
On Achieving Software Diversity for Improved Network
Security using Distributed Coloring Algorithms

Adam J. O’Donnell
∗

adam@ece.drexel.edu
Harish Sethu

sethu@ece.drexel.edu
ECE Department
Drexel University
3141 Chestnut St.

Philadelphia, PA, USA

ABSTRACT
It is widely believed that diversity in operating systems,
software packages, and hardware platforms will decrease the
virulence of worms and the effectiveness of repeated appli-
cations of single attacks. Research efforts in the field have
focused on introducing diversity using a variety of techniques
on a system-by-system basis. This paper, on the other hand,
assumes the availability of diverse software packages for each
system and then seeks to increase the intrinsic value of avail-
able diversity by considering the entire computer network.
We present several distributed algorithms for the assignment
of distinct software packages to individual systems and an-
alyze their performance. Our goal is to limit the ability of
a malicious node to use a single attack to compromise its
neighboring nodes, and by extension, the rest of the nodes
in the network. The algorithms themselves are analyzed for
attack tolerance, and strategies for improving the security
of the individual software assignment schemes are presented.
We present a comparative analysis of our algorithms using
simulation results on a topology obtained from e-mail traffic
logs between users at our institution. We find that hybrid
versions of our algorithms incorporating multiple assignment
strategies achieve better attack tolerance than any given as-
signment strategy. Our work thus shows that diversity must
be introduced at all levels of system design, including any
scheme that is used to introduce diversity itself.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; K.6.5 [Management of Com-
puter and Information Systems]: Security and Protec-
tion—Invasive software

∗The author’s work was supported by the NSF Graduate
Research Fellowship and the Koerner Family Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’04,October 25-29, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-961-6/04/0010 ...$5.00.

General Terms
Algorithms, Security, Management

Keywords
Network security, survivability, software monoculture, soft-
ware diversity, graph coloring, viruses and worms

1. INTRODUCTION
A great deal of attention in computer security research has

recently been devoted to the security implications of the soft-
ware monoculture present in the Internet. Researchers who
espouse the belief that the current lack of software diversity
is troublesome assert that security can only be achieved in
a real network if a multitude of software packages is uti-
lized. It is reasoned that by increasing the number of differ-
ent software systems deployed the effectiveness of a single
system-specific attack can be minimized. Position papers
that assess the inherent value of a heterogeneous popula-
tion of software packages have been published in both peer-
reviewed conferences [33] and in more public forums [13, 28].
Work has been done to introduce diversity at the system
level through a variety of techniques, including both source
[22] and instruction set [4, 20] randomization. Researchers
have yet to examine the problem of distributing diversity
from a network-aware perspective that would decrease the
rate at which an attacker can progress across the network.

In this paper, we show that randomization of individual
systems is insufficient for increasing the diversity of the net-
work as a whole. We show that it is possible to distribute
software packages to systems across a network topology to
increase the inherent effectiveness of software diversity at
slowing an oncoming worm or hacker. We describe a series
of distributed algorithms which, through the systematic in-
troduction of diversity into the network, reduce the ability of
an attacker to move from system to system. The algorithms
are analyzed from the standpoint of the quality of diversity
introduced into the network and the tolerance of the algo-
rithm to attack. Such a topologically aware distribution
of heterogeneous software would achieve the stated goals of
software diversity. Rather than being able to leap-frog from
one identical system to the next across the network, hackers
would be limited to clusters of similar systems by the size
of their toolkit. The rest of the network, however, would
only be reachable by traversing systems which are dissim-

Client C
Software 1

Server X
Software 1

Server Y
Software 1

Client D
Software 1

Client A
Software 1

Client B
Software 1

Client C
Software 1

Server X
Software 2

Server Y
Software 2

Client D
Software 1

Client A
Software 1

Client B
Software 1

(a) (b)

Node A
Software 1

Node B
Software 1

Node C
Software 1

Node D
Software 1

Node K
Software 1

Node E
Software 1

Node H
Software 1

Node I
Software 1

Node G
Software 1

Node J
Software 1

Node F
Software 1

Node A
Software 3

Node B
Software 3

Node C
Software 3

Node D
Software 3

Node K
Software 2

Node E
Software 2

Node H
Software 1

Node I
Software 1

Node G
Software 2

Node J
Software 1

Node F
Software 1

(c) (d)

Figure 1: Comparison of network topologies utilizing either a single software package or a diverse software distribution. The effect
of optimally distributing two software packages on a bipartite network is clear in (a) and (b). Bipartite network such as these are
often found in client-server file sharing topologies. Likewise, a random network topology clearly benefits from a random distribution
of three heterogeneous software packages (d) as compared to a uniform distribution of a single package (c). While the assignment
is sub-optimal, the number of edges which exist between nodes running similar software packages is clearly reduced.

ilar, from a vulnerability standpoint, as compared to the
node from which the attack is launched.

1.1 Applications of Secure Diversity
E-Mail Topologies: Any individual that utilizes e-mail has

become a target of self-propagating code. Vulnerabilities as-
sociated with the default configurations of MIME handlers
[15] have given rise to client-side computer viruses [14]. Er-
rors in the parsing code in major mail transfer agents have
resulted in server-side attacks that are also propagated via
e-mail traffic [21]. Secure diversity can be implemented in
the stated situation through the utilization of interchange-
able MIME and e-mail header parsers which are selected by
the application based upon a topology-sensitive algorithm.
Replacing one parser library with another would have no
user-discernible impact on the software’s behavior and per-
formance.

Client-Server File Shares: Network-accessible file shares
have become a popular target for platform-dependent worm
propagation [17]. In many office environments, the file shares
are partitioned into the client and server groups as shown
in Figure 1(a), where communication links between similar
systems are represented by a solid line. This partitioning
can be enforced using firewalls and ACLs. A worm infec-
tion on a client system would be able to self-propagate to
any machine in the file-sharing topology by first attacking a
server machine; likewise, a worm infection on a server would
have to first attack a client before propagating further.

The secure diversity principle can be quite effectively ap-
plied to such a network with only two different software
packages. All previous communication links between sim-
ilar systems are replaced by links between dissimilar com-
puters, represented by the dotted lines in Figure 1(b). By

utilizing a second software package for file sharing on the
server systems, it is possible to prevent a client system from
propagating a worm that attacks a vulnerability in the file
sharing subsystem.

Sensor Networks: The networking field that would benefit
greatly from the secure diversity principle is sensor networks
[9]. Enforcing a diversity policy in a sensor network is less
of an administrative challenge, since these large networks
of relatively simple computational and environmental mon-
itoring nodes are usually controlled by a single entity, be
it a military commander or a building supervisor. Because
the hardware is characterized as being relatively simple, it
is not a major technical challenge to recreate their compar-
atively small software suite for the purposes of introducing
variation between individuals in the population.

Consider the possibility of a system-wide vulnerability
that allows for an attacker to take over a single networked
sensor. A single attack can be used to leap-frog from node
to node across the entire network, as indicated by the bidi-
rectional links in Figure 1(c). Sensor networks can be dis-
tributed with multiple operating systems in ROM. After be-
ing dropped into the operational location, a node can load
up one of a multiple set of OSes. By constructing a network
that contains a multiplicity of operating systems, a single op-
erating system-specific attack will not be able to propagate
across the entire breadth of the network. Such a random-
ized distribution of software packages, as shown in 1(d), can
reduce the number of possible node-to-node movements by
an attacker.

1.2 Contributions
Our goal in this work is to increase the value of system

level diversity through the introduction of a topology-aware

software assignment scheme. This paper is inspired by the
philosophy described in [33], but provides a series of dis-
tributed algorithms to achieve the goals laid down therein.
Unlike [18], our work does not require centralized and com-
plete knowledge of the topology; the algorithms are designed
to utilize information available locally to a node. Individual
nodes work to reduce the ability of an attacker to utilize any
given node to launch an attack on any of its neighbors, and
by extension, any other node reachable in the network. Our
objectives become:

1. A minimization of the number of neighbors running
the same software packages

2. A maximization of the number of disconnected “is-
lands” of nodes running the same software packages

These objectives, referred to as the defective edge count and
the connected component count, are not orthogonal. A lo-
cal reduction in the number of neighbors running the same
software package globally reduces the number of edges an at-
tacker can use to propagate an attack. A global increase in
the number of disconnected components increases the num-
ber of initial nodes that must be taken by an attacker if he
or she wishes to compromise every node on the network.

Our algorithms are based on examining local information
and making local decisions. They work by directly decreas-
ing the defective edge count and indirectly improving the
connected component count. We have examined these al-
gorithms through analysis and simulation, as shown in Sec-
tions 4 and 6.1.

Given the purpose of the software distribution algorithm,
it is logical to explore the vulnerability of the coloring al-
gorithms themselves from the standpoint of an attacker.
Based upon this reasoning, we have developed a series of
attacks against our own algorithms and explored their ef-
fectiveness through simulation. These attacks do not rely
upon attacking implementation flaws in the algorithms, but
instead are based on malicious nodes attempting to deceive
well-behaving nodes running the algorithm. The results of
this simulation work are presented in Section 6.2.

In Section 6.3, we draw several conclusions from our ex-
amination of the simulation results. Our explorations of the
attacks’ effects on the coloring algorithms presented give rise
to the observation that there exists a tradeoff between an al-
gorithm’s tolerance to attack and the quality of the software
assignment created by the algorithm. Furthermore, we show
that revisiting the initial thesis on the value of diversity is
applicable in the design of software assignment scheme when
an algorithm designer wishes to increase the algorithm’s tol-
erance to a directed attack. More precisely stated, we con-
clude that diversity must be introduced at all levels of the
system design, including any scheme that is used to intro-
duce diversity itself.

This paper does not try to introduce heterogeneity at a
system level, as does the work presented in [4, 5, 10, 11,
20, 22]. We are taking a more network-oriented view of
the problem, which is applicable in situations where off-the-
shelf technologies are required. Because our work depends
upon a topological consideration of the communication en-
vironment and distributing heterogeneous applications cor-
respondingly, we view our work as a complementary effort.

1.3 Organization
A survey of research related to software diversity and im-

proving a given network’s attack tolerance is presented in
Section 2. A more formalized statement of the diversity
problem is provided in Section 3. Each of our algorithms is
presented and discussed in Section 4. In order to test the
security of the algorithms themselves, we present a series of
attacks against the algorithms in Section 5. A simulation-
based analysis of these algorithms is presented in Section 6.
In Sections 6.1 and 6.2, we examine the behavior of the algo-
rithms discussed both in the absence of malicious nodes and
after malicious nodes have been inserted into the network.
We derive principles based upon our simulation results in
Section 6.3. Finally, we state our conclusions in Section 7.

2. RELATED WORK
Evidence corroborating the inherent value of heterogene-

ity in a population can be found across a variety of fields, in-
cluding the field of biology and organic systems. The Amer-
ican farmer, for example, learned of the disastrous conse-
quences of sowing a limited number of genetic strains and
its subsequent vulnerability to an infectious agent of limited
capability. In the 1970’s, the U.S. corn crop was destroyed
when the Bipolaris Maydis pathogen ate through the genet-
ically similar plantings. This single event destroyed over $1
billion of harvestable corn, or about 15% of the crop [16].

Inspiration for the examination of a network from the
standpoint of an attacker’s progress in conquering multi-
ple connected computer systems is drawn from attack graph
research [27]. In general, an attack graph is a graph theo-
retic representation of an attacker’s ability to attain attack
states, represented by nodes, and the techniques used to
attain those states, represented by edges. Much of this re-
search has concentrated on efficient ways of generating these
graphs [2, 18]. Suggestions on how to improve the security
of an attack graph relies upon having absolute knowledge of
vulnerabilities on each node.

Researchers working on problems related to virus propa-
gation, which is the automated version of the attacker prob-
lem, have suggested several interesting methods that would
delay the propagation of network-based worms. The use
of secure network interface cards [12] and connection rate
throttling [30, 31] would reduce the number of systems that
can be attacked and the rate of infection propagation, re-
spectively. The former requires active administration and an
anomaly detection engine to be a functional system, while
the latter would still require active human intervention to
prevent a worm from compromising every accessible machine
on the Internet.

The similarities between the topological properties of hu-
man social relations and the Internet allow us to examine
research originally intended for preventing human epidemics
in the context of computer hackers and viruses [7, 8, 24, 25,
26]. It has been shown that in certain classes of network
topologies, any infection, under standard models, would be-
come an epidemic. Additionally, they state that an epi-
demic can be stopped by conducting selective immunization
of nodes based on their node degree. High-degree nodes are
essential for the connectivity of the network, and removing
even a small fraction of them can quickly disconnect the
graph [1]. While it would be possible to install different
software based solely upon node degree, unequal protection

against an attack would occur. A worm that would attack
the software population’s low-degree nodes would have diffi-
culty in spreading and would not compromise the network.
An attack against the software assigned to the high-degree
nodes would be able to rapidly propagate and disconnect
the network.

The fault-tolerance community has been applying tech-
niques developed for detecting defective systems and code
to the security problem. Joseph and Avižienis [19] sug-
gest the use of N-version programming for the prevention
of computer viruses. This system-level diversity has been
extended through the introduction of randomization tech-
niques. The stack memory allocation work proposed in [11]
has been extended through the use of “canary values” for
detecting buffer overflow attacks in StackGuard [5]. Ran-
domized stack offset tools have been combined with code
reordering strategies in the latest versions of GCC [10]. The
principle has even been applied to instruction set randomiza-
tion, which can be performed with [20] or without [4] intrin-
sic hardware support. As stated in Section 1.2, this paper
takes a network-oriented view of the problem and attempts
to maximize the impact of diversity through arrangement of
already diverse systems.

There have been a small number of position papers that
extend the notion of security through diversity through the
deployment of differing applications, operating systems, and
communications protocols on a computer network [13, 28,
33]. Most notably, Zhang et al. [33] discussed philosophical
rationales and several possible strategies for measuring and
delivering a diverse computer network for the purpose of
improved security. We provide algorithms and simulations
that speak to the philosophy laid down in the cited work.

3. PROBLEM STATEMENT
As stated in Section 1.2, we want to provide a class of

algorithms which assigns software packages to nodes on a
communication network in order to limit the total number
of nodes an attacker can compromise using a limited at-
tack toolkit. The primary optimization goal would be to
reduce the number of neighboring nodes running the same
software package on the network. The secondary goal is to
increase the number of disconnected islands formed by com-
munication links between nodes running the same software
packages.

In more formal terms, we represent a communication net-
work using a graph G = (V, E), where V is the set of all
nodes on a network and E is the set of all communication
links on the network. The number of nodes and edges in the
network are denoted by n and m, respectively. The number
of neighbors of any given node v ∈ V is d(v). The set of
software packages is denoted by S, and the number of soft-
ware packages is denoted by k = |S|. We wish to devise
an assignment of software packages, V 7→ S, such that the
ability of the attacker to compromise the entire network is
significantly reduced.

The assignment of k software packages to the graph G is
what graph theoreticians would call a coloring of graph G.
The assignment of colors in such a way that the number of
defective edges, or communication links that exist between
two nodes of the same color, is minimized is called an op-
timum coloring. A perfect coloring is an assignment of the
minimum number of colors necessary to color a graph such
that no two neighboring nodes share the same color. The

minimum number of colors required for a perfect coloring is
denoted by χ(G). When k < χ(G), any color assignment
will induce at least one edge where both endpoints are sim-
ilarly colored. A coloring where such an edge, referred to as
a defective edge, is present is called a defective coloring.

We use the terms colors and software packages interchange-
ably throughout the rest of the paper.

Determining a minimum number of colors required to
achieve a perfect coloring is, in the general case, an NP-
Hard problem [3]. Aside from a handful of special cases,
determining an optimum coloring with a minimum number
of defective edges is also NP-Hard [6].

4. DISTRIBUTED ALGORITHMS
As stated previously, we have designed and analyzed a

series of distributed algorithms which seek to minimize the
number of defective edges present on a communication graph.
The algorithms are presented in order of increasing com-
plexity of implementation. The Randomized Coloring
algorithm presented in Section 4.1 requires each node to
randomly select its color and not change it throughout the
duration of the network’s operation. The second algorithm
allows a node, at random intervals, to examine its local
neighborhood and choose a new color for itself if a large
number of its neighbors have the same color. We refer to
this algorithm as the Color Flipping algorithm, and it is
presented in Section 4.2. The next pair of algorithms, re-
ferred to as the Color Swapping algorithms, allows pairs
of nodes, again at random intervals, to swap their colors in
order to reduce the number of defective edges. These are
presented in Section 4.3. Finally, a pair of algorithms which
combine both color flipping and color swapping strategies
are presented in Section 4.4.

4.1 Randomized Coloring
The first, and most basic, algorithm discussed is the Ran-

domized Coloring algorithm. This provides, on average,
m/k defective edges. Proving this is a simple exercise: after
randomly coloring every node on the graph, select a single
edge. The probability that both endpoints have the same
color is 1/k. Summing across all edges, the average number
of defective edges is m/k. The algorithm requires O(1) time
to run on each node, and zero communication between the
nodes is required. Because of the lack of inter-node commu-
nication, the algorithm can be considered extremely secure
against attack.

The graph coloring provided by the algorithm, however,
is sub-optimal. In the worst case, this algorithm performs
poorly. A randomized algorithm may lead to every link
forming a connection between two identical systems. While
the probability of this event occurring is (1/k)n−1, the result
would have a significant impact on system security.

4.2 Color Flipping Algorithms
In the Color Flipping algorithm, nodes initialize them-

selves by executing the randomized coloring presented in
Section 4.1. After a random delay, each node performs a
local search amongst its immediate neighbors to determine
if switching to a new color would decrease the number of
locally defective edges. Since each node must now poll its
immediate neighbors to discover their current color, the al-
gorithm requires O(∆(G)) time to poll the neighbors per
cycle, where ∆(G) is the maximum degree of the graph. Af-

ter the data is collected, O(∆(G) + k) operations must be
done to generate a census of the local colors and determine
the minority color.

If it is discovered that switching to the minority color
would decrease the local defect to below d(v)/k, then the
flip is instantiated. It can be easily shown that the Color
Flipping algorithm will converge. Each color flip reduces
the number of defective edges by at least 1. The number
of edges present in the graph is m. The maximum number
of color flips that can therefore be conducted is m. Simi-
lar proofs can be found throughout the literature; Vazirani
leaves the proof as an exercise to the reader in [29]. By the
time the algorithm has converged, total number of defective
edges is provably decreased below the average number of
defects in the Randomized Coloring algorithm:

Theorem 1. The upper bound on the number of defec-
tive edges produced by Color Flipping is no more than the
average number of defective edges produced by Randomized
Coloring.

Proof. At the point of convergence, each node is con-
nected to at most bd(v)/kc defective edges. The number
of defective edge endpoints is

P
vbd(v)/kc. The number of

defective edges is therefore 1/2
P

vbd(v)/kc. In comparison
to the randomized algorithm:

1

2

X
v

�
d(v)

k

�
≤ 1

2

X
v

d(v)

k
=

m

k

4.3 Color Swapping Algorithms
The following pair of algorithms are extensions of the

Kernighan-Lin heuristic [3] for computing balanced cuts. In
both algorithms, each node attempts to reduce its number
of defective edges by negotiating for a color “swap” between
itself and its neighbors. After collecting the number of de-
fective edges which would be removed from the neighbor
node and itself by conducting a swap from each neighbor,
the initiating node executing the algorithm chooses a neigh-
bor which it views to be optimal and proposes a color swap.
If the neighbor agrees to the swap, the initiating node takes
the color of the neighbor and the neighbor takes the color
of the initiating node.

For a swap to take place in the first algorithm, known
as Mutually Beneficial Swapping, the exchange of col-
ors must reduce the defective edge count for both nodes
involved. The second algorithm, referred to as Greater
Good Swapping, will incur a swap if the total number of
defective edges between both nodes is reduced by the ex-
change. The greater number of nodes that are available for
a Greater Good Swapping execution means the quality
of the solution associated with the Greater Good Swap-
ping algorithm is expected to be better than that associ-
ated with the Mutually Beneficial Swapping algorithm.
Correspondingly, the increased number of swap partners in-
creases the vulnerability of the algorithm to attack. This
phenomenon is discussed further in Section 5.

4.4 Hybrid Algorithms
The final set of algorithms are hybrids of the color swap-

ping and color flipping schemes presented in Sections 4.2
and 4.3, respectively. The Randomized Hybrid algorithm

requires that a node which wishes to change its color to ran-
domly choose to execute either the Greater Good Swap-
ping algorithm or the Color Flipping algorithm. The se-
lection between the Greater Good Swapping algorithm
and the Color Flipping algorithm does not need to be un-
biased; on the contrary, it may be beneficial from a conver-
gence rate or attack tolerance standpoint for the algorithm
to prefer one coloring scheme over the other. Determining
the optimal point between conducting a flip or a swap can
be done through the use of game theoretic analysis.

The Best Choice Hybrid algorithm allows pairs of nodes
to examine the defective edge reduction that is possible by
either doing a color swap as a pair or independently doing
a color flip. If each node in a swap can eliminate a greater
number of defective edges by cooperating and performing a
swap as compared to individually performing a flip, a swap
is conducted. If either of the two nodes finds it can better
serve itself by conducting an independent color flip, then
a swap is not conducted. If the node that initiates the re-
coloring attempt finds that a swap is not feasible, it attempts
to conduct an independent color flip.

5. ATTACK DESIGN
Given that the algorithms discussed are being used to de-

crease the ability of an attacker from compromising the net-
work, it is likely that an attacker would be interested in
affecting the performance of the coloring algorithm itself.
Therefore, we propose a set of primitive behaviors exhibited
by a malicious node from which any attack can be created.

Spreading: Upon inspection, instead of looking to flip its
color, a node that is malicious will look to subvert a neigh-
boring node that is of its own color.
Misrepresentation: A node may falsely report its current
color when it is queried for its color by neighboring nodes.
Additionally, a node may falsely report its defective edge
reduction to neighboring node wishing to conduct a color
swap.
Inertia: A node will not change its color regardless of exter-
nal stimulus.

The first algorithm analyzed is robust against attacks di-
rected toward the algorithm itself. The Randomized Col-
oring algorithm requires nodes to set their color without
examining their environment. In turn, any network imple-
menting the algorithm is not affected by the last two attacks,
and can only be affected by the spreading attack.

The Color Flipping algorithm introduces an inherent
security flaw. Any node looking to flip its color must trust
that their neighbors will be truthful in reporting their own
color assignment. If a malicious node decides to lie about its
own color, it can influence a querying node’s color choice,
but not force a color assignment upon the querying node.
For example, a malicious node can falsely report to a node
that its color is the same as a querying node, which would
contribute to the querying node’s defect count. If the ma-
licious node is fortunate, the defective edge count observed
by the querying node would become greater than bd(v)/kc.
This will cause the querying node to flip to a new color.
The goal of the malicious node is to push the querying node
to flip to a specific vulnerable color. If a flip takes place,
the malicious node has no way of being certain the querying
node will flip to a vulnerable color.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

D
eg

re
e

Rank
10

0
10

1
10

2
10

3

10
0

10
1

10
2

10
3

F
re

qu
en

cy
 o

f D
eg

re
e

Degree

(a) (b)

Figure 2: Log-Log Plots of E-Mail Graph Statistics. The properties of the collected data are statistically similar to many other
topologies, including the AS topology seen in BGP routing.

Both the Mutually Beneficial Swapping and Greater
Good Swapping algorithms introduce a security flaw due
to the inherent trust associated with a color swap. If a
malicious node either proposes or agrees to a swap with a
participating neighbor, it can keep its own color even af-
ter the neighbor has completed switching to the new color.
The action would create a defective edge that the malicious
node can use to propagate an attack. In the case of the
mutually beneficial swap algorithm, a swap would never be
acceptable to a node unless the defective edge count of the
node decreases. Even if a malicious node wants to “push”
a vulnerable color onto a node, it would only be able to
do this to the subset of its neighbors which would stand to
gain from an honest swap. The Greater Good Swapping
algorithm, however, has a larger security vulnerability asso-
ciated with it. A malicious node can force a color change
onto a neighboring node by claiming an extremely high de-
fect improvement. To the neighbor, it would appear that
the proposed swap is globally beneficial, regardless of its
own increase in the number of defective edges. Therefore, a
single compromised node can spread a chosen color across
an entire network, one node at a time.

There does not exist a single optimal attack that works
against both algorithms, however. If the network imple-
ments a swapping algorithm, lying about a malicious node’s
own color would lead a querying node to swap to a random,
non-vulnerable color. Rather than increasing the number of
nodes that can be attacked in the network, running the op-
timal swapping algorithm attack on a network running the
color flipping algorithm would actually decrease the number
of vulnerable nodes. Vulnerable nodes, which were previ-
ously unable to swap their color to one which would induce
less defective edges because of a lack of potential swapping
partners would find nodes with a previously unseen color in
their neighborhood. Therefore, not only would the number
of vulnerable nodes decrease, the number of defective edges
present across the network would decrease as well. Likewise,
a network running the color flipping algorithm would not be

impacted by the contract-breaking attack mentioned above.
No inter-node contracts are involved in the algorithm, and
correspondingly, there is no opportunity to break a color-
changing agreement.

Based upon this analysis, the behavior of the hybrid algo-
rithms discussed in Section 4.4 under attack can be expected
to be a synthesis of the reactions of both the color swapping
and color flipping algorithms to the stated attacks.

6. SIMULATION
In order to test our algorithms, it was necessary to acquire

a topology that is representative of the networks that our
distributed coloring algorithm would expect to encounter.
As many researchers consider generation of a simulated, rep-
resentative network topology to be an open research problem
[23, 32], we have decided to capture an actual topology for
our algorithm simulation.

For our simulation experiments, we examine a topology
generated by e-mail traffic inside the ECE Department at
Drexel University. We captured a sample of the logs cre-
ated by e-mails as they passed through the ece.drexel.edu

server. The raw data consisted of 1,038,939 log entries for
each e-mail sent and received by 278,435 unique accounts
handled by ece.drexel.edu’s sendmail server from January
13th to September 19th of 2003. Of the original 1,038,939
e-mails recorded, there are 337,532 unique {to, from} e-mail
address pairs. This means, strictly according to the logs,
there are 337,532 unique pairs of individuals using the mail
server to communicate.

To reduce the impact of spam on our data set, we preserve
those edges where, for each sender and receiver, at least one
e-mail is sent from the initial message receiver to the initial
message sender. This represents a complete communica-
tion between the two e-mail entities. Our data set is then
reduced to 37,618 {to, from} address pairs, or 18,809 undi-
rected edges. These edges exist between 12,408 nodes, or
unique e-mail ID’s, in 14 separate connected components,
where the largest connected component consists of 12,354

0 50 100 150
1000

2000

3000

4000

5000

6000

7000

Cycles (2500 s)

D
ef

ec
tiv

e
E

dg
e

C
ou

nt

20 40 60 80 100 120 140
1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

Cycles (2500 s)

D
ef

ec
tiv

e
E

dg
e

C
ou

nt

(a) (b)

0 50 100 150
2400

2600

2800

3000

3200

3400

3600

3800

4000

Cycles (2500 s)

A
ve

ra
ge

 C
on

ne
ct

ed
 C

om
po

ne
nt

 C
ou

nt

0 50 100 150
4100

4200

4300

4400

4500

4600

4700

4800

Cycles (2500 s)

V
ul

ne
ra

bl
e

N
od

e
C

ou
nt

(c) (d)

Figure 3: Comparison of coloring algorithms with no malicious nodes present

nodes and 18,768 undirected edges. Our simulation studies
use this largest connected component.

It is customary in the study of large-scale network topolo-
gies to examine the distribution of node degrees on a log-log
plot. Accordingly, we have plotted the degree of each node
versus its rank in a sorted list along with the frequency of
degree versus the degree of the node. These plots, whose
distribution is consistent with the work of [8, 24], are shown
in Figures 2(a) and 2(b), respectively.

6.1 Algorithm Simulation
The coloring algorithms presented in Sections 4.1, 4.2,

4.3, and 4.4 are provided with three distinct colors, and are
each executed by the 12,354 nodes at intervals determined
by a Poisson process running at each node. The Poisson
rate λ is set to 1/n algorithm executions per cycle for each
node in order to normalize the execution rate of the algo-
rithm by each node with respect to graphs that differ in
node count, allowing for an unbiased comparison of the al-

gorithm’s performance across varying networks. By the end
of every 100,000 cycles, each node would have executed its
coloring algorithm an average of 8.09 times.

In accordance with the design goals laid out in Section 1.2,
we monitor the number of defective edges present in the
graph, the average number of connected components in-
duced by each color, and the number of nodes which have
been defined as being “vulnerable”. The first metric is our
primary optimization goal and corresponds to the number
of edges that exist in the graph that can be traversed by a
node-hopping attack. The second metric indicates the min-
imum number of separate infections that must take place
for all vulnerable nodes to be compromised given an attack
that is unable to change the color assignment. Since a sep-
arate curve exists for each color, we average the number of
connected components across all colors for each algorithm
analyzed. The final metric provides a baseline of the num-
ber of vulnerable nodes in the network. In the absence of
an external agent, namely an attack that is aware of the

coloring algorithm, this value should be affected only by the
coloring algorithm itself.

Figure 3(a) shows the improvement in the number of de-
fective edges as the three classes of dynamic algorithms con-
verge to their local optimums. The difference in the quality
of the solutions provided at convergence is shown in Fig-
ure 3(b). In Figure 3(c), a comparison of the number of
average connected components for each color is presented.
Figure 3(d) shows the evolution of the population of nodes of
a single color; these nodes are later tagged as being vulner-
able to attack and, if attacked, become malicious. The up-
ward bias in the number of nodes of the specific color being
examined is relatively small in comparison to the number of
nodes on the graph and is an artifact of the simulation run.
Not surprisingly, the number of nodes in the one color being
examined is approximately the same for all three classes of
algorithms.

In Figures 3(a) through (c), both the Mutually Bene-
ficial Swapping and the Greater Good Swapping algo-
rithms provide an improvement as compared to the Ran-
domized Coloring algorithm. The two swapping algo-
rithms provide a solution which is inferior to the Color
Flipping algorithm. The marked difference in the quality
of the coloring solutions observed between the swap-based
algorithms and the flip-based algorithm can be attributed
to the availability of colors to any given node. In the swap
algorithms, a node can only change its color to one that is
present amongst its neighbors, and then only if the outcome
of the swap is mutually beneficial to the nodes or globally
beneficial to the graph. The flip algorithm places no restric-
tions upon a node’s potential color choices if the node is
exposed to a large number of monochromatic edges. As a
result, the Color Flipping algorithm allows for a greater
fraction of nodes to change their color assignment when the
distributed algorithm is executed.

It is clear from Figure 3(b) that the Randomized Hybrid
and Best Choice Hybrid algorithms produce a better col-
oring than either the swap-based or the flip-based algorithms
alone. The hybrid algorithms generate a better solution by
simultaneously drawing on the swap algorithm to eliminate
deadlocks that may occur in a neighborhood and the flip
algorithm to provide a wider range of colors that a node can
assign itself.

6.2 Attack Simulation
A second series of experiments is conducted to test each

algorithm’s tolerance to attack. One color is selected and
labeled as vulnerable, meaning an attacker can compromise
that color and only that color. It then becomes the goal of
the attacker to switch every node in the network to the vul-
nerable color. After the coloring algorithms have converged,
1% of the vulnerable nodes are infected with a worm, which
is able to carry out any combination of the attacks described
in Section 5.

Figures 4(a), 4(b), and 4(c) show the effect of malicious
nodes on the number of defective edges present, the aver-
age number of connected components for each color, and
the number of vulnerable nodes, respectively. These ma-
licious nodes are introduced to the network after the dis-
tributed algorithm has largely converged. They begin to
attack the network by lying about their color and breaking
swapping contracts, but respond honestly when asked about
their own improvement with respect to the number of simi-

larly colored neighbors when queried about a proposed color
swap.

Figures 4(d), 4(e), and 4(f) show the effect on the met-
rics studied in Figures 3 and 4(a)–(c) when nodes that lie
about the quality of a proposed swap and break swapping
contracts are introduced into the network some time after
convergence. It should be noted that the Color Flipping
algorithm is not vulnerable to this attack, since it does not
propose swaps with neighboring nodes.

Figures 4(g), 4(h), and 4(i) show the effect of completely
dishonest nodes upon the network. This “brute force” at-
tack is not designed to attack any one particular algorithm,
nor are the malicious nodes cognizant of the coloring algo-
rithm that is being executed by their neighbors. Instead, it
is designed to examine the effects of completely uncoopera-
tive nodes upon the network.

As stated in Section 5, color liars increase the number of
defective edges in a network when the network is executing
the Color Flipping algorithm, but decrease the number of
defective edges present in a network executing the Color
Swapping algorithms. The introduction of color liars in
Figure 4(a)–(c) experimentally confirms this analysis. The
behavior of the hybrid algorithms indicates a bias in both
algorithms towards the use of the Color Flipping strategy
as opposed to the Color Swapping strategy, as evidenced
by the similarity between the number of defective edges ex-
perienced by the Color Flipping, Randomized Hybrid,
and Best Choice Hybrid algorithms in 4(a). Furthermore,
the experiment has shown that even after convergence is
achieved, it is possible to disrupt the color assignment of
the graph.

The behavior of a network that is being attacked via defect
liars is dramatically different, as shown in Figure 4(d)–(f).
While the network implementing Mutually Beneficial
Swapping algorithm appears to not be affected by the ma-
licious behavior, the network utilizing the Greater Good
Swapping is completely compromised. The two algorithms,
while exceedingly similar, exhibit markedly different toler-
ance to attack. The rationale for this phenomenon resides
in the relative “voting power” of swapping partners. In the
Mutually Beneficial Swapping algorithm, both neigh-
bors have equal input for the swap decision. Regardless of
the input of one’s neighbor, a swap will not take place un-
less the action can benefit both nodes. After the distributed
coloring converges, no node operating under this algorithm
can further improve the quality of its coloring by conduct-
ing a swap. Nodes in networks implementing the Greater
Good Swapping algorithm, however can always conduct a
swap that the node believes would increase the quality of the
network’s coloring. Under this algorithm, a swap partner
can have an unbounded contribution to the swap decision.
A malicious node can use this to force a coloring upon any
neighboring node with whom a swap is being negotiated.
Since the hybrid algorithms depend upon the swapping al-
gorithm, they are both vulnerable to this form of attack.

In the plots contained in Figure 4, the performance of
the Randomized Hybrid and the Best Choice Hybrid
algorithms under attack appear to be rather similar. As
stated in Section 4.4, the Randomized Hybrid algorithm
contains a tunable parameter, however, which forces the al-
gorithm to utilize the Color Flipping algorithm at a higher
or lower frequency compared to the Greater Good Swap-
ping algorithm. Deriving the optimal balance between the

0 200 400 600 800 1000
1000

2000

3000

4000

5000

6000

7000

8000

Cycles (2500 s)

D
ef

ec
tiv

e
E

dg
e

C
ou

nt

0 200 400 600 800 1000
2000

2500

3000

3500

4000

Cycles (2500 s)

A
ve

ra
ge

 C
on

ne
ct

ed
 C

om
po

ne
nt

 C
ou

nt

0 200 400 600 800 1000
0

2000

4000

6000

8000

10000

12000

Cycles (2500 s)

V
ul

ne
ra

bl
e

N
od

e
C

ou
nt

(a) (b) (c)

0 200 400 600 800 1000
0

0.5

1

1.5

2
x 10

4

Cycles (2500 s)

D
ef

ec
tiv

e
E

dg
e

C
ou

nt

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

4000

Cycles (2500 s)

A
ve

ra
ge

 C
on

ne
ct

ed
 C

om
po

ne
nt

 C
ou

nt

0 200 400 600 800 1000
4000

6000

8000

10000

12000

14000

Cycles (2500 s)

V
ul

ne
ra

bl
e

N
od

e
C

ou
nt

(d) (e) (f)

0 200 400 600 800 1000
1000

2000

3000

4000

5000

6000

7000

8000

Cycles (2500 s)

D
ef

ec
tiv

e
E

dg
e

C
ou

nt

0 200 400 600 800 1000
2000

2500

3000

3500

4000

Cycles (2500 s)

A
ve

ra
ge

 C
on

ne
ct

ed
 C

om
po

ne
nt

 C
ou

nt

0 200 400 600 800 1000
0

2000

4000

6000

8000

10000

12000

Cycles (2500 s)

V
ul

ne
ra

bl
e

N
od

e
C

ou
nt

(g) (h) (i)

Figure 4: Comparison of the performance of coloring algorithms under attack. Plots (a) through (c) examines the impact of nodes
that lie about their color on the algorithms, (d) through (f) examines the impact of nodes that lie about defect improvements. Plots
(g) through (i) examines the impact of nodes that lie about both defect improvements and their color. The vertical line indicates
the time when malicious nodes are added to the network.

two algorithms for the purpose of minimizing the effects of
an attack against the algorithm can be accomplished using
game theory, but the equilibrium point would be unique to
the topology of the graph. In the formulation, payoffs expe-
rienced by either the network operator or the attacker would
be derived from the rate at which non-vulnerable nodes can
be convinced to change to a vulnerable color because of in-
put from malicious neighbors. The usage rate of either the
Color Flipping or the Greater Good Swapping algo-
rithms would be selected to balance out the risk of executing
either of the two algorithms over the long term.

6.3 Analysis of Simulation Results
Two important conclusions can be drawn from the anal-

ysis of the coloring algorithms and their tolerance to a tai-

lored attack. The Mutually Beneficial Swapping al-
gorithm converges to the largest number of defective edges
of any algorithm which allows for re-coloring of individual
nodes. After convergence, though, attacking this algorithm
has shown to be extremely difficult. A slight modification to
the Mutually Beneficial Swapping algorithm was pre-
sented in the Greater Good Swapping algorithm, which
relaxes the guidelines for an acceptable swap. While this
allows for more color swaps to take place and in turn re-
duces the number of defective edges in the graph, the al-
gorithm becomes far more vulnerable to a directed attack.
Algorithms which allow a node to undergo a local and in-
dependent color flip, while extremely effective at reducing
the total number of defective edges, have been shown to be
heavily impacted by malicious nodes which lie about their

color. Given enough time for convergence and a small but fi-
nite set of moderately connected nodes, the malicious nodes
would likely be able to compromise the entire network. The
only algorithm which is not vulnerable to a directed attack
is the randomized algorithm, which, not coincidentally, pro-
vides the worst defective coloring performance. Based upon
these results, we believe that there is a fundamental tradeoff
between the quality of the diversity achieved by an algorithm
and the algorithm’s tolerance to attacks.

Both of the hybrid algorithms allow for a node to choose
between the two coloring algorithms at each instant of op-
eration. The ability to switch between the two algorithms
removes the attacker’s ability to know which coloring algo-
rithm a targeted node is intending to execute. In the absence
of precise knowledge of the currently running coloring algo-
rithm, an attacker would have some difficulty crafting an
optimal attack. As discussed in Section 5, the most effec-
tive attack against the Color Flipping algorithm would be
the introduction of color liars to the network, and the most
effective attack against the swapping components of both
the Mutually Beneficial Swapping and the Greater
Good Swapping is the introduction of contract breakers
to the network. For a contract-breaking node to work cor-
rectly, however, it must be completely honest about its color.
Otherwise, the swap partner would swap to a different color
from that of the malicious node, which would halt the pro-
ceeding attack. Through similar reasoning it is easy to see
why introducing a set of honest contract breakers would be
counterproductive for attacking all coloring algorithms.

The above rationale is no different from the motivation for
security through diversity itself. The Color Flipping, Mu-
tually Beneficial Swapping and Greater Good Swap-
ping algorithms are vulnerable to attack simply because the
same algorithm is running on every node, and every node is
vulnerable to the same form of attack. Introducing diversity
at the diversity assignment layer would mean an attacker
would not be able to use a single attack strategy to take
over the network. The Randomized Hybrid and the Best
Choice Hybrid algorithms are vulnerable to all forms of
misrepresentation and contract-breaking attacks, but the ex-
istence of a mixed coloring strategy increases the algorithm’s
tolerance to attack. Experimental evidence has shown that
both hybrid algorithms fare better when presented with both
forms of attack, than the Color Flipping and Greater
Good Swapping algorithms when each are presented with
their appropriate attack strategies. The increased tolerance
to attack is due to the lack of knowledge on the part of the
malicious nodes; since the malicious nodes are unaware of
which algorithm is being executed by the targeted nodes,
choosing an effective attack becomes a game of chance. It
is based upon this observation that we state that the most
effective way of achieving attack tolerance in our algorithms
is to reapply the fundamental thesis of the paper, and imple-
ment diversity strategies into the algorithms themselves.

7. CONCLUSION AND FUTURE WORK
Research in improving network security through the dis-

ruption of software monocultures has garnered considerable
attention in recent years. The literature details a variety of
solutions, including introducing heterogeneous software to
systems through randomization, N -version programming,
and various other techniques. However, for both business
and technical reasons, the limited number of functionally

equivalent yet distinct software packages makes heterogene-
ity a less effective strategy than one may like.

In this paper, we have provided a series of algorithms for
increasing the effectiveness of system-level heterogeneity on
a network. Even though the computation of an optimally
diverse software allocation is believed to be intractable, the
distributed algorithms presented here reduce the number of
links that can be utilized for propagating an attack. Further-
more, our algorithms effectively cluster the network, which
helps to isolate infected systems from the rest of the topol-
ogy.

Any methodology for increasing the attack tolerance of a
network is destined to come under attack itself. We have
shown that there exists a trade-off between the ability of an
algorithm to reduce the number of defective edges present
in the network and the ability of the algorithm to tolerate
a directed attack. The algorithm which exhibits the best
worst-case performance against attack was a hybrid of our
basic algorithms, which itself highlights the principle of se-
curity through diversity.

Based upon our observations, simulations, and analysis we
are left with a confirmation of our thesis; not only is diver-
sity critical for improving the attack tolerance of a network,
but the inherent value of diversity can be increased through
an algorithmic distribution of diverse systems. Furthermore,
these principles must be applied to all levels of system de-
sign, including any scheme which introduces diversity itself.

In the future, we would like to extend the study of diver-
sity through graph theoretic techniques to incorporate new
metrics and methods. Preliminary research has shown that
the epidemic threshold would be an appropriate metric for
measuring the quality of a diverse software assignment. Fur-
thermore, we would like to explore the use of game theory
in the context of optimizing our hybrid algorithm’s attack
tolerance.

8. ACKNOWLEDGMENTS
First and foremost, we would like to thank Jonathan Hoult,

the ECE Department’s UNIX administrator, for providing
the raw sendmail logs from which we extracted the e-mail
network topology.

We would also like to thank several individuals for the
numerous discussions shared over the course of the research,
including Dr. Jose Nazario of Arbor Networks, Dr. Vassilis
Prevelakis of Drexel’s CS Department, and Jeff Abrahamson
and Trip Denton of Drexel’s Applied Algorithms Laboratory.

Finally, we extend their gratitude to the anonymous re-
viewers for their labor. Their comments have contributed
greatly to making this a better piece of work.

9. REFERENCES
[1] R. Albert, H. Jeong, and A. L. Barabási. Error and

Attack Tolerance of Complex Networks. Nature,
406:378–382, July 2000.

[2] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable,
graph-based network vulnerability analysis. In
Proceedings of the 9th ACM conference on Computer
and communications security, pages 217–224. ACM
Press, 2002.

[3] G. Ausiello, M. Protasi, A. Marchetti-Spaccamela,
G. Gambosi, P. Crescenzi, and V. Kann. Complexity
and Approximation: Combinatorial Optimization

Problems and Their Approximability Properties.
Springer-Verlag New York, Inc., 1999.

[4] E. G. Barrantes, D. H. Ackley, T. S. Palmer,
D. Stefanović, and D. D. Zovi. Randomized
instruction set emulation to disrupt binary code
injection attacks. In Proceedings of the 10th ACM
conference on Computer and communication security,
pages 281–289. ACM Press, 2003.

[5] C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang.
Automatic detection and prevention of buffer-overflow
attacks. In Proceedings of the 7th USENIX Security
Symposium, January 1998.

[6] L. J. Cowen, W. Goddard, and C. E. Jesurum.
Coloring with defect. In Proceedings of the eighth
annual ACM-SIAM symposium on Discrete
algorithms, pages 548–557. Society for Industrial and
Applied Mathematics, 1997.

[7] Z. Dezső and A.-L. Barabási. Halting viruses in
scale-free networks. Physical Review E, 65(055103),
2002.

[8] H. Ebel, L.-I. Mielsch, and S. Bornholdt. Scale-free
topology of e-mail networks. Physical Review E,
66(035103(R)), 2002.

[9] D. Estrin, L. Girod, G. Pottie, and M. Srivastava.
Instrumenting the world with wireless sensor
networks. In Proc. International Conference on
Acoustics, Speech, and Signal Processing, Salt Lake
City, Utah, May 2001.

[10] H. Etoh. GCC extension for protecting applications
from stack-smashing attacks, 2004.
http://www.trl.ibm.com/projects/security/ssp/.

[11] S. Forrest, A. Somayaji, and D. Ackley. Building
diverse computer systems. In Proceedings of the 6th
Workshop on Hot Topics in Operating Systems
(HotOS-VI), pages 67–72. IEEE Computer Society,
1997.

[12] G. R. Ganger, G. Economou, and S. M. Bielski.
Self-securing network interfaces: what, why and how.
Technical Report CMU-CS-02-144, Carnegie Mellon
University, May 2002.

[13] D. Geer, R. Bace, P. Gutmann, P. Metzger, C. P.
Pfleeger, J. S. Quarterman, and B. Schneier.
Cyberinsecurity: The cost of monopoly. Technical
report, CCIA, 2003.
http://www.ccianet.org/papers/cyberinsecurity.pdf.

[14] A. Gudmundsson and E. Chien. Security response:
W32.klez.a@mm. Technical report, Symantec, 2001.
http://securityresponse.symantec.com/avcenter/
venc/data/w32.klez.a@mm.html.

[15] J. S. Havrilla and S. V. Hernan. Advisory CA-2001-06:
Automatic execution of embedded mime types.
Technical report, CERT, 2001.
http://www.cert.org/advisories/CA-2001-06.html.

[16] T. G. Horsfall. Genetic vulnerability of major crops.
National Academy of Sciences, 1972.

[17] A. Householder and R. Danyliw. Advisory
CA-2003-08: Increased activity targeting windows
shares. Technical report, CERT, 2003.
http://www.cert.org/advisories/CA-2003-08.html.

[18] S. Jha, O. Sheyner, and J. Wing. Two formal analyses
of attack graphs. In Proceedings of the 15th IEEE

Computer Security Foundations Workshop
(CSFW’02), page 49. IEEE Computer Society, 2002.

[19] M. K. Joseph and A. Avižienis. A fault tolerance
approach to computer viruses. In Proceedings of the
1988 IEEE Symposium on Security and Privacy, pages
52–58. IEEE Computer Society Press, April 1988.

[20] G. S. Kc, A. D. Keromytis, and V. Prevelakis.
Countering code-injection attacks with instruction-set
randomization. In Proceedings of the 10th ACM
conference on Computer and communication security,
pages 272–280. ACM Press, 2003.

[21] J. P. Lanza and S. V. Hernan. Advisory CA-2003-07:
Remote buffer overflow in sendmail. Technical report,
CERT, 2003.
http://www.cert.org/advisories/CA-2003-07.html.

[22] R. C. Linger. Systematic generation of stochastic
diversity as an intrusion barrier in survivable systems
software. In Proceedings of the 32nd Hawaii
International Conference on System Sciences,
volume 3, page 3062, 1999.

[23] A. Medina, A. Lakhina, I. Matta, and J. Byers. Brite:
An approach to universal topology generation. In
Proceedings of the Ninth International Symposium in
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS’01), page
346. IEEE Computer Society, 2001.

[24] M. E. J. Newman, S. Forrest, and J. Balthrop. Email
networks and the spread of computer viruses. Physical
Review E, 66(035101), 2002.

[25] R. Pastor-Satorras and A. Vespignani. Epidemics and
immunization in scale-free networks. In S. Bornholdt
and H. G. Schuster, editors, Handbook of Graphs and
Networks: From the Genome to the Internet, pages
113–132. Wiley-VCH, May 2002.

[26] R. Pastor-Satorras and A. Vespignani. Immunization
of complex networks. Physical Review E, 65(036104),
2002.

[27] C. Phillips and L. Painton Swiler. A graph-based
system for network-vulnerability analysis. In
Proceedings of the 1998 workshop on New security
paradigms, pages 71–79. ACM Press, 1998.

[28] M. Stamp. Risks of monoculture. Commun. ACM,
47(3):120, 2004.

[29] V. V. Vazirani. Approximation Algorithms.
Springer-Verlang New York, Inc., 2001.

[30] Y. Wang and C. Wang. Modeling the effects of timing
parameters on virus propagation. In Proceedings of the
2003 ACM workshop on Rapid Malcode, pages 61–66.
ACM Press, 2003.

[31] M. M. Williamson. Throttling viruses: Restricting
propagation to defeat malicious mobile code. In
Proceedings of the 18th Annual Computer Security
Applications Conference, page 61. IEEE Computer
Society, 2002.

[32] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee.
How to model an internetwork. In IEEE Infocom,
volume 2, pages 594–602, San Francisco, CA, March
1996. IEEE.

[33] Y. Zhang, H. Vin, L. Alvisi, W. Lee, and S. K. Dao.
Heterogeneous networking: a new survivability
paradigm. In Proceedings of the 2001 workshop on New
security paradigms, pages 33–39. ACM Press, 2001.

