabil-
ity of traditional PKIs is limited by the requirement that
verifiers actively retrieve CRLs. We use push delivery in
windowed revocation to enable passive verification. If a
pushed CRL is lost in transit and it is required by a veri-
fier, the verifier may retrieve it from the CA (or refresh the
certificate by re-acquiring it). Hence CRL delivery may
use unreliable transport protocol, such as IP multicasting.
Note that the use of unreliable transport protocol does not
affect the security of CRL delivery (see Sections 3.5.1 and
4.1).

Revoked certificates are included in the scheduled
CRLs for a period equal to its revocation window. The
revocation window of each certificate is documented in
the certificate. The revocation window limits the length
of time a certificate may be cached without the holder of
the cached certificate receiving an associated CRL. Be-
cause revocation is explicitly stated in the CRL only for
this period, the verifier will have no means of determin-
ing the correct revocation state afterwards. Therefore, if
a verifier does not receive an associated CRL during the
revocation window, it must drop the certificate from its
cache.

6

When the CRL associated with a certificate cannot be
obtained, the certificate must be re-acquired. As CAs are
prohibited from advertising revoked certificates, and the
retrieval process is freshness protected (see Section 4.1),
all retrieved certificates are guaranteed to be both fresh
and unrevoked. Therefore, if a recent CRL cannot be ob-
tained, the revocation state can be determined by the direct
acquisition of the certificate.

By providing low cost delivery of CRLs in the aver-
age case (multicast keyserver CRL delivery), we avoid
the vast amount of active CRL retrievals normally asso-
ciated with traditional PKI architectures. In the aberrant
case, where the most recent CRL has not been received,
we provide a means of recovery through direct retrieval.

The CRL publication period and revocation window are
documented as additional fields in all certificates within
the PKI. The CRL publication period is the length of time,
in minutes, between each new CRL publication. The re-
vocation window is the number of CRL publications in
which a revocation is included. Additionally, keyserver
certificates contain a CRL announcement address. The
CRL announcement address is the identity of the group
over which CRLs are delivered (see Section 4.2).

In the following sections, we outline the Windowed
Revocation protocol and supporting features. The next
two sub-sections describe CRL generation and distribu-
tion within KDH. We conclude this sub-section by outlin-
ing the cache management policy.

3.3.1 Keyserver CRL Generation

Traditional CRL revocation requires hosts wishing to val-
idate certificates from potentially many CAs to retrieve
and validate as many CRLs as the number of CAs in-
volved. In attempting to address this and other limita-
tions, the IETF Public Key Infrastructure Working Group
(PKIX) provides the Indirect CRL extension [HFPS98].
Using Indirect CRLs, a CA may delegate CRL generation
to other entities. We extend this approach by stipulating
a priori indirect CRLs. Keyservers aggregate CRLs by
collecting all the CRLs of enterprises that have registered
with them. After the authenticity of each enterprise CRL
has been verified, the enterprise revocation information
is incorporated into the keyserver CRL. By allowing the
keyserver to authenticate enterprise revocation informa-
tion, verifiers need not collect or verify each enterprise
CRL.5

Each keyserver generates CRLs at the documented
CRL publication period. The keyserver CRL contains re-
vocation state of certificates belonging to enterprise roots
that have been registered with the keyserver, summary in-

5As policy dictates, the verifier may wish to verify domain CRLs
directly. In the absence of this, the verifier must trust the keyserver to
correctly perform this task.

formation of CRLs from registered enterprises, and a dig-
ital signature calculated over the previous fields. The key-
server delivers its CRLs to all interested parties over its
announcement address.

To reduce the window of vulnerability in which a cer-
tificate holder may not have learned of a certificate’s re-
vocation and thus continues to use the revoked certificate,
we expect a keyserver’s CRL publication period to be sig-
nificantly smaller than the CRL publication periods of the
ERs registered with it.

If the keyserver does not have the most recent enter-
prise CRL (whose announcement schedule is documented
in the enterprise certificate), this fact is noted in the key-
server CRL. The only scenario in which the keyserver will
not have the most recent CRL is when the enterprise root
experiences a process or communication failure.

We note the possibility of keyserver supported Fresh-
ness CRLs. CAs supporting Freshness CRLs [AZ98] gen-
erate CRLs at differing frequencies. Users retrieve the
CRL with a publication rate commensurate with their
needs. In extending this approach, a keyserver may sup-
port several announcement groups with different CRL
publication rates.

Finally, we consider the special case of keyserver cer-
tificates revocation. Each keyserver is the root of a portion
of the PKI hierarchy, and as such has no higher authority
to announce its revocation. This makes dealing with a
compromised keyserver private key difficult. One popular
solution is to have a single highly protected root CA. We
believe that locating a single source of trust for all users
in the Internet is problematic, if not impossible. In our
architecture, we assume an out-of-band method for con-
tacting registered enterprises after keyserver certificate is
compromised. In addition to out-of-band revocation, all
keyservers self-revoke their own certificates. That is, each
keyserver wishing to revoke its own key will include it in
subsequent CRLs. This may aid the quick distribution of
the revocation notification.

3.3.2 Certificate Cache Management

The operation of the cache at either enterprise root or end-
user hosts is dependent on the ability of the host to retrieve
CRLs. Hosts which consistently retrieve or receive CRLs
may cache and use certificates as needed. When these
CRLs cannot be reliably obtained, the host must actively
authenticate each certificate.

We present the following algorithm used by the verifier
to determine the revocation state of a cached certificate. In
the following text, a distinction is made between the last
published CRL and the last received CRL. The last pub-
lished CRL is the last CRL generated by the CA previous
to the verification of the certificate. The last received CRL
is the last CRL received by the verifier.

7

t t+1 t+2 t+3 t+4 t+5 t+6time

CRL
Publication

Period

Initial Revocation Window
for C 1 and C 2

Certificate
C1 revoked

Certificate
C2 revoked

CRL <none> <none> <none>C1 C1,C2 C1,C2 C2

C1

C2

Figure 5: Example CRL generation - In this example, we show the revocation of certificates
� �

and
�

 and their

inclusion in subsequent CRLs.

1. If the last published CRL has been received from the
CA and the certificate has not been revoked, it can
continue to be used.

2. If the last published CRL has not been received:

(a) If the difference between the current time and
the last received CRL is less than the revocation
window, the last published CRL is retrieved.
Once retrieved, the CRL is used to determine
the revocation state of the certificate.

(b) If the difference between the current time and
the last received CRL is greater than the revo-
cation window, the certificate is dropped and
must be re-acquired. The expiration of a cer-
tificate window indicates that revocation an-
nouncements for the associated certificate may
have been lost.

(c) If the last published CRL cannot be retrieved,
the certificate is dropped from the cache, and
must be re-acquired from the CA.

At the time of retrieval, two timers are associated with
each cached certificate. For host and enterprise certifi-
cates, the clean timer is set to the CRL publication pe-
riod of the enterprise (�) plus the publication period of the
keyserver (���). This ensures that all hosts listening to the
keyserver announcement address receive keyserver CRLs
before the clean timers expire. The revocation window
timer is set to the revocation window (�) multiplied by
the enterprise CRL publication period. The time of the
enterprise CRL publication is denoted � ����� . As CRLs
arrive, the clean timer associated with each un-revoked
certificate are reset to � �����
	 � 	 ��� . After receiving a

CRL, revocation window timer is reset to � �����	 � � . Re-
voked certificates are removed from the cache.

As clean timers expire, the associated entries are
marked “dirty”. In the normal case, keyserver CRLs are
received regularly, and cached certificates will never be
marked dirty. Certificates not marked dirty were not re-
voked at the time the last CRL was generated, and may
continue to be used.

When a dirty certificate is requested by a verifier and
the certificate’s revocation window timer has not expired,
the host attempts to validate the certificate by retrieving
the most recent CRL. If the CRL is successfully retrieved,
all relevant cache entries are updated, and the certificate
is returned to the end-user. If the CRL cannot be re-
trieved, the entry is dropped from the cache, and must
be re-acquired using the certificate retrieval protocol de-
scribed in Section 3.2).

If the revocation window timer of a certificate has ex-
pired, hosts can not determine the revocation state of this
certificate using the latest CRL. In this case, the certificate
is dropped from the cache, and must be re-acquired.

We now illustrate the certificate cache management
process with an example. In Figure 5, we describe a series
of events involving a certificate caching host. In this ex-
ample, the CRL publication period for the CA associated
with certificates

� �
and

�

 is equal to 1 (where a CRL is

generated at � � � 	�� � � 	�� �������).
The revocation window documented in each certificates���
and

�

 is 2 (periods). Between � 	�� and � 	�� , cer-

tificate
���

is revoked. Between � 	�� and � 	 � , certificate�

 is revoked. The CRLs published by the CA at time

� 	�� and � 	 � will contain the revocation of certificate� �
, while the revocation state of certificate

�

 will be in-

8

cluded in the CRLs published at time � 	 � and � 	 �
.

The CRL published at time � 	 �
will no longer contain

the revocation state of certificate
� �

. Should a host try
to retrieve a CRL from the CA between time � 	 � and
� 	 �

, the CRL returned will be the one published at time
� 	 � , which included the revocation of certificate

� �
. This

period of inclusion of a certificate revocation state is rep-
resented in Figure 5 as grey boxes.

Consider an end-user host whose cache contains both
certificates

� �
and

�

 . Assume that the host received the

CRL published at time � 	 � . Thus at time � 	�� , the host
set the revocation window timer for both

� �
and

�

 to

� 	 � . We now describe three possible scenarios relating
to this example.

If all CRLs are successfully received,
� �

will be re-
moved in response to the CRL at time � 	 � , and

�

 will

be removed from the cache in response to the CRL at time
� 	 � .

If the CRL at time � 	 � is not received and certificate� �
is accessed by an end-user between � 	 � and � 	 � ,

an attempt to retrieve the CRL directly from the keyserver
or enterprise root will occur. If this process fails, the host
will drop and re-acquire the certificate. Section 3.2.

In the case when both CRLs at time � 	 � and � 	 �
are lost and cannot be retrieved, the host is unable to de-
termine the revocation state of either

� �
or

�

 . The revo-

cation window timer for both certificates expires at time
� 	 � , and the certificates are removed from the cache.

Now consider a second host who retrieves certificate
�

at time � 	�� . It knows at the time of retrieval that
�

 is

fresh and unrevoked, so it sets the clean timer to expire at
� 	 � and the revocation window timer to expire at time
� 	 �

. The certificate is handled as in the previous case,
with the exception of the different timer expirations.

Note that while the size of the revocation window is the
same in all hosts for a given certificate, the start time of
the revocation window timer itself is not. In each host,
the revocation window is reset each time the validity of a
certificate is asserted.

We address the latencies incurred by the delivery of
CRLs by stipulating that clean timers are set to the publi-
cation period plus a propagation delay value. The propa-
gation delay is a short period (measured in milliseconds)
that estimates the maximum time needed for the genera-
tion and delivery of the CRL. This value is site dependent,
and must be set by the local network administrator.

3.4 Proof of Correctness

In this section, we formally prove the bound on the use
of revoked certificates. In Figure 6, we describe the life-
time of certificate

�
.
�

is valid from time �
�

until its
expiration at time ��� . CRLs are generated by the CA at
the publication period � . In the proof we assume that the

tk-p tk tk+p

t1 tn
ti ti+p+p'

p

Revocation Window

Certificate Lifetime

ti+pw

Time

Clean Timer

Figure 6: We show the lifetime of certificate host
�

,
which is valid from �

�
to ��� . At time ��� , an end user re-

trieves the certificate. In response, the dirty and revoca-
tion window timers are set to � � 	 � 	 ��� and � � 	 � � , where� is the publication period of the enterprise, ��� is the
publication period of the keyserver from which keyserver
CRLs will be received, and � is the revocation window.
The CA publishes CRLs at times

����� � ��� � � � ��� � ��� 	 � �������

keyserver publication period (���) is strictly less than the
enterprise publication period (�) (see Section 3.3.1). We
denote the time of an arbitrary CRL publication as ��� . At
time ��� , � is retrieved and cached by an end user. At some
time ��	 , � is revoked. Each certificate defines a revocation
window � , which states the length of time its revocation
will be recorded in periodic CRLs. Before presenting the
proof, we formally define two central properties of win-
dowed revocation.

Property 1 - Fresh Certificate Retrieval - This property
ensures that all certificates are fresh and unrevoked at the
time of retrieval. More formally, �
	�� ��� holds for the
retrieval and revocation of any certificate

�
.

Property 2 -Windowed Revocation - This property en-
sures that all revoked certificates are included in the
CRLs published within the documented revocation win-
dow. Formally,�� � �����

for all CRLs published at ��� 	�� � , where������� ������� ����� ��	 , �! � ! � .

Intuitively, �
� is the CRL publication time immediately
following the revocation, i.e. the publication time of the
first CRL that contains the revocation.

Theorem: The length of time any revoked certificate may
be used is bounded by the length of the clean timer (�

	
���).6

Proof: After retrieval, the initial clean timer for
�

is
set to � � 	 � 	 ��� , and the revocation window timer is set
to ��� 	 � � . It is sufficient to show the theorem holds for
verifications (and use) of

�
at time �
" , for all ��"�� ��� .

6Note that the bound on the use of revoked keys is actually the clean
timer length plus the propagation delay value. For simplicity and without
loss of correctness, we omit mention of the propagation delay value.

9

� Case 1: ��" ! ��� 	 � 	 ��� : The certificate is verified
before the initial clean timer expires.

� " � � � , (by definition)
� ��� 	 � 	 ��� � ��"�! � 	 ��� ,

so the theorem holds.

� Case 2: ��� 	 � 	 ����� ��" � ��� 	 � � : The certifi-
cate is verified after the initial clean timer expires,
but before the revocation window expires.

a) If
�

is not marked dirty, then there exists some� �����
published at time � � � ��	 that was re-

ceived by the host. At � � , we know
�

has not
been revoked. The clean timer has not expired,
so � " ��� � � � 	 ��� .
Therefore,

� " ��� � � � 	 ��� , (
�

is not marked dirty)
� � � ��	 , (

��� � �����
)

� ��" � ��	 � � 	 ��� .
Intuitively, a certificate having an unexpired
clean timer means that the certificate has not
been revoked within �

	 ��� since the last CRL
publication time, thus the theorem holds.

b) If
�

is marked dirty and the most recent
� ��� �

published at time � � is retrieved. If �
	 � � � ,��� � ��� �
, the clean timer is reset to � � 	 � 	��� , and this case reduces to case 2(a).

If ��	�! � � , then it suffices to prove
�� � � � �

.
By property 2,

� � ��� �
if and only if

����! � � ! ��� 	 � � ,

where � � is ������� � � ��� � � � � 	 , the CRL publica-
tion on or immediately following �
	 . From this,
we can conclude that:

� ����! � � ,
��� � ��	 , (property 1)
��	�! ��� , (property 2)
� ��� � ��� ,
� ��� 	 � ��� ��� 	 � � ,
� � � ��� 	 � � , (from case definition)
� � � � � � 	 � � .

Hence:
� ����! � � � ��� 	 � � ,

and
� �� � ��� �

.

So the theorem holds. A similar argument
holds for certificates whose revocation window
is reset in response to a received CRL.

� Case 3: ��"�� ��� 	 � � : The revocation window has
expired, so the certificate is dropped. Thus, the theo-
rem holds. 	

3.5 Design Evaluation

In this section we evaluate our approach to key revocation
in terms of our two other stated design goals of scalability
and flexibility.

3.5.1 Scalability

Windowed revocation is scalable both in its bandwidth re-
quirements and the size of the supported community. As
indicated in Section 1 and throughout the paper, the scal-
ability of windowed revocation is based on its use of the
revocation window and CRL push delivery. By limiting
the size of CRLs through the use of the revocation win-
dow, we reduce the costs associated their distribution.

Through certificate caching, we attempt to maximize
the total number of supportable verifiers. Moreover, we
use the CRL publication as a form of cache invalidation
protocol. Given our reduced CRL size, we can push de-
liver CRLs to verifiers. This allows verifiers to passively
maintain the validity of their cached certificates with-
out having to independently request information from the
CAs. We avoid unnecessary validation by allowing veri-
fiers to postpone the verification of a cached certificate’s
revocation state until the certificate is to be used. In this,
CRLs are reliably retrieved only when CRLs are lost and
a certificate verification is needed. While a push mech-
anism for CRL delivery is mentioned in [Pro94], we are
not aware of any existing design that uses the push mech-
anism with provable correctness.

Our use of IP multicasting in CRL push delivery mini-
mizes network bandwidth usage by not duplicating data
transmission to multiple destinations where their paths
overlap. For scalability reasons, IP multicasting uses
the unreliable transport protocol, UDP, for data delivery
[DC90]. Our ability to use unreliable transport proto-
col for push delivery of CRLs rests fundamentally on the
use of documented scheduled intervals. A verifier with a
cached certificate knows the periodicity at which CRL is
expected. If the CRL is not received within the expected
period, the verifier uses a reliable transport protocol for
validation.

An important distinction to note is that the use of un-
reliable transport protocol in no way affect the security of
received CRLs. The security of received CRLs is based on
digital signature, and as such are as secure as the signers’
CRL generation process (see Section 4.1).

By stipulating that certificate revocations be aggregated
at and distributed by keyservers, we reduce total costs of
CRL distribution. Thus, the number of enterprise and

10

end-user certificates scales well with the number of key-
servers.

We have considered other approaches to CRL delivery.
In one approach, the keyserver create and publish a new
CRL every time it receives one from an ER, instead of
postponing generation until the next KS CRL publication.
Alternatively, each ER can multicast its CRLs directly to
certificate holders either on the KS’s announcement ad-
dress or its own multicast group. Both alternatives have
the advantage of reducing the window of vulnerability
from � �

	 ��� to � � . Compared to our proposed protocol,
however, these alternatives require the network to carry
more messages and certificate holders to be interrupted
more frequently, check more digital signatures, and keep
a larger number of timers. In addition to the performance
trade-offs along these same parameters, requiring a KS to
generate a new CRL everytime it receives one from an
ER means the KS must execute more digital signatures;
constructing and maintaining a multicast tree for each ER
may also overtax the networking infrastructure. Never-
theless, we plan to compare the performance of these al-
ternatives against the protocol proposed here in a future
study.

3.5.2 Flexibility

We bound the time in which a revoked certificate can
be used by its associated CRL publication period. Any
certificate which is cached longer than the clean timer is
subject to verification explicitly through a fresh CRL, or
implicitly by re-acquisition from the CA. The revocation
window allows the CA to control the resources required
to process CRLs. Smaller revocation windows reduce the
size of CRLs, but require hosts to validate or re-acquire
certificates more frequently.

An advantage of this approach is that a CA using win-
dowed revocation can mimic traditional key revocation
mechanisms. By setting the revocation window equal to
the maximum lifetime of any certificate, the CRLs gen-
erated will be functionally equivalent to those found in
explicit revocation systems. In this way, no cached cer-
tificate will ever have its revocation window timer expire
before the certificate expiration date. To mimic implicit
revocation, CAs running windowed revocation simply set
the CRL publication period to 0 and never publish CRLs.
This forces all certificates to be re-acquired after their
clean timers expire.

Windowed revocation supports verifiers who wish to re-
trieve revocation state at rates faster than the CRL publi-
cation period by setting the clean timer to any period less
than the CRL publication period, and the revocation win-
dow timer to 0.

Name Type Status
Certificate Extensions
windowedCRLIndicator BOOLEAN critical
crlPublicationPeriod INTEGER critical
revocationWindow INTEGER critical
crlAnnouncementAddress Name non-critical
Certificate Revocation List Extensions
windowedCRLIndicator BOOLEAN critical
crlPublicationPeriod INTEGER critical
revocationWindow INTEGER critical

Table 1: Extensions to the X.509 v3 standard.

4 Issues

4.1 Secure Certificate Retrieval

A central requirement of our revocation mechanism is for
freshness assurances in the certificate retrieval process.
Without such protection, the retrieval process would be
subject to replay attacks. By replaying an old response,
an adversary may deceive a user into using a revoked key.
There are several approaches for achieving freshness de-
scribed in [NS78] and [Sch96].

In windowed revocation, we avoid the inherent costs of
providing freshness on a per request basis by only guar-
anteeing freshness within a short interval. To achieve this,
the directory service generates a certificate packet for each
certificate once per configurable period. Included in this
packet is the certificate, a timestamp, and a digital sig-
nature computed over the previous fields. This packet is
returned in response to each request. Based on the signa-
ture, the requester can determine that the request is fresh
within the bounds of the configured period. In this con-
text, we use the timestamp as a nonce value. A verifier is
assured of the freshness of the response because the nonce
uniquely identifies the packet being generated within the
short period.

As the freshness guarantees rely on the quality of the
nonce value, this mechanism requires loosely synchro-
nized clocks. This is not an exceptional need, as other
secure systems such as Kerberos [SNS88, NT94] require
it. There are several widely deployed systems for achiev-
ing loosely synchronized clocks in [Mil92].

4.2 Certificate Format

The IETF Public Key Infrastructure Working Group
(PKIX) has developed a set of standards for integrating
a PKI into the Internet. One standard, the X.509 v3
[HFPS98] draft, provides a flexible interface for specify-
ing certificate distribution and revocation. Through cer-
tificate and CRL extensions, the issuing authority identi-

11

fies the location and mechanism used to retrieve revoca-
tion state.

In the interests of inter-operability, we propose to im-
plement our revocation mechanism as the set of X.509
v3 extensions listed in Table 1. The windowedCRLIndi-
cator field included in the CRL and certificate indicates
the use of our mechanism. The crlPublicationPeriod field
indicates the CRL generation rate, in minutes, of CRLs
by the issuing authority. The revocationWindow describes
the number of periodic CRLs that a revocation announce-
ment will be included. Optionally included in the cer-
tificate of each keyserver is the crlAnnouncementAddress,
which designates the multicast address over which CRLs
are delivered.

Note that the windowedCRLIndicator and parameter
fields are marked as critical. Within X.509 v3 specifica-
tion, implementations are prohibited from accepting cer-
tificates with unsupported critical extensions. In the ab-
sence of this, an application may misinterpret a windowed
CRL as a traditional CRL, potentially resulting in the use
of a revoked certificate.

The delivery of CRLs over multicast is independent of
the windowed approach to key revocation. This channel
may be used to improve performance in the validation pro-
cess, but is not necessary for the correct operation of win-
dowed revocation. Consistent with the X.509 v3 philos-
ophy, our mechanism may be used in conjunction with
other extensions (see Section 5).

5 Related Work

The Privacy Enhanced Mail [Ken93] architecture (PEM)
stipulates that all revoked certificates in each domain be
included in periodic CRLs. Due to the long lifetimes
of certificates, the size of these lists made CRL distri-
bution difficult. Several approaches to reducing the size
the CRLs have been proposed [AZ98, HFPS98], many
of which have been included in the IETF Public Key In-
frastructure Working Group (PKIX) draft standards. The
X.509 v3 certificate format standard [HFPS98] provides
extensions in which new mechanisms can be incorporated.
Primarily, the existing extensions attempt to reduce CRL
associated costs by partitioning the revocation informa-
tion or by delegating the responsibilities of CRL gener-
ation and distribution. Two approaches related to win-
dowed revocation are the delta CRL and freshness CRL
extensions.

CAs supporting delta CRLs [HFPS98] periodically
publish a traditional CRL, called a base CRL. Verifiers re-
trieve and cache the base CRL and more frequently pub-
lished delta CRLs. Delta CRLs only contain revocation
information generated since the last base CRL. In this
way, the CA can shorten the publication period without

requiring that verifiers obtain the entire CRL each pe-
riod. A CRL in windowed revocation is similar to the
delta CRL in that it presents revocation information within
some bounded period. However, unlike CRLs in win-
dowed revocation, delta CRLs continually increase in size
between base CRLs. Furthermore, PKIs using delta CRLs
are required to acquire, validate, and cache the potentially
large base CRLs.

In systems that use freshness CRLs [AZ98], delta CRLs
are generated at multiple rates. Verifiers retrieve the CRLs
at a rate commensurate with their security requirements.
The frequency of freshness CRLs is determined by the
CA, and thus limits the verifier to a set of predetermined
guarantees. In windowed revocation, each verifier may
acquire revocation state at any rate by dropping and re-
acquiring certificates as needed. Using this mechanism,
the verifier can obtain a tight bound on the delivery of
revocation state.

The Pretty Good Privacy (PGP) [Zim94] system pro-
vides a suite of tools for generating, managing, and re-
voking certificates within a local environment. PGP does
not specify certificate distribution or revocation protocols,
but relies on users to define mechanisms commensurate
with their needs. In response to this lack of specification,
users construct ad-hoc relationships between themselves
called webs of trust. Revocation is explicitly stated by the
generation and distribution of a revocation certificate.

There is a direct parallel between global certificate and
name-space management. In recognition of this fact, the
authors of DNSSec [Gal96, EK99] designed an architec-
ture for certificate distribution and revocation using the
existing DNS service. As with DNS, certificates are re-
trieved from the source domain and held for a short time.
Later validation is performed by re-acquisition of the cer-
tificate. Thus, no explicit revocation notification mecha-
nism is necessary. A limitation of this system is in the
inherent cost of retrieval. Dissimilar from existing DNS
records, certificates must be retrieved with freshness guar-
antees. As DNSSec requires each request to be digitally
signed by the CA, it is unclear how well it will scale in
large networks.

Another architecture using a form of implicit revo-
cation is the Simple Distributed Security Infrastructure
(SDSI) [RL96]. SDSI defines a language and toolkit un-
der which user and group certificates can be created, dis-
tributed, and revoked. SDSI requires certificate owners to
document a reconfirmation TTL. When this TTL expires,
the validity of the certificate is required to be confirmed
by some authority. This is functionally equivalent to the
implicit revocation mechanism found in DNSSec.

12

6 Conclusions and Future Work

In this paper, we have presented a novel approach to key
revocation in Public Key Infrastructures. Windowed revo-
cation attempts to limit the size of CRLs by announcing
revocation only as long as necessary. The time a certifi-
cate can be held by a host is bounded by the announce-
ment period, called the revocation window. Thus, all cer-
tificates will be verified: (1) explicitly by CRL or, (2) im-
plicitly by retrieval. Through the manipulation of revoca-
tion window, the CA may influence the CRL size and the
frequency with which certificates are retrieved.

We provide an end-to-end push mechanism for CRL de-
livery using multicast. Using this mechanism, the costs
and latencies associated with verifier initiated CRL re-
trieval are alleviated.

In our design, we provide a priori indirect CRLs
[HFPS98]. CRLs from potentially many security domains
are aggregated and authenticated by a centralized author-
ity. Using aggregated CRLs may increase the perfor-
mance of the CRL retrieval and validation process.

Within this work, there are performance issues that
must be resolved: the observable reduction of CRL size,
the frequency with which certificates are retrieved, the
costs and benefits of pushing CRLs via multicast, and
many others. While an analysis using existing usage char-
acteristics will provide significant insight into the validity
of our solution, we feel the best measurement will be the
effectiveness of an implementation within the Internet.

We are in the initial stages of an implementation of the
KDH PKI. This software will be deployed within our local
environment and used as a test-bed to study the usage, per-
formance, and validity of our approach. Further, we plan
to integrate the KDH services with SSLeay [HY98], a
widely-used session layer providing secure point to point
communication. Once our evaluation and implementa-
tion is complete, we intend to integrate windowed revoca-
tion into systems currently supporting the PKIX working
group standards.

References

[AZ98] C. Adams and R. Zuccherato. A general,
flexible approach to certificate revocation.
http://www.entrust.com/resources/
whitepapers.htm, June 1998.

[BAN90] M. Burrows, M. Abadi, and R.M. Needham.
A Logic of Authentication. ACM Transactions
on Computer Systems, 8, February 1990.

[CY97] D. Chadwick and A. Young. Mergin and Ex-
tending the PGP and PEM Trust Models -

The ICE-TEL Trust Model. IEEE Network,
May/June 1997.

[Dav96] D. Davis. Compliance Defects in Public-
Key Cryptography. In Proceedings of the 6th
USENIX Security Symposium, pages 171–178,
July 1996.

[DC90] S.E. Deering and D.R. Cheriton. “Multi-
cast Routing in Internetworks and Extended
LANs”. ACM Transactions on Computer Sys-
tems, 8(2):85–110, May 1990.

[DH76] W. Diffie and M.E. Hellman. New Directions
in Cryptography. IEEE Transactions on Infor-
mation Theory, IT-22(6):644–654, November
1976.

[EK99] D. Eastlake and C. Kaufman. RFC 2065, Do-
main Name System Security Extensions. RFC
2065, Internet Network Working Group, Jan-
uary 1999.

[Gal96] J. Galvin. Pubilc key distribution with secure
dns. pages 161–170, July 1996.

[HFPS98] R. Housley, W. Ford, W. Polk, and D. Solo.
Internet X.509 Public Key Infrastructure, Cer-
tificate and CRL Profile ¡draft-ietf-pkix-ipki-
part1-08.txt¿. IETF X.509 PKI (PKIX) Work-
ing Group (Draft), June 1998.

[HY98] T. Hudson and E. Young.
SSLeay and SSLapps FAQ.
http://psych.psy.uq.oz.au/ ftp/Crypto/,
September 1998.

[Ken93] S. Kent. RFC 1422, Privacy Enhancement for
Internet Electronic Mail: Part II: Certificate-
Based Key Management. RFC 1422, Internet
Network Working Group, February 1993.

[Koc98] P. Kocher. A quick introduction
to certificate revocation trees (crts).
http://www.valicert.com/resources/body.html,
1998.

[KPS95] Charlie Kaufman, Radia Perlman, and Mike
Speciner. Network Security, Private Commu-
nication in a Public World. Prentice Hall, En-
glewood Cliffs, New Jersey, 1995.

[Mic96] S. Micali. Efficient certificate revoca-
tion. Technical Report Technical Memo
MIT/LCS/TM-542b, Massachusetts Institute
of Technology, 1996.

13

[Mil92] D. L. Mills. Network Time Protocol (Version
3): Specification, Implementation, and Anal-
ysis. RFC 1305, Internet Network Working
Group, March 1992.

[MJ98] P. McDaniel and S. Jamin. Key distribution
hierarchy. Technical Report CSE-TR-366-98,
EECS , University of Michigan, Ann Arbor,
1998.

[Moc87a] P. Mockapetris. Domain Names - Concepts
and Facilities. RFC 1034, Internet Network
Working Group, November 1987.

[Moc87b] P. Mockapetris. Domain Names - Implemen-
tation and Specification. RFC 1035, Internet
Network Working Group, November 1987.

[NN98] M. Noar and K. Nassim. Certificate Revoca-
tion and Certificate Update. In Proceedings
of the 7th USENIX Security Symposium, pages
217–228, January 1998.

[NS78] R.M. Needham and M.D. Schroeder. Using
Encryption for Authentication in Large Net-
works of Computers. Communications of the
ACM, 21(12):993–999, December 1978.

[NT94] B. C. Neuman and T. Ts’o. Kerberos: An
authentication service for computer networks.
IEEE Communications, pages 33–38, Septem-
ber 1994.

[Pro94] Produced by the MITRE Corperation for
NIST. Public Key Infrastructure Study, Final
Report. , April 1994.

[RL96] R. Rivest and B. Lampson. SDSI A Sim-
ple Distributed Security Infrastructure.
http://theory.lcs.mit.edu/ rivest/sdsi11.html,
October 1996.

[Sch96] Bruce Schneier. Applied Cryptography. John
Wiley & Sons, Inc., New York, Chichester,
Brisbane, Toronto, Singapore, second edition,
1996.

[SNS88] J. G. Steiner, B. C. Neuman, and J. J. Schiller.
Kerberos: An authentication service for open
network systems. In Proceedings of the Usenix
Conference, pages 191–202, 1988.

[Zim94] P. Zimmermann. PGP user’s guide. Dis-
tributed by the Massachusetts Institute of
Technology, May 1994.

14

