
Micæl: An Autonomous Mobile Agent System to Pro-
tect New Generation Networked Applications

José Duarte de Queiroz, Luiz Fernando Rust da Costa Carmo, Luci Pirmez

{jqueiroz,rust,luci}@nce.ufrj.br

Núcleo de Computação Eletrônica – UFRJ
Cx. P. 2324 – Rio de Janeiro – RJ – Cep 20001-970 - Brasil

Keywords: Highly Distributed and Heterogeneous Networks; Adaptive IDS Solutions; Mobile

Agents; Security; Modular Systems.

Abstract
Here we present a research project to create and deploy an Intrusion Detection System

based on Autonomous Mobile Software Agents. An Intrusion Detection System is an admini-
stration/management tool that identifies and reacts to intrusion and unauthorized use at-
tempts. These agents will use mobility facilities, allowing an efficient use of resources, by dy-
namically distributing processing tasks, with a minimal degradation of the performance per-
ceived by users. With this kind of system, it’s easy to setup an efficient defense for environ-
ments such as Multimedia Systems, where there’s no much experience about potential security
hazards.

1 Introduction
Nowadays, it’s extremely usual to find

networked computers storing essential data
and playing key roles to the execution of the
company’s activities,. These data are often
secret as its disclosure can cause high losses
to the company; other times they need to be
available immediately, or tuning in fully
inutile. Sometimes, there’s a limited amount
of resources, so its use must be rigorously
controlled. In all cases, these systems are
subject to the risk of being accessed in an
unauthorized way, resulting in disclosure,
adulteration or denial of access. The net-
work link, either local or wide area, mult i-
plies these risks, as the perpetrator allies
anonymity and power deployed by the net-
work tools.

To avoid that these risks come true, as
computers get more and more connected
through networks, system managers need
tools that identify and react to intrusion and
unauthorized use attempts, minimizing the
probability that the perpetrator get success-
ful. This kind of tool, known as IDS (Intru-

sion Detection System), usually is defined
as a small set of highly complex and mono-
lithic programs, running in special machines
in the target network, and causing a strong
performance degradation as perceived by
final users. Virus Scanners are good exam-
ples of them.

The problem here is that these systems
are tuned to identify only intrusion attempts
that gets carried in the classical streams of
communication, as Terminal Emulation
(TELNET), File Transfer (FTP, NFS), etc.
Preparing them to verify the activities per-
formed by new applications, as the Multi-
media Systems, is very hard and expensive,
resulting almost always in a fully new sys-
tem that is much more a specific one than a
more general solution.

Here we present a brand new architec-
ture to develop an IDS with these main
characteristics:

• Be compound of many autonomous enti-
ties – the agents – that are able, each of
them, to identify a bit of the evidences
of an attack;

• Eliminate the single fail point that
monolithic IDS brings: as detection gets
carried by many agents, it’s harder that
when some of them fail, the whole of the
system gets out of work;

• Reduce the performance impact in the
machines, as the agents, very simple, are
not so greedy for memory and CPU time
as monolithic systems;

• The reconfiguration are much simpler:
as new hazards appear, new agents can
be developed, without messing with the
old ones;

• As agents are simpler and smaller, a
greater number of hosts and connected
subnetworks can be protected, resulting
in a higher reach and expandability.
This work proposal is a consequence of

the precept “divide and conquer”. We have a
complex task (detect intrusion attempts, in
their multiple faces – small undercover ac-
tivities that sum up to break in) that, as we’ll
see, gets divided to many simple programs,
each of them responsible to inspect a small
parts of the system, as a sentinel that cares a
little point from a huge frontier. Other Com-
puter Science areas also use, successfully,
this aphorism: Structured Analysis and Pro-
gramming, SNMP (a network management
protocol), etc. Our final goal is ally new
technologies and deploy a strong structure to
a brand new generation of IDS tools.

After these introductory lines, we’ll see
in Section 2 a summary of related works,
following in Section 3 to a detailed descrip-
tion of the design of our work. Finally, in
Section 3.5 we have a final resume, with a
brief listing of results and conclusions ob-
tained until now, ending with the references
used in the building of the work (Section 5).

2 Related Work
One of the first works proposing the use

of Autonomous Agents to develop Intrusion
Detection Systems was [Crosbie94]. In his
article, the author proposed that IDS tasks
should get divided into several small sub-
tasks, compound of simple activities, that
should be assigned, each one, to static
autonomous software agents. In the original

proposal, the agents should be custom-built
to the assigned tasks, with aid of Artificial
Intelligence techniques (Genetic Program-
ming). As an evolution of Crosbie’s work,
we have [Zamboni98], which proposes an
architecture called AAFID (Autonomous
Agents For Intrusion Detection). AAFID is a
very recent work, as it came recently (Octo-
ber/98) to implementation. AAFID organ-
ized the agents into an hierarchical structure,
each of them having different assigned re-
sponsibilities. As our work had started from
AAFID, we’ll see it in greater detail.

A system built as AAFID can be dis-
tributed in any quantity into the machines of
the network; each of them can have any ar-
bitrary amount of running agents, monitor-
ing the interesting events. All the agents into
a machine reports their results to a single
transceptor, which is responsible to operate
the agents inside that machine, having the
ability to fire up, shutdown, and setup them.
It can also filter the data sent by agents. Fi-
nally, the transceptors communicate to one
or more monitors. Each monitor controls the
operation of one or more transceptors, hav-
ing, this way, access to data in network
level. Thus, the monitor can extract high
level correlations and detect intrusions to
several machines. They can also get organ-
ized into another hierarchy, so that a monitor
works under control of another one, or two
or more of them work in parallel, achieving
redundancy. Finally, an User Interface is
defined, so users can follow up and control
system’s work.

When a System’s entity wants to com-
municate with another one that is in the
same host, it makes it in different ways than
when communicating to other hosts. Even
though the choose of the mechanisms is
fundamental, [Zamboni98] doesn’t closes
with any one of them. Instead, a list of de-
sired characteristics is given so a mechanism
can be chosen:

• They can’t impose overheads to regular
host’s activities;

• They shall offer an reasonable expect to
message reception, in a fast and correct
way;

• They shall resist to Denial of Service
attacks (both from external and internal
entities), as flooding or overflow; and

• They shall offer authentication and con-
fidentiality.
There are several other researches using

similar approaches, in which the network
protection task get divided in small simple
tasks, as watching connections, scanning log
files, etc.; [Zamboni98] gives a very com-
plete list of them.

3 Micæl’s Architecture
Here we’ll present a brand new archi-

tecture, derived from the original proposal
in [Crosbie94] and similar to AAFID. We
called it Micæl System. We use here a dif-
ferent task division, so we can get most of
the main characteristics of our agents: the
mobility, that was neither in [Crosbie94]
neither AAFID.

Every agent in Micæl System must
obey to the following behavior rules:

1. They must obey to agents’ developing
rules;

2. They must attend to other agents’ re-

quests, specially to the Auditor (Section
3.1.4);

3. Their code must be stable, in other
words, it can’t raise flaws to host sys-
tems.

3.1 Architecture Elements
In our design, we divide intrusion and

hazard detection task in the main agent
kinds: the head quarter, the sentinels, the
detachments, the auditors, and finally the
special agents, as we’ll see in the following.

All data reunited by the agents are
stored into databases with a structure that is
very similar to the SNMP MIB [RFC1156,
RFC1157]. The content of the database is
specific to each agent, and is out of the
scope of this document.

3.1.1 The Head Quarter

The Head Quarter (QG) is a special
agent that centralizes the system’s control
functions. It’s also responsible by creation
the other agents, maintaining this way a da-
tabase of agents’ executable codes. It’s ca-
pable of moving, but it only uses this mobil-

ity in two situations:
• If the use load of the QG’s

host increases (e.g., an user
logs in) in a way that control
functions could disturb the
user tasks; in this situation,
the QG migrates to a machine
under lower load;

• If the QG host gets invaded or
infected; if so, the QG mi-
grates to avoid subverting it’s
code.
In the situations which QG

decides to migrate to a new host,
the active agents must be in-
formed, as they are expected to
return to the host of the QG to
register the acquired experience.
When migrating, there must be
taken into account that the QG
maintains several databases, some
of them stored in mass media.
These databases must remain ac-

 Figure 1 – An Example of Micæl System, for a network made of three
hosts. Each host runs a Sentinel Agent (S); Host A runs, also, an Detach-
ment Agent (D); Host B runs an Auditor Agent (A); Host C runs also the

HeadQuarter Agent (QG).

cessible, no matter what host is chosen. It’s
convenient save the possible hosts in a list,
and use URLs to access database files.

The QG reunites information collected
by the agents, issues reports and compiles
statistics, but is not responsible by the user
interface. This interface is offered by other
systems, by means of SNMP messages.
With this decisions, we achieve that any
SNMP client/browser can control Micæl
System.

The QG doesn’t makes decisions about
the detection tasks; these decisions are taken
only by the Sentinels and the Detachments.
It cans, however, under that agents’ request,
fire up new agents, or send alerts to the op-
erator. Periodically, the QG creates auditor
agents, to verify that the whole of the sys-
tem remains it’s integrity, as we’ll see.

The QG doesn’t needs intelligence, but
is highly recommendable that it’s able to
identify, from the several kinds of Detach-
ment agents codes, which one is the proper
to handle the anomaly detected by the senti-
nel in a request.

3.1.2 Sentinels

Sentinels are special agents that remain
residents in each of the target network hosts,
collecting relevant information, and inform-
ing the QG about eventual anomalies, just
for logging. When a Sentinel detects an arbi-
trary level of anomaly, it requests the crea-
tion of a Detachment to the QG, so the De-
tachment can verify with greater detail the
detected anomaly. The most appropriated to
handle the verified anomaly is the one cho-
sen and fired up.

The sentinel’s life cycle can be de-
scribed as follows:

1. The QG creates, in its own host, a senti-
nel agent;

2. The sentinel gets ordered to migrate to
its destination host;

3. The sentinel consults the available data-
bases, seeking for anomalies or invasion
patterns;

4. If an anomaly is found, the sentinel re-
quest the QG to create and send a De-
tachment, which will handle the situa-

tion in a more refined way, taking the
appropriated measures.

5. Periodically, the sentinel saves its execu-
tion state to the QG, preventing abrupt
host system’s failures or shutdowns.

6. Processing goes on, until the host ma-
chine get turned off (in normal ways, by
means of shutdown procedures) or the
whole system gets ordered to deactivate;
in this case, the sentinel migrates back to
the QG host, where it records the col-
lected data and terminates.
The sentinel should have a minimum

capacity of learning. It’s reasonable that, in
the start of operation, several false alarms
get reported. As the operator express his
opinion about the generated alarm, it’s ex-
pected that the false alarms get more and
more rare.

Sentinels can exhibit a small specializa-
tion level, to better accommodation to each
target environment. This way, the sentinel
assigned to watch an Unix system is ex-
pected to be different than other assigned to
watch a Windows system, as long as the
hazards and weak points are different in
each system. This specialization is restrict,
however, to the detection proceedings; as
we’ll see ahead, executable code independ-
ence is a highly desirable characteristic.

There can be situations that immediate
reaction is necessary, prior that detachment
convocation can be done. So, it’s desirable
that the sentinels be able to react in a certain
way. An example of that is the SynFlood
attack, that blocks out the machine commu-
nication in short time (even avoiding the
detachment to migrate in). So the sentinel
must handle itself the hazard, avoiding ma-
chine blocking.

3.1.3 Detachments

A detachment is a special agent which
gets created to face a possible hazard. When
a sentinel identifies an anomaly or an inva-
sion pattern, it requests to the QG that a de-
tachment get created and sent to the anom-
aly neighborhood. This agent uses a more
elaborated detection mechanism, and can
take defense and counter-attack measures
against the hazard, if it gets confirmed.

The Detachment’s life cycle is de-
scribed as follows:

1. The host’s sentinel identifies an anomaly
and gather relevant information. This in-
formation is used to choose the most ap-
propriated code to the detachment;

2. The QG creates a new agent in its host,
with the chosen code;

3. The new detachment is ordered to mi-
grate to the threatened host;

4. Upon activating in the threatened host,
the detachment starts evaluating the real
situation; it can decide to confirm or ne-
gate the threat. This decision is passed to
the local sentinel and to the QG, for fu-
ture reference.

5. If the threat gets confirmed, the detach-
ment start the countermeasures. These
can include program desinfection, forced
ending of user sessions, machine shut-
down, or even counter-attacks, intending
blocking the enemy machine (if the
threat comes from the outside).

6. When the threat gets into control and the
alert level turns back to normality, the
detachment migrates back to the host
QG, records its execution state for future
reference, and terminates.
There can happen that the detachment

decides that is not the most appropriated to
handle the potential threat, and request the
creation of another detachment. Several de-
tachments can be active simultaneously in a
host. A maximum load level must be de-
fined, so the legal user of the defended host
gets the minimum service as defined by sys-
tem managers.

The detachments should have a high in-
telligence level, but its learning can be done
offline. As this kind of agent have a short
lifetime (as long as the threat exists), there’s
no time to apply the newly acquired experi-
ence in a single activation. This experience
can be reunited and compiled, giving into
new detachment versions.

3.1.4 Auditors

To avoid that agents which code got
subverted damage system’s security, Micæl
counts on Auditor agents, which gets fired

up periodically to check the perfect integrity
of the active agents.

The auditor and the QG are the only
agents permitted to create new agents. It
uses this ability to create back the QG, if it
aborts execution by any reason. If the audi-
tor sees that the sentinel is missing, it re-
quests to the QG that a new one gets cre-
ated.

Another peculiarity of this agent is that
it doesn’t use conventional ways to commu-
nicate with other agents to accomplish its
work; instead, it uses an Auditory API (Ad-
vanced Programming Interface), which is an
obligatory part of all Micæl’s agents.

The auditor doesn’t needs any intelli-
gence or learning facility; its work is fully
automatic. To verify the integrity of the
agents, it uses precompiled internal check-
sum tables.

The auditor lifecycle can be described
as follows:

1. The QG creates the auditor.
2. The auditor connects to auditory API of

all the agents in the host and verifies
their execution state (auditory process);

3. The auditor migrates to the next host in
the system;

4. The process goes back to step 2, until all
the agents in all hosts get audited.

5. If the QG sees that the auditor doesn’t
communicate in a certain time interval,
it concludes that it have aborted, and
recreates it.

6. The auditing process goes on until the
whole of the system is deactivated.
If the auditor doesn’t finds the agent

that it wants, it concludes that this agent got
aborted, and requests the QG to recreate it.
If the aborted agent is the QG, the auditor
recreates it by itself, in the same host that it
expects to find it.

3.1.5 Special Agents

There are other kind of agents in Micæl,
beyond the ones seen above. These are
known are “special agents”, that carries an-
other tasks. One of them is the network con-
troller/monitor, as we’ll see below. Any kind
of agent can be created as needed, as long as

it obeys to the behavior rules shown above
(Section 3).

It can be necessary to the final user, or
the target system administrator, to develop
their own agents; to accomplish this, they
must follow agent models and predefined
action libraries.

The SNMP documentation [RFC1155,
RFC1757, Rose95] brings to attention that it
isn’t possible to reunite network related in-
formation, specially in bus networks like
Ethernet, only using SNMP agents, as they
only see the information that comes into
their hosts. To cope that, we use a special
equipment called probe and a structure
called RMON. As Micæl’s agents also runs
in the hosts, they suffer the same. But a spe-
cial agent called Network Monitor, working
together to the RMON probes, can discover
bus blocking attacks like flooding, spoofing
and DoS, and flaws that brings risk to the
network (e.g., a network adapter monopoliz-
ing the bus).

3.2 Inter-Agent Communica-
tion
The communication between Micæl’s

agents is carried by means of ATP messages
(we’ll see ATP in detail below, Section 3.3).
The Auditor agent, however, carries out its
task using special access points, so it can
verify other agents’ internal integrity.

The advantage in using ATP messages
to carry inter-agent communication is that
there is a predefined library to do that, and
as this library is part of mobility library, it’s
fully compatible with it. ATP messages can
also get authenticated and encrypted, and
remote host access is part of the core func-
tions of it. The disadvantage is that user in-
terface programs must be developed to use
ATP messages, also. Putting all together,
we’ve chosen to use ATP messages, until
experience prove us wrong.

Message security is essential to our
goals; every message exchanged between
two agents must be authenticated and en-
crypted, as we can expect that intruders shall
try to interfere with communications to sub-
vert or turn system out of work. As ATP

messages can get authenticated and en-
crypted, there’s no substantial problem.

The process of auditory is a special is-
sue in communication. Auditor and audited
agents shares a very tight relationship; it can
even get said that during auditory, the au-
dited agent turns into a data module of the
auditor. This decision also increases the ro-
bustness of the auditory process, as it turns
harder to external entities to interfere with
these communications. This way, there’s no
need to use strong authentication methods at
this level; a simple “challenge-answer”
method shall be sufficient.

All auditable agents in Micæl must sup-
ply an API (Advanced Programming Inter-
face), with at least the following functions:

• Identification: The auditor identifies it-
self to the audited agent, and asks it to
identify itself, back. Positive identifica-
tion frees up the other auditing func-
tions.

• Integrity verification: The auditor asks
to audited agent to compute the check-
sum of it’s code and send it back. This
functions serves to determine that the
agent code doesn’t got subverted.

• Execution Control: The auditor can or-
der the agent to abort it’s execution, or
even do it by force, if it concludes that
it’s code got subverted.

3.3 Mobility
Mobility is a key function to Micæl sys-

tem. Mobility can be useful to us in several
situations, such:

• It is necessary that agents get audited pe-
riodically. Allocate an auditory module
on each agent would imply in resource
waste, as should get agents more com-
plex. A mobile auditor agent can audit,
one by one, each of the defended hosts,
sequentially, without overloading any of
them.

• When an agent finds an abnormal pat-
tern, it only needs to call for another
agent to handle the abnormality. Without
mobility, all agents should need to get
loaded exactly at the point where the ab-
normality would occur, to detect or han-

dle it. A mobile agent, instead, can move
to the exactly point where it is needed.

• A mobile agent can easily track a
“worm” attack, where the aggressor
jumps quickly from one machine to an-
other.

• The processing lo ad can get dynamically
distributed along the defended machines.

Resuming: we expect that using mobil-
ity we can get the system to use a minimal
amount of resources, and concentrate the
maximal amount of resources at the exact
point where they’re needed, at the exact
moment when they’re needed.

Many mobility frameworks are avail-
able, offering mobility facilities to agents.
We can see in [Endler98] several such alter-
natives. We decided to use in our work
ASDK [ASDK98,Lange98]. The cost of
such decision is carry the ASDK framework
to every machine that composes the target
network, no matter what’s the operational
environment supported on them. Some diffi-
culties arise:

1. ASDK is based upon Java; the target
machine must support execution of Java
code.

2. The Operational System must be capable
of loading new protocol and procedure
libraries, to accommodate ASDK need-
ings.
The ASDK (Aglets Software Develop-

ment Kit) environment was developed by
IBM to provide mobility facilities to agent

programs. It’s written in Java, and include
primitives to create, move, communicate
and dispose programs. A mobile agent in
ASDK is known as an aglet (contraction of
agent + applet). The aglet migrates from
one machine to another with help of a server
module, known as Aglets Server.

To travel from one machine to other, the
aglet contacts the aglets server from the
target machine, in a predetermined TCP
port, and identifies itself. After authorized, it
starts serializing its state and code to a
stream, and send this stream to the target
machine. After transferring the stream, the
traveling aglet releases the resources in the
source machine, and gets restored by the
aglets server on the other end, by deseriali-
zation of the stream. The contact, the identi-
fication, the stream transfer, the control
switching, all these are controlled with aid
of the ATP protocol (Aglet Transfer Proto-
col). ATP also gives messaging facilities,
with authentication and encryption.

The idea of a program, or a program
fragment, which is capable of seamless,
autonomously, moving through the hosts of
a network, is very security sensible. To aid
in security control, ASDK follows the secu-
rity structure of JDK 1.2 [Gong98].

In the Sandbox model from JDK 1.0,
the Java code is classified in two security
levels: trusted (those obtained from the local
machine) and untrusted (those obtained
from outside). Trusted code have full access
to system resources, meanwhile untrusted
code sees a restricted subset of system re-
sources, the so called “sandbox”. JDK 1.1
expanded the “sandbox” model, allowing
special applets to access pieces of local re-
source set, when authenticated by digital
signatures. In JDK 1.2, instead, the target
machine’s manager have power to decide
what access level is allowed to each module.
This is a key feature to Micæl’s agents, as
they need access files in local storage that
are very sensitive. Allowing unrestricted
access to these files could cause a security
breach worse than the ones that we intend to
handle.

The ASDK model defines three mobil-
ity primitives: creation, dispatching, re-

Figure 2 – Transfer Process between two Hosts

(extracted from [Lange98])

traction and disposing . Each of them is
related to a method defined in the Aglet ob-
ject. The Aglet class defines the executable
module of the ASDK program, and is simi-
lar to the Applet class. The Aglets reside in a
context that is defined inside a host. A host
can have several contexts, and aglets do
move from one context to other. As Aglets
objects are serialized to get moved, they can
make use of any class, as long as these
classes are also serializable.

To allow communication between ag-
lets, independently of its place, ASDK de-
fines the Proxy object concept. When one
aglet calls the create primitive, creating a
new aglet (the “son”), a proxy object also
gets created, and is returned to the original
aglet (the “father”). With this proxy object,
the father aglet can communicate and con-
trol its son, no matter which is its placing.
Communication can be done synchronous
and asynchronously.

There’s an operational problem with the
proxy approach: when aglets move, the
proxy references to them get invalidated,
and library doesn’t gives good solutions to
reconstruct them.

We’ll use a solution that we call Relay:
each context hosts a relay agent, which re-
ceives communication requests from the
other agents hosted in that context. If the
relay knows about present location of the
aglet, it resents the message to the relay
which is responsible for that context. Oth-
erwise, it multicasts to the other relays, ask-
ing who knows about the target aglet.

The use of multicast can re-
duce the overhead of broadcasting
(or, even worst, retransmitting) to
find all the known relays, and also
avoids that the relays need to reg-
ister each other.

When an aglet comes to a
context, it registers himself within
the context’s relay. Just before it
leaves, it signals up the relay,
which informs the other relays to
update their routing tables.

There was a bit of controver-
sial if java applications could ac-
cess the data needed to detect in-

trusion, since that information normally re-
sides deep inside the Operational System.
There is two approaches to cope with it: i)
use JNI procedures, at a cost of loosing
portability; ii) use native SNMP agents to
consult the needed data.

3.4 The Target Environment
We intend use Micæl System on an en-

vironment composed of Unix, Windows 9x
and Novell Netware hosts. It’s very usual
find corporative networks compound of any
combination of them, specially in brazilian
market. As a work follow, we intend extend
Micæl to Windows NT.

The multiple OS environment was one
of the key reasons why Java got chosen to
development. Some other alternatives are:

• Use of each target machine’s object
code: The fastest, but the worst of all so-
lutions, as it would deny use of mobility.

• Use of interpreted languages (perl, tcl,
shell scripts): A good solution, in com-
patibility point of view, but very hard to
implement in practice, as not all the ma-
chines and OS have those interpreters. It
would be also the worst performance
one, besides interpreted languages, ex-
cept perl, don’t offer access to low level
information.

• Java: The multi-OS requirement
strongly recommends use of Java, as
Java is a full multi-platform program-
ming environment. The mobility library

Figure 3 – Message Exchange between two aglets by means of a Proxy

object (Extracted from Lange98)

(ASDK) is written in Java, also.

3.5 Comparing Micæl to
AAFID model
There are a few points in [Zamboni98]

that we can comment with critical vision.
First of all, AAFID is an fixed agent system,
in which agents are custom-built to the tar-
get machines. The distribution and loading
of these agents is a very complex task.
Every agent must know the present configu-
ration and distributing, as they may need to
change data. Altering this distribution im-
plies, in a minimal way, in reconfiguring the
most of the system. As communication is
specialized into internal and external, there
can be situations in that just moving an
agent from one host to other may imply in
recompile, or even rewriting, some system’s
modules. The sudden appearing of a new
hazard in somewhere in the network may
impose in system’s reconfiguration, even
that this hazard is already known in other
locations.

Micæl, in other way, takes from the
mobility of its agents his differential. The
agents only need to know where they must
go, and get there automatically. The system
can also adapt to sudden load changes, and
move proper agents to the neighborhood in
which they are really necessary, just in the
moment that they are necessary. It is possi-
ble to have a fast reaction to new hazards, or
to changes in the attack profile. With the use
of Java language (see Section 3.3), any sys-
tem can get protected from Micæl, as long
as it implements some kind of Java Virtual
Machine (JVM).

4 Final Comments
We presented here an Intrusion Detec-

tion System’s architecture, named Micæl
System. Micæl System works with aid of
autonomous, mobile, distributed software
agents, so it can protect, with minimal re-
source use, the hosts in a network, and in
practice the whole of the network.

Micæl’s agents are classified according
to their performed tasks, and communicate

each other with ATP messages. Such agents
use SNMP to gather detection information.
Periodically, agents get audited, assuring
their correction and integrity. Agents are
written in Java, so we can use a mixed OS
environment, that is on of our basic goals.
The mobility framework is supported by
ASDK package, which, along to JDK 1.2,
offer privacy and authentication facilities,
which are essential to such architecture.

Beyond a Network security tool, Micæl
System will be useful as a research bench in
several technologies, specially on mobile
agents, which is a field as fertile as unex-
plored. Another contribution is bring greater
integration of such technologies to manag-
ing functions. The architecture is strongly
modular, so the process of producing new
agents is very easy.

In the time this article got written, the
project was in development step, with a few
prototypes implementing mobility facilities,
with excellent results. We expect that in a
few weeks we’ll have the first detection
agent into running. These results have been
achieved using ASDK 1.0.3 and JDK 1.0.7b.
We will proceed work using newer version
of these packages. There’s no performance
analysis in any way; but is easy to realize
that the overall performance of the system
rely strongly in the JVM performance. As
there’s a real big interest in running Java
programs (because of Internet), we can ex-
pect JVM to be very efficient, and get more
and more fast and robust.

Some points got left behind, by reasons
of simplicity and fitting to the available
time. The best example is the intelligence
and learning facilities. Several agents of
Micæl system need some intelligence, or
learning. Intelligence and learning would be
useful in several situations:

- The false alarms could be minimized by
use of learning;

- System behavior can be adjusted to user
needings, without use of highly elabo-
rated but worthless functions;

- Only useful functions get loaded, result-
ing in a lower system load;

- New hazards can be identified and in-
cluded, without need of recompilation or
reprogramming.
We intend to add intelligence and learn-

ing facilities to Micæl’s agents in the future.

5 References
[Zamboni98] Diego Zamboni, J.S.

Balasubramaniyan, J.O. Garcia -
Fernandez, D. Isacoff, E.H. Spafford.
An Architecture for Intrusion Detec-
tion using Autonomous Agents.
COAST Technical Report. 98/05.
COAST Laboratory – Purdue Univer-
sity. June/1998.

 [Crosbie94] Mark Crosbie, E.H. Spafford.
Defending a Computer System Using
Autonomous Agents. COAST Techni-
cal Report 95/22. COAST Laboratory
– Purdue University. March/1994.

[GrIDS] Staniford-Chen, S. et al. GrIDS – A
Graph Based Intrusion Detection Sys-
tem for Large Networks. UC/Davis.

[CIDF&SNMP] Hardarker, W. et al. CIDF
& SNMP. Apresentação para o Encon-
tro DARPA/CIDF na UC/Davis.
June/1998.

[SSM] Stamatelopoulos, F., G. Koutepas, B.
Maglaris. System Security Manage-
ment via SNMP. National Technical
University of Athens. Presented in HP
OpenView University Association
Workshop, April/1997.

[Endler98] Endler, Markus. Novos Para-
digmas de Interação usando Agentes
Móveis. IME/USP. 1998.

[ASDK98] Oshima, M., G. Karjoth. Aglets
Specification Version 1.0 (Draft).
IBM, , April/1998.
http://www.trl.ibm.com/documents.html

[Rose94] Rose, Marshal T., The Simple
Book – An Introduction to Internet
Management. 2nd Ed. Prentice-Hall
Intl. 1994.

[Comer95] Comer, Douglas E., Internet-
working with TCP/IP – Vol. 1: Princi-
ples, Protocols and Architecture. 3rd
Ed. Prentice-Hall Intl. 1995.

[Tanenbaum97] Tanenbaum, A. S., Redes de
Computadores. Tradução da 3ª Edição
Americana. Ed. Campus, 1997.

[Stallings96] Stallings, William, SNMP,
SNMPv2 and RMON – Pratical Net-
work Management. 2nd Ed. Addison-
Wesley Publ. 1996.

[RFC1155] Case, J., M. Fedor, M. Schoff-
stall, and J. Davin, The Simple Net-
work Management Protocol, STD 15,
RFC 1157, May/1990.

[RFC1157] Case, J., M. Fedor, M. Schoff-
stall, and J. Davin, The Simple Net-
work Management Protocol, STD 15,
RFC 1157, May/1990.

[RFC1905] Case, J. K. McCloghrie, M.
Rose, S. Waldbusser, Protocol Opera-
tions for version 2 of the Simple Net-
work Management Protocol
(SNMPv2), RFC 1905, January/1996.

[RFC2274] Blumenthal, U., B. Wijnen,
User-based Security Model (USM) for
version 3 of the Simple Network Man-
agement Protocol (SNMPv3), RFC
2274, January/1998.

[Gong98] Gong, L., Java Security Architec-
ture (JDK 1.2), Version 1.0, Octo-
ber/1998.

http://java.sun.com/products/jdk/1.2/docs/guide
/security/spec/security-spec.doc.html

[PGP] International PGP page at Unicamp
(University of Campinas-SP, Brasil)

 http://www.dca.fee.unicamp.br/pgp
[Lange98] Lange, D. B., M. Oshima, O.

Mitsuru, Programming and Deploying
Java Mobile Agents With Aglets, Addi-
son-Wesley Publ. Co., August/1998.

