USENIX Association

Proceedings of the
Genera Track:
2003 USENIX Annual
Technical Conference

San Antonio, Texas, USA
June 9-14, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

A Binary Rewriting Defense against Stack based Buffer Overflow Attacks

Manish Prasad and Tzi-cker Chiueh
SUNY Stony Brook
{nprasad, chi ueh} @s. sunysb. edu

AbStraCt Low Address Other Local Variables
Buffer overflow attack is the most common and ar- (target of anbonded
guably the most dangerous attack method used in Inter- copy
net security breach incidents reported in the public lit- Local Variables *
erature. Various solutions have been developed to ad- Stack | Frevious Frame Pointer |
dress the buffer overflow vulnerability problem in both Growth (guef:;d/fdydf:!:e) Growth
research and commercial communities. Almost all the (pushed by CALL insty | (direction of
solutions that provide adequate protection against buffer Function Parameters copy)
overflow attacks are implemented as compiler exten- (pushed by caller)
sions and hence require the source code of the pro-
grams being protected to be available so that they can
be re-compiled. While this requirement is reasonable in
many cases, there are scenarios in which it is not fea—High Address

sible, e.g., legacy applications that are purchased from
an outside vendor. The work reported in this paper ex- * Could be potentially overwritten by a stack

plores application of static binary translation to protect based buffer overflow

Internet software from buffer overflow attacks. Specif-

ically, we use a binary rewriting approach to augmentFigure 1: The typical stack layout of a function when it
existing Win32/Intel Portable Executable (PE) binary is called, and how some of the stack entries, including the
programs with a return address defense (RAD) mech+eturn address could be corrupted by an unsafe copy oper-
anism [1], which protects the integrity of the return ad- ation.

dress on the stack with a redundant copy. This paper

presents the disassembly and instrumentation issues imning guideline that checks the bound of an array/buffer
volved in static binary translation, how our tool achieves upon each access. Neither solution is considered practi-
satisfactory disassembly precision in the presence of in€al at this point. A more promising approach is to trans-
direct branches, position-independent code sequencefgrm a given application into a form that isimmune from
hand crafted assembly code and arbitrary code/data mixbuffer overflow attack without requiring any modifica-
ing, and how it ensures safe binary instrumentation intion to the compiler or the application itself.

most practical cases. The paper reports our experiences To understand a buffer overflow attack, consider a typ-
with this approach, based on results of applying the re-ical stack layout when a function is called, as shown in
sulting prototype to rewriting several commercial grade Figure 1. Lack of bound checking during a buffer copy
Windows applications (Ftp server, Telnet Server, DNSoperation causes areas adjacent to the buffer (as shown
server, DHCP server, Outlook Express, MS FrontPageby * in Figure 1) to be overwritten. A generic buffer
MS Publisher, Telnet, Ftp, Winhlp, Notepad, CL com- overflow attack [2] involves exploiting such an unsafe
piler, MS NetMeeting, MS PowerPoint, MS Access, copy to overwrite the return address on the stack with
etc.), as well as experimentation with published bufferthe address of a piece of malicious code, which is in-

overflow exploits. jected by the attacker and most likely reside also on the
: stack; when th&ET instruction (which pops the return
1 Introduction address from the stack) in the victim function is exe-

Buffer overflow attacks exploit a particular type of pro- cuted, program control is transferred to the injected ma-
gram weakness: lack of array/buffer bound check in thelicious code.

compiler or in the applications. Accordingly, the ideal A less common form of buffer overflow attack in-
solution to the buffer overflow vulnerability problem is volves corrupting memory pointer variables on the stack
to build a bound checking mechanism into the compiler,instead of return addresses [18]. The requirements for
or to require applications to strictly follow a program- such an attack to occur are:

USENIX Association 2003 USENIX Annual Technical Conference 211

1. A pointer variablep that is physically located on as its compiler-based counterpart
the stack after the buffex(] , to be overflowed, There are two major technical challenges in applying
2. An overflow bug that allows overwriting this binary rewriting to the buffer overflow attack problem.
pointerp by overflowinga[] (taking user-specified First, to determine where to insert protection instruc-
data as source), usually with the address of a Globations, the boundary of each function in an input program
Offset Table (GOT) entry, which contains the ad- needs to be clearly identified, which in turns requires an
dress of a dynamic library function, accurate disassembler that can correctly decode each in-
3. A copy function such astr (n) cpy/ mencpy struction in an executable binary. Unfortunately, 100%
which takesp as the destination and user-specified disassembly accuracy is difficult because the problem of
data as the source, withoptbeing modified be- distinguishing code from data embedded into code re-
tween overflow and copy, gions is fundamentally undecidable. Second, even if the
4. A call to a common library function (like function boundaries are successfully identified, insert-
printf), the GOT entry of which is to be over- ing protection code into a given binary without disturb-
written. ing the addresses used in its existing instructions is itself

So leveraging the unsafe copy, the attacker overflowg_“?”'t”v""}'- The main pfoblem here is that in many cases
a[], thus overwritingo with the address of a GOT entry it is possible that_ the b_lnary dQes not haye enough spare
of a common library function, sayri nt f () . By pro- SPace to hold a jump instruction to thg mserteq protec-
viding the address of the exploit code as input to the safdion code, let alone to hold the protection code itself.
copy taking*p as the destination, the attacker has man- .Sectlon 2 surveys related work in the areas of stgtlc
aged to corrupt the GOT entry gf i ntf (). So any bmgry translation anq buffer c_)verflow defgnse. Secuqn
subsequent call tpr i nt f () would transfer control to 3 discusses the design and implementation of our dis-
the exploit code. a;sembly engine and the binary instrumentation issues

Another form of buffer overflow attack overwrites up With émphasis on the approaches we employ to ensure
to the old base pointer [19] on the stack with the addresrogram safety and to preserve the semantics of input
of malicious code, so that when the caller function re-Programs. Section 4 details the software architecture
turns, the control is transferred to the exploit code. and implementation of the binary rewriting RAD pro-

A seemingly non-stop stream of buffer overflow at- totype. Sectlor_1 5 presents expenmg_ntal results on the
tacks [3, 4] has called for an effective and practical SO_prototype‘s re3|sta_nce_ to attacks, ability to preserve the
lution to protect application programs against such at-S€mantics of applications, space cost and performance
tacks on the Windows platform. Past approaches to prooverheads. Finally, section 6 summarizes the main re-
tecting programs against buffer overflow vulnerabilities sults of this work and charts out directions for future re-
relied on compiler extensions, either to perform array S€&rch.
bounds check or to prevent the return address on th
stack from being ovelrawritten. Although fairly success- 92 Related Work
ful in preventing most conventional buffer overflow at- Among past efforts in binary rewriting, ATOM [5] and
tacks [2], these approaches require access to prografEL [6] run on RISC architectures, where the disas-
source code. All known systems that take such an apsembly problem is simplified due to uniform instruction
proach require the availability of the protected appli- size. Etch [7] is a tool for rewriting Win32/Intel PE ex-
cation’s source code. While integrating software pro-ecutables primarily for optimization. LEEL [8] works
tection into a compiler is technically desirable, this ap-on Linux/x86 binaries, albeit with limitations with re-
proach exhibits several practical limitations. First, re- spect to control flow analysis in presence of indirect
quiring access to source code makes it difficult to protectcontrol transfer instructions and arbitrary code/data mix-
third-party legacy applications whose source code is uning. UQBT [9] is an architecture independent static bi-
available for various reasons. Second, because modemmary translation framework for migrating legacy applica-
software applications tend to be built on third-party li- tions across processor architectures. Galen Hunt's De-
braries, access to the source code of these libraries againurs [24], is a system for run-time binary interception
is unlikely. Finally, for those program segments that of Win32 functions.
are written in assembly code directly, their high-level- Most buffer overflow defense proposals involve
language source code that is amenable to compiler anatompile-time analysis and transformation. Stackguard
ysis simply does not exist. The goal of this paper to de-[10] and Microsoft Compiler Extension [11] place 'ca-
scribe our experiences and the extent of success that weary words’ on the stack between the local variables and
have achieved in applying a combination of well known return address at the function prologue, and monitors the
disassembly techniques to implement a binary rewritingreturn address on the stack by checking the integrity of
solution that aims to provide the same level of protectionthe 'canary word’, at the epilogue. Both are vulnerable

212 2003 USENIX Annual Technical Conference USENIX Association

to attacks based on corrupting old frame pointers [19]on3 Binary-Rewriting Return Address De-
the stack or local pointer variables [18]. Stackshield [12] fense
and RAD [1] save a copy of the return address at the pro-

o successful binary rewriting RAD system requires
logue ant_j compare it V\."th the retg_rn a_ddress on th? St‘f’m{(?zlentifying the boundary of every procedure in the in-
at the epilogue. Our binary rewriting implementation is

> ut program and inserting a protection instruction se-
based on this model of buffer overflow defense. Both arep prog gap

. . quence into every procedure without disturbing the in-
resilient to frame pointer based attacks [19] but vulner- . g .
able to memory pginter corruption [18] a[Ltta]cks IBM's put binary’s internal referencing structure. The follow-

. . .~ ing two subsections discuss in more detail these two is-

gcc extension [14] also does local variable reordering, ; : .
: . . sues and their associated solutions.
placing pointer variables at lower addresses than buffers
in addition to the above, offering some protectionagainst3.1 Binary Disassembly
memory pointer attacks [18], unless the unsafe copy is .
from higher to lower indices of the array. CASH [15] 3.1.1 Disassembly Challenges
and others [16] perform array bounds check to preventlo accurately locate the procedure boundary, one needs
overflow of buffers. CASH achieves significant over- to identify each instruction in the binary through a dis-
head reduction (4% overhead) by exploiting Intel seg-assembler. There are two main classes of disassembly
mentation hardware as compared to the others in thiglgorithms [22]. Alinear sweepalgorithm starts with
category, which typically incur very high overhead (70% the first byte in the code section and proceeds by decod-
to 140%). ing each byte, including any intermediate data byte, as
code, until an illegal instruction is encounteredreur-

Other proposed approaches to protect programs fronsive traversahlgorithm starts at _the program’s mfain en-
buffer overflow attacks rely on run-time interception and try pointand proceeds by following each branch instruc-
checking. Lucent Bell Labs’ Libsafe [20] intercepts un- tion en_countered in a depth-first or brethh-ﬁrst manner,
safe library calls at run-time and performs bounds check-£ssentially a control flow analysis. Neither approach is
ing on the arguments e.g. for strcpy(), it would check the 100% precise. The chief impediments to accurate disas-
length of the source string and check it against the uppef€mbly are:
bound on the length of the destination string based on 1. Data embedded in the code regions,
the current frame pointer value. Although it prevents 2. Variable instruction size,
the return address from being modified, it is possible 3. Indirect branch instructions,
to corrupt local pointer variables. Libverify [20] per- 4. Functions without expliciCALL sites within the
forms dynamic binary translation to perform return ad- executable’s code segment,
dress check. However, we suspect that Libverify might 5. Position independent code (PIC) sequences, and
incur high overhead, since it adds checking code and 6. Hand crafted assembly code.

performs code instrumentation at run-time. A very ré- 1y anq 2) render the linear sweep algorithm less effec-
cent example of applying optimized run-time interpreta- e than ideal, whereas 3), 4) and 5) degrade the efficacy
tion to security problems is program shepherding [21], of the control flow analysis used in the recursive traver-
which is built on top of a dynamic optimization frame- ¢ algorithm.

work called RIO. Apart from offering advantages like Distinguishing code from data in a binary file is a
complete transparency, it achieves significant overheagundamentally undecidable problem. Because the lin-
reduction as compared to what one would expect fromear sweep algorithm decodes each byte as code as long
an interpretation/emulation system using a variety of op-as it looks like a legitimate code byte, it ends up inter-
timization techniques viz. traces and interpreted codepreting many data bytes as instructions. The reason for
caching. Another example of dynamic binary transla- this behavior is that, in the Intel x86 instruction set, 248
tion (applied to parallel computing) is Paradyn [27]. Jun out of 256 pos_,S|b|I|t|es_ can be a Ie_gltlmate starting byte
Xu et. al [28] suggest a hardware-based solution againsIPr an instruction, making it more likely to mistake data

buffer overflow attacks without requiring access to pro- OF INStruction. The fact that the Intel x86 instruction
set allows variable instruction size further aggravates the
gram source code.

problem of code/data distinction. Consider the follow-
ing example sequence of bytes:
To the best of our knowledge, the binary-rewriting

RAD system described in this paper is the first attempt ~ 0XOF 0x85 0xCO 0xOF ~ 0x85

that employs static binary translation to protect existing ¢ e considelOxOF as a code byte then we'll end up
binaries against buffer overflow attacks without requir- \yith the following disassembly:

ing access to program source code, symbol tables or re-

location information. j ne of fset

USENIX Association 2003 USENIX Annual Technical Conference 213

On the other hand if we consider OxOF as a data byte In this case, in spite of having explicBALL sites,
and0x85 as a code byte, then we get something like: standard control flow analysis cannot discover the target
location of the functiori oo() .

O0xOF /1 data Hand crafted assembly code makes it difficult to iden-
test eax, eax tify procedure boundaries because they do not necessar-
jne offset ily follow the code conventions established by standard

_ . _ compilers. These conventions provide useful hints to re-
Thus a single disassembly error could result in manysolve potential ambiguities. As an example of code con-
subsequent bytes being interpreted incorrectly, withyention violation, some assembly code programs jump

the extent of error potentially unbounded. In con- from one function into another function without going
trast, a fixed-instruction-size architecture exhibits a self-through the latter’s main entry point.

correcting property: an interpretation error for one in-)))
struction word does not propagate to the next instruction3.1.2 Disassembly Engine Implementation

word.) . . Our disassembly engine is built on the x86 instruction
The recursive traversal algorithms cannot obtainget narsing and disassembly capabilities of an existing
100% accurate disassembly results, either, because it fisassembler [13]. We use a combination of well-known
difficult to construct a complete control flow of an in- yisassembly techniques, viz. recursive traversal and lin-
put binary in the presence of indirect branch instruc- g5 gyeep (described briefly in the previous subsection
tions Sl_JCh asal |/ mp _reg32 (e.g.cal | eax)or 3.1.1) and complement them with compiler-independent
call/jmp n82 (e.g. jnp dword[esp + XX]). pattern matching heuristics. We assume that the data
One solution to this problem is to perform additional gypected in a code section are typically dispatch tables
data flow analysis ;uch as mte_r-procedural shcmg ar_‘d/o"(address bytes), strings and compiler alignment bytes.
constant propagation [23] to figure out at compile time gjnce the goal of this project is to insert protection code
the value of the register or memory location used in indi- every procedure of the input binary, we should iden-
rect control transfer instructions. Apart from being dif- tify as many code bytes as possible; otherwise the trans-
ficult to implement, such an approach tends to greatlyformed binary may have security holes. However, we
increase the disassembly time and itself does not gualsiace maintenance of original program semantics at a
antee 100% accuracy. o]] ~higher priority than security, so whenever in doubt we
Procedures for which no explicit call sites in the in- 4k pytes as data instead of code, thus avoiding unsafe

put program can be identified include exception or signalyinary instrumentation. The following is a step-by-step
handlers, callback functions, which is rife in GUI appli- gescription of the disassembly process:

cations, and procedures all calls to which are through _ _)
indirect branch instructions. Because there is no identi- 1- Iqlent|fy potential gddress _bytes for dlspatch_table
fiable call to these functions, they cannot be discovered dlscoyery and strmgs. Dispatch tat_"es typically
through control flow analysis, and as a result may be ~ contain code section addresses. Since we know
misclassified as data. In practice, signal/exception han- the address range of the code section, we can mark
dlers pose few problems because their entry points are &1y séquence of 4 bytes, Wh|ch,have a value tha’t
included in the program header in some cases. lies within this address range as potential address
The addressing in position independent code (PIC) bytes. Sequences of printable characters that have

does not rely on any particular position in the program’s a (ilertham minimum Ienkgtg an(,j are te_rrlnlngted ,by a
address space. Thus PIC code and jump table never have gl:ar(t:inaraf?:)er; atrr?ema:oeraﬁ’sp?lgzri]r?aeﬁirrmgs(.)in ¢
absolute address references. Instead the references aré” 9 brog y point,

. . . which is obtained from the input binary’s PE header
in the form of offsets with respect to a base value that is [17], we perform a control flow analysis on the bi-

known at run time, mostly through the p value. For nary to traverse the paths of the program’s control
example, flow graph. All code bytes identified in this step are
marked as 'definitely code’ and all associated data
10: call 10 bytes marked as 'definitely data’. We also iden-
15: tify targets of CALL instructions as function entry
: points and targets of conditional and unconditional
25: pop eax // gets the return addr jump instructions as jump targets. Since this step
/1 value 15 into eax can distinguish data from code with 100% accu-

26: call dword[eax + 20] // call foo racy, it overrides analysis results from other steps
: whenever there is a conflict. For example, the fol-
: lowing byte sequence will be identified azal |

35: // foo instruction because the result from Step (2) over-

214 2003 USENIX Annual Technical Conference USENIX Association

rides that of Step (1). guences. For example, in the following code se-

Identified as instruction guence, Bytes 1 to 3 will be marked as data.
"call dword[0x30001344]" in Step (2) 1: nov eax, ebx
Semmmmmmmmmmm i > 3: push eax
OxFF 0x15 0x44 0x13 0x00 0x30 4: data
Cemmm e e e e >

o , . Also, the byte next to an unconditional branch
Identified as 'potenti al . P
address’ (0x30001344) in has to be either a data byte or if it is a cod_e byte,
Step (1) it must be a branch target (as the previous instruc-
tion, being an unconditional branch, doesn't fall
through). Therefore, in the case that the byte next to
an unconditional branch is a code byte and has not
been marked as a function entry point or a jump
target, we mark it as a function entry point, even
though they could just as well be targets of a branch

3. To identify the entry points of potential callback
functions, for which there are no explicit call sites,
we look for instruction sequences such as:

push i mB2
nov reg32, imB2

Typically the target address of a callback func- instruction inside the same function.
tion is usually passed as an argument to some func- The motivation behind this “optimistic” identifi-
tion, with which the callback function is regis- cation of functions, as seen in steps 3) and 5) will

tered. Such an argument could be passed through e explained in subsection 4.3.
the stack as an immediate valygugh i mB2)) _
or through a register, which contains the address3.2 Binary Instrumentation

value frov reg32, imB2;push reg32).1f ggcase itis not always possible to derive the high-level
the byte ai B2 has not beenidentified as a’po- oo flow of an input binary, the process of inserting

tentlgl_addresg ora pp'.[entlal.strmg n Step ,(1)' additional code to counter buffer overflow attacks must
and if it looks like a legitimate instruction starting proceed in a way that does not disturb the memory refer-

byte, we coqsider_ itas a f_u_nction entry point (@l ences used in the instructions of the binary program that
though despite being a legitimate code byte it may;q (4 pe protected.

not actually be a function entry point) and proceed

disassembling the subsequent bytes as instruction8.2.1 Where to Insert RAD Code
4. To identify other types of functions for which there

are no explicit call sites, we next look for bytes in

the code section that have not been identified as ® Saving a copy of the return address on the stack in

code or data yet. Every time such a byte is located, ~ the return address repository (RAR) at the function

we start instruction parsing if it looks like a legit- prologue, and

imate instruction starting byte. In both Steps (3) ® Checking the return address on the stack with the

and (4), the point where such instruction parsing saved copy in the RAR at the function epilogue,

begins is called a 'reset point’. Instruction parsing popping it off the RAR in the event we have a

continues until an unconditional branch instruction match, or flag an exception otherwise.

(ret orjnp)is encountered. If the result of an |nstead of adding function prologues and epilogues to

instruction parsing procedure is inconsistent with every function, we choose to do so only for 'interesting’

any previously identified byte or leads to an illegal functions, which are functions that contain a sequence of

instruction byte, the result since the reset point isinstructions for stack frame allocation and deallocation

revoked and all the bytes from the 'reset point’ to for local variables. A function without local variables

the current position are marked as data, thus avoidcould never be vulnerable to a stack based buffer over-

ing any potentially unsafe binary rewriting. After flow.

an unconditional branch we look for the next suit-

able reset point’ to start the next instruction parsing 3.2.2 How to Insert RAD Code

attempt. So as to not disturb the original binary’s address space,
5. Because any sequence of instruction bytes shoulgye choose to create a separate new code section, not
end with an unconditional branch instructigmp present in the original PE binary (information regard-
orr et), we look for code sequences that end with- ing the PE format is in [25]), appended to the end of
out an unconditional branch fp orr et) instruc- the original binary to hold the additional prologue and
tion and mark such code sequences as data. Thigpjlogue code for each function. Moreover this new sec-
check provides a final line of defense to eliminate tion mapped to a non-interfering portion of the address
any potentially incorrectly identified instruction se- gpace, will be set as read-only. Thus neither the RAD

The additional code required by RAD [1] involves

USENIX Association 2003 USENIX Annual Technical Conference 215

216

code is corrupted by the application nor is the applica- /1 allocated on the
tion corrupted by the RAD code. To redirect control to _ _ /1 stack (2 byte
the inserted code at a function’s prologue and epilogue, /'l instruction)

we need to replace some instructions at the function pro- pop ebp Il restore caller’s
logue and epilogue with dMP to the corresponding ;; Lrarm ptr (1
RAD code. When such an instrumented function is in- yte)

. X . ret /1 return (1 byte)
voked, the] MP instruction, which replaces the prologue, 3 | eave /] deal | oc. stack
transfers con'_[rql firstto the RAD prol_ogue code, thgn ex- /] frame & restores
ecutes the on_gmal prologue instructions and th_enjumps /1 old frame ptr
back to the original function to continue execution from /1 (1 byte)
the instruction immediately after the original function ret Il return (1 byte)

prologue. Epilogue instructions are replaced in a sim- .o 2) and 3), we see that stack frame deallocation
ilar manner. However, the execution proceeds first withgoyld be done with 2 to 4 bytes worth of instructions. So
aJMP to the epilogue code in the new section, first ex- we need to replace some more instructions in addition to
ecuting the original epilogue instructions until tRET, the stack frame deallocation instructions to hold\P

then the RAD epilogue checking code and then returninstruction. In most cases, we do find enough space this
if there are no problems. Because the size of an unconway. However, it is possible that the first instruction of
ditional JMP instruction is 5 bytes, we need at least 5 the stack frame deallocation sequence is a jump target,
bytes worth of instruction space to accommodaldy® ~ €-9--
instruction. Instructions that are target of existing branch

instructions cannot be replaced. : n:e X
A function prologue, which needs to allocate stackx: | eave
space for local variables, typically comprises 3 instruc- ret
tions :
In this case, if we replace instructions priottBAVE,
1. push ebp // save old frane ptr . -
/1 (1 byte instruction) then t.he jump targex wpuld be dlgturbed. Fr.om our
2 mov ebp, esp // set the top of experlen.ces,the.scenarloofnqtbelng.abletoflnd5bytes
/] the stack as the worth of instructions at a function’s epilogue does occur
/1 current frame ptr in practice but is relatively rare. For such a situation to
/1 (2 byte inst) occur in practice, two conditions need to be met:
3. sub esp, x // allocate x bytes on a) Most development environments on Windows, by
H f/gfi ZLFZE Egrt loogal default, set certain compilation options which gen-
/1 byte instruction) erate calls to s’;ack checking code, prior to stack
or frame deallocation, to check for adherence to cer-
add esp, -x tain calling conventions (which basically dictate

caller and callee duties as regards function frame

Alternatively it could also be done using tEATER initialization and cleanup). Calling convention ad-

instruction, however most compilers do not E€TER

for stack frame allocation. Thus, an 'interesting’ func-
tion prologue includes at least 6 bytes worth of instruc-
tions. Hence, we can comfortably instrument an 'inter-

herence check is desirable because of functions be-
ing called using function pointers and calls to li-
brary functions. If we disable these options the
compiler won’t generate these stack checking calls

esting’ function prologue to redirect control to the RAD and thus will not generate extra bytes prior to stack
prologue code using a 5-byfEVP instruction. On the frame deallocation.

other hand, a typical stack frame deallocation instruction b) There should be a high level code sequence like:
sequence looks like one of the following three cases:

goto | abel
1. add esp, x [// dealloc. stack .
/'l space, x bytes
/'l were allocated | abel :
// (3'6 bytelnst) return;
pop ebp /] restore caller’s
/1 frame ptr (1 byte) So in such rare scenarios (our experiments show typi-
r et /Il return (1 byte) cally 0.03 - 3% of all functions, sec. 5.2.2, table 9), we
2. nov esp, ebp // dealloc. stack use a simple although expensive approach to solve this
/1 space, any problem. When not enough instructions are available,

/1 nunber of bytes we replace the first byte of the instruction priorrtet

2003 USENIX Annual Technical Conference USENIX Association

ponent handles all the issues involved in adding instru-
mentation code outlined in the section 3.2. Since the

/ i \
[B:_\Iary \
\ ile Initialization

_/

N

Interesting
Fn.

—

Core Binary
Rewrite
Engine

~ Disassembler L

Each

RAD

PE-specific
component

Instruction

Post-Rewrite

Control
Transfer at

_> Control Flow

within our system

P

N
[External | Binary Rewriting
\ /;“ RAD component

Input Input

Figure 2: The software architecture of the binary-
rewriting RAD prototype, which consists of a disassembler,
a core binary rewriting engine, a RAD component, and a
PE component.

withan int 3 (breakpoint interrupt) instruction, which
corresponds to a software interrupt, and install a corre-
sponding exception handler. When an int 3 instruc-
tion is executed, it generates a Debugger Breakpoint Ex-
ception, and the handler gains control to perform return
address check. Because this exception handler is exe-
cuting the user space, control transfer to our handler is
similar to an intra-privilege level far call, which means
that there is no stack switching and the exception han-
dler can access the return address on the stack. For de-
tails regarding how the stack evolves during the execu-
tion of a software interrupt handler, please refer to [17].
The reason why we chose the debugger breakpoint ex-
ception is that this exception is not used normally unless
the program is being debugged. However, while being
debugged under a debugger, the control is transferred to
the debugger when an int 3 instruction is executed,
and our exception handler will not executed.

4 Prototype Implementation

4.1 Software Architecture

The binary-rewriting RAD tool comprises the follow-
ing logical components: a disassembler, a core binary
rewrite engine, a RAD component, and a PE (Portable
Executable format specific) component. The disassem-
bler functions in two main phases. In the first phase, it
performs code/data and branch target identification cov-
ering all bytes in the code section, and in the second, it
outputs the assembly instructions starting from the first
byte in the code section. The core binary rewrite en-
gine, independent of the binary format, hooks into the
disassembler in the second phase to gain control at ev-
ery instruction processed to look for ’interesting’ func-
tion prologues and epilogues to instrument. This com-

instructions that make up an ’interesting’ pattern need
not be contiguous, this component maintains a window
of five instructions (current instruction and four previ-
ous ones), which is flushed whenever a branch target is
encountered, so that we don’t run over any jump target.
The engine attempts to identify ’interesting’ patterns in
the window every time a new instruction is added. All
the RAD code and its associated data are added to a new
section at the end of the input binary. The RAD com-
ponent implements the Return Address Defense mecha-
nism. The prologue stub saves the return address on the
stack to the Return Address Repository (RAR) and the
epilogue stub keeps popping the RAR stack till it finds
the return address currently on the top of the stack or
till the RAR is empty in which case it flags an excep-
tion. This repeated popping ensures that the return from
any of the caller’s ancestors (from the current call stack),
does not generate false security alarms. This scenario
occurs in case of setjmp ()/longjmp () as well as
compiler optimizations which cause functions to return
straight to the caller’s caller if the first return is to the
caller’s return section (e.g. tail recursion). The PE com-
ponent initializes the binary rewrite process by adding a
new section header in the section header table and setting
up its fields appropriately; it also aligns the new section
(called the .RAD section) that holds the RAD code, de-
pending on where it should be loaded at run time (page
boundary next to the end of the previous section) and
where it should be stored in the binary file (file align-
ment boundary after the end of the previous section).

4.2 RAR Initialization

The .RAD section is set as read/write/executable. It
needs to be writable since the RAR is also a part of
this section in addition to the RAD code. However, At
run time the non-RAR part of this section needs to be
set to read-only, through a Win32 API call VirtualPro-
tect(). This is to create mine-zones on both the sides
of the RAR to prevent attackers from overflowing the
RAR. The key issue here is how to locate the entry point
of VirtualProtect(). There are several cases to consider.
First, it is possible that the input program also uses Vir-
tualProtect() for some other purpose and thus the pointer
to its entry point can be located by scanning the binary
statically. Otherwise, if the input program does not need
VirtualProtect(), the PE component needs to add code to
locate its entry point at run-time.

For the first case, two PE headers of interest here are
the Import Address Table (IAT) and the Import Name
Table (INT). The two tables can be reached from the im-
port directory, whose location in turn is obtained from
the DataDirectory array in the PE OptionalHeader. Each

USENIX Association

2003 USENIX Annual Technical Conference

217

entry in the IAT, at run time, contains the address of program correctness. While we make every effort to
an imported function and the on-disk binary file. For seal all known security holes, we consider preserving
each IAT entry there is a corresponding entry in the INT, original program semantics as a more important goal
which points to the name of the corresponding importedthan attempting perfect security.

function. At load time, the loader overwrites the IAT

entries with the virtual addresses where the correspondea|se Negatives

ing functions are mapped. To locate the entry point of These (if any) are mainly callback functions (without
VirtualProtect(), we look up the INT by its name and re- an explicit CALL within the code section) and/or func-
trieve the index of the associated IAT entry if there is tions invoked using Position-”‘]dependent Code (P|C)
a match. If VirtualProtect() is already imported by the sequences (wherein there would be no absolute address
input program, then its entry point is readily available references to a function within the code section). These
from its IAT entry. If there is a match in the INT but are not covered by pure control flow analysis. Despite
the corresponding IAT entry is empty, then we need tothjs, typically, only a certain fraction of such functions
dynamically resolve the entry point of VirtualProtect() get missed out. The following "representative” scenarios

by calling GetModuleHandle(), which gets the base ad-should make this clear. Functions missed by the control
dreSS Of the DLL Containing the API fUnCtion in qUeS- ﬂOW ana|ysis Step Could be:

tion, and then calling GetProcAddress(), which gets the o B

address of the desired API function from the export di- @& Partly/fully misidentified as data

rectory of its containing DLL. The entry points of Get-) identified fully as code

ModuleHandle() and GetProcAddress() themselves are |f the start or the end of a function is misidentified as

obtained from the IAT through their containing DLL, data, then we might miss out on an interesting prologue
kernel32.dll. In the case that none of these API func-or epilogue respectively. Either cases result in an un-

tions are themselves imported, which is quite rare, therprotected return, which might turn out to be a security
the PE component needs to emulate the operation of Gefoophole, if that particular function has a buffer over-
ModuleHandle() and GetProcAddress(). This emulationflow vulnerability. Ditto is the case when a function is
idea is derived from an undocumented virus code andtylly identified as data. If a piece of code somewhere
is based on the following observation: At the programin the middle of a function is misidentified as data, then
entry point, the top of the stack contains a return ad-the function is misidentified as data, then the function is
dress, which points to somewhere inside the functiongivided into two, and hence all returns in this function
CreateProcess(), which in turn belongs to the DLL ker-peyond this dividing point would be treated as a part of

nel32.dll. With this address, one can scan through thean uninteresting function, and hence are left uninstru-
memory until where kernel32.dll is mapped is found. mented and could miss an attack.

Or!ce the base address of kernel32.dllis known, the entry A function with its body fully identified as code, could
points of GetModuleHandle() and GetProcAddress() aregi) e missed out during control flow analysis and have

available through the DLL's export table, and in turn the y,oir nigentified entry points preceded either by data
entry point of any AP function can be identified through - 5, nconditional branch instruction from the previ-

these two functions. ous function. In either of the cases, we would indeed

Finally, the entry point of the executable in the PE 1oy the function entry point (last step (5) of disassem-
header should be changed to the new initialization codeb|y engine sec. 3.1.2). When data preceding the entry

which locates the entry point of Vir'FuaIProtect(), and point of such a function aligns properly with the code
calls it to protect two pages surrounding the RAR. bytes to form a legitimate instruction sequence, an origi-
4.3 Limitations nally intere_sting prologue could be_come uninteresting,
i] thus exposing an attack opportunity. In all the cases
4.3.1 Security Weaknesses Due to Disas- presented so far, however, program semantics are not
sembly Limitations jeopardized. But if data misidentified as code turns an
Hninteresting function prologue to an interesting one, it
might generate a false alarm, if the epilogue happens to
])] _ be interesting. Another false alarm scenario is if the
e Functions Missed by our Disassembly ENgine ¢,nction entry point is preceded by some data and the
(False Negatives) . . first identified code byte happens to be a jump target
e Falsely Identified Functions (False Positives) (happens with inter-procedural jumps), in which case
Let’s look at each of these aspects and evaluate whethe two functions get merged into one. However, inter-
and how these could result in false alarms or missedorocedural jumps occur only in handcrafted assembly or
attacks. There is a trade-off between security andasinsetj nmp()/l ongj np() cases.

Two aspects of disassembly that relate to sources of fals
security alarms and security loopholes are:

218 2003 USENIX Annual Technical Conference USENIX Association

Apart from functions, jump targets reached by PIC jumps and/or entry and exit points in different functions.
jump tables could be missed. This could affect pro-An example of such a case was observed when we in-
gram correctness, if these targets happen to be withigtrumented Microsoft Access. Here, the control jumps
instrumented prologues or epilogues, a very unlikelyfrom Fnl to | abel , which is inFn2 and exits from
scenario, though. Fn2.

Fnl: // no 'interesting prologue
False Positives :

Functions with multiple entry points are treated as two j ne | abel
separate functions. Targets of PIC jump tables, which : _ _ _
cannot be discovered statically could get marked as ret // no 'interesting’ epilogue

function entry points, if they lie immediately after an un-
conditional branch or a sequence of data bytes (last steﬁnz:
(5) of disassembly engine sec. 3.1.2). Code section adl'abel)
dresses which appear as immediatar(82) operands '
to nov r32, i mB2 or push i mmB2, could be
identified as function entry points even if they are tar-
gets of an indirect jump (non-PIC jump table targets are, Fn1 has an uninstrumented prologue, so its return ad-
however, treated specially and identified). dress is not saved in the RAR aRd2’s epilogue is in-
Function boundary identification helps prevent sce-strumented, so a return address check is done on exit
narios where the prologue is instrumented, but the epifrom Fn2. The RAD epilogue of Fn2 will flag an ex-
logue is not and vice versa. Since the latter case coul@eption, since it cannot find the on-stack return address
cause false alarms (since the epilogue checking cod# the RAR, thus a false alarm.
would be trying to find a match for the return address Other recipes for false alarms include data misiden-
on the stack, but since it was never saved (no prodified as code which looks exactly like an interesting
logue instrumentation code), it won't find it in the Re- prologue, or an entire chunk of data which appears like
turn Address Repository (RAR), thus flagging a false an interesting function, both of which are rather uncom-
exception). We want to avoid that altogether, which mon.
can be achieved by "optimistic” identification of func- . T
tions. This false ideyntifilta:ation, however could resultin a4"?"2 Potential Attacks Due to Limitations
function having an instrumented prologue, but an unin- of RAD
strumented epilogue. Such a function, if called too fre- As in RAD [1], the current binary-rewriting RAD pro-
guently in a manner that it exits from an uninstrumentedtotype can protect applications from any kind of buffer
epilogue, then the RAR will eventually overflow, since overflow attack that corrupts the return address on the
there is no code to pop the return address off the RARstack. Thus it can resist conventional stack smashing at-
Another potential problem due to false identification is tacks and frame pointer based attacks [19]. However, it
missed attacks. If false identification causes an "entrycannot prevent memory pointer corruption attacks [18],
point” to be inserted within a function body then the sin- which do not affect the return address in any way. They
gle function gets divided into two. Here the "second” simply modify the contents of the import table (Global
function won't have an interesting prologue, hence all Offset Table - GOT or Import Address Table - IAT),
subsequent returns in this function will be missed. How-which makes it impossible for RAD to detect them. For-
ever, false identification of functions never jeopardizestunately, no actual network security breach incidents that
program correctness unless, of course, an entire chunfire based on this type of attacks have been reported.
of data misidentified as code forms a function, with both . L
interesting prologue and epilogue, which is an extremely?-3.3 Multi-Threaded Applications
unlikely scenario. The current implementation doesn’t handle multi-
In summary, PIC, indirect branches and callback func-threaded applications. An idea to implement the solution
tions could cause some security loopholes in the inpufor multi-threaded applications, comes from [26]. We
programs to be un-protected. Empirical results show thatan access the Thread Information Block (TIB) structure
indirect branches typically are 5-8 % of all branch in- using the FS segment register. Code generated by com-
structions (Section 5.2.1, Table 5). Only a fraction of pilers to set up exception handlers and to allocate storage
this (if at all any) could possibly result in a missed at- for thread local variables, typically reveal this use of the
tack. FS register. The TIB contains an array of slots for thread
As for false alarms, they could arise due to handlocal storage. What we could do is have a separate RAR
crafted assembly code, mostly with inter-proceduralspace for each thread (taking care that RAR spaces of

/1 interesting prol ogue’

ret // 'interesting epilogue

USENIX Association 2003 USENIX Annual Technical Conference 219

Step Size exception handler, the measured performance overhead

Return Address Repository 16 Kbytes is different. We tested three different instrumented func-
Exception Handler 130 bytes tions:

Installing Exce_ptlon Handle 19 bytes ¢ void fn() that does nothing and invokes prologue
Set up RAD mine-zones 55 bytes and epilogue RAD code through a jump instruction
Search for VirtualProtect() 371 bytes e void fn() that does nothing and invokes prologue
Total 16.2 - 16.6 KBytes RAD code through a jump and epilogue RAD code

Table 1: The constant space overhead of binary-rewriting thr'ough a software exception .
RAD. The last row corresponds to the step that searches the ® void fn() that does some amount of computation

kernel32.dll export table for the entry point of VirtualProtect(). (incrementing a variable 25000 times), without
making any other function calls

two threads don’t bump in to each other), and store the The performance penalty of the binary-rewriting RAD
address of the RAR in one of the thread local storageprototype is defined as:Addgj;?g"i‘:fﬁgfn%j; head - and
slots, which can be used by the RAD prologue and epi-was measured using the Pentium performance counter,
logue code, to figure out which RAR to work with. How- which has a resolution of 2 nsec.

ever, the use of the FS register, although a well-known For the do-nothing test function case, the over-
fact in the Windows world, still falls into the category head of RAD is 34.25%, which is higher than ex-
of undocumented information. There would probably pected, considering that both the prolog and epi-
be Win32 API functions, which do something like this, logue RAD code size is just about 9 to 11 instruc-
however the cost of invoking an API call at every RAD tions, each of which is such a simple instruction

prologue and epilogue would be prohibitive. as push reg32’, 'pop reg32’, 'nmov reg32,
. menB2’, 'cnp reg32, nenB2’, 'add nmenB2,
4.3.4 Seli-Modifying Code i mB2' 'sub reg32, i mB2’ etc., none of which

Self-modifying code, like those missed functions due toappear to be costly. We believe this performance over-
indirect branches, makes control flow analysis difficult. head is due to additional instruction cache misses that
Moreover, if a piece of code is added only at run-time to arise because the code region of the test function is sep-
the heap, there is no way RAD can add checkstoit. arate from that of its prolog and epilogue RAD code. If
a function’s epilogue does not contain enough space to
5 Experimental Results hold a jump instruction, the epilogue RAD code is im-

To validate the correctness of the binary-rewriting RAD Plémented inside an exception handler. The additional
prototype, we need to verify that the RAD code is in- performance overhead due to exception delivery and re-
jected into appropriate places in the input binary AND UM, as compared to two jump instructions, is almost
the RAD code does protect the input binary from buffer duadrupled, as shown in the second test function case
overflow attacks in a way that does not incur significant®f Table 2.When the test function is doing something
space overhead or run-time performance cost. In the folMore computation-intensive, as in the third test function
lowing subsections, we present results that show that th&2S€; the relative performance overhead of RAD imme-
current binary-rewriting RAD prototype does do a rea- diately becomes negligible. Compared with the origi-

sonable job in disassembly accuracy and low-overhead@ RAD system [1], which works on source code only,
protection against buffer overflow attacks. binary-rewriting RAD performs better in all three cases,

because its prolog and epilogue code is implemented in
5.1 Micro-Benchmark Results assembly and is thus more efficient. This result is some-

To establish the baseline performance for the binary-What surprising as the original RAD system places per-

rewriting RAD prototype, we apply it to a set of syn- function prolog and epilogue code together with the as-

thetic programs and measure its space and performanc%OCiated function, rathe_r than in a sepgrate cer region,

overhead. Table 1 shows the constant space overhe _dtherefore does not incur additional instruction cache

associated with binary-rewriting RAD, which excludes miss penalty.

the .per—functlon prologue and epilogue RAD code._ Ev- 52 Macro-Benchmark Results

ery instrumented function needs a prologue and epilogue

checking code, which take 38 and 41 bytes, respectivelyWe experimented with a wide variety of commercial
We then measure the performance overhead of an ingrade Windows applications, including BIND DNS

strumented function due to its prologue and epilogueserver, DHCP server, a third-party FTP server, Microsoft

RAD code. Depending on whether an epilogue RAD Telnet Server, MS FrontPage, MS Publisher, MS Pow-

code is triggered by a jump instruction or by a software erPoint, MS Access, Outlook Express, CL compiler,

220 2003 USENIX Annual Technical Conference USENIX Association

Test Function Cycle Counts - Original | Cycle Counts - RAD | Relative Penalty
Null function 292 392 34.25%
Null function + epilogue 271 641 136.53%
Incrementing function 350,425 350,722 0.085%

Table 2: Per-function performance overhead due to the RAD code injected into an instrumented functidtullFhaction +
epiloguecase is the same as tHall function case except its epilogue is invoked through a software interruptinEhementing

function case corresponds to a function that increments a variable 25000 times. All measurements are in terms of Pentium cycle
counts.

MSDEV.EXE (Visual C++ development environment), on Windows, compiled with gcc’s profiling options and
Windows Help (Winhlp), and Notepad. After rewrit- then analyzed them offline with gprof.

ing, all the above programs behave exactly the same Thys the 9% of both missed functions and unprotected
as before, except MS Access, which generated a falSgayns in interesting functions appear to be reasonable.
alarm due to hand craft_ed assembly code (desc_rlbed IFrhe missed functions in Apache were typically func-
Section 4.3), and the third-party FTP server, which hasions without any absolute address references in the code
an internal exception handler that conflicts with the de-gaction. which were invoked through a table of function
bugger exception handler that binary-rewriting RAD in- nginters to which the addresses of those functions were

stalls. The initial experiences collected from running gegigned statically. The table, being a static array vari-
the binary-rewriting RAD prototype against a wide ar- gpe is located in the .data section and so were the func-

ray of regular de_sktop applications and Internet serversyion addresses. The static call graph generated by gprof
which are the prime targets for buffer overflow attacks, 5150 shows the parents of these functions as ’unidenti-
convinced us that this prototype is sufficiently mature to fjg .

preserve the program semantics of complex production- Because the results obtained from control flow analy-

grade applications while providing them with protection . ~ o
against buffer overflow attacks. Of course, more exhaus>'S 1S guaranteed to be correct, it is useful to measure the
tive tests are required to be absolutely ic,ure about th@ercentage of instructions that can be identified through

accuracy of disassembly and the protection strength Of:ontrol flow anal¥5|§, Wh'c.h gives an mgﬂcatlon. of how
RAD. useful other heuristics are in identifying instructions, es-

pecially for GUI-intensive interactive applications. Ta-
ble 5 shows the total number of instruction bytes in each
test application and the percentage of them that control
The binary-rewriting RAD prototype uses control flow flow analysis can successfully detect. As expected, for
analysis and a set of other heuristics to distinguish behon-interactive applications, which rarely use any call-
tween code from embedded data. In general, contropack functions, control flow analysis can achieve a very
flow analysis is quite effective in identifying the code re- high detection accuracy, more than 97%. However, for
gions for non-interactive applications, which usually do interactive applications, the percentage is around 80%.
not have many call-back functions. However, for inter- The difference between the coverage percentages in Ta-
active GUI applications, such as those in Microsoft Of- ble 3 and 4 for the three programs, MS Powerpoint, MS
fice suite, control-flow analysis alone is not quite as ef-Frontpage, and MS Publisher, represent the contribu-
fective because of the hidden call-back functions. Theredtion of the pattern-based heuristics that binary-rewriting
fore these applications represent the most challengindRAD employs to the total code region coverage.
test programs for a disassembler. Table 3 shows the dis- Fina”y, because control flow ana|ysis p|ays such an
assembly accuracy of three such programs, MS Powefimportant role in the disassembly process, it is instruc-
point, MS Frontpage, and MS Publisher. The disassemtjve to investigate deeper why it cannot detect all the in-
bly accuracy of all these programs is above 99%. Thestructions in the program. Other than functions that do
way we measure disassembly accuracy is to manually innot have explicit call sites, indirect branch instructions
spect the resulting assembly code and determine whethejre the main culprit. We measure the percentage of in-
the instructions look “reasonable.” From our experi- direct control branch instructions in the test applications
ences, instructions that are disassembled from data tenghd the results are shown in Table 5. Again, interactive
to appear out of place and thus can be easily detected. gpplications such as MS Powerpoint and Access tend to
Since the manual inspection method used above mapave a higher percentage of indirect branches than oth-
not seem rigorous enough, to further verify our dis- ers, which reflects the event-driven programming style
assembly results, we experimented with certain Cyg-of these applications, and correspondingly a more ex-
win ported Unix applications (with available sources) tensive use of function pointers and switch statements.

5.2.1 Disassembly Accuracy

USENIX Association 2003 USENIX Annual Technical Conference 221

Application Code section | No. of incorrectly decoded | Accuracy
size bytes (approximation)

MS PowerPoint 4.059 MB 2500 99.93%

MS Publisher 2.314 MB 50 99.99%

MS FrontPage 983 KB 900 99.91%

Table 3:Disassembly accuracy achieved as measured through manual inspection of the resulting assembly code. Higher accuracy

means that more bytes are successfully disassembled.

Application | No. of functions | No. of functions | Miss | No. of returns | % of returns
(source code) (disassembly) % unprotected | unprotected
Gzip 234 234 (80) 0 2 0.85
Wget 626 626 (140) 0 3 0.48
Apache 1191 1159 (350) 2.69 38 3.19
Whois 148 148(15) 0 0 0
OpenSSL 2820 2812(780) 0.283 7 0.248

Table 4: Evaluation of disassembly results by comparison with original program sources. The numbers in the parenthesis on the
third column represent the number of falsely identified functions.

In summary, our disassembly results appear to becationsis also quite reasonable, as shownin Table 7. The
better than the previous best reported in the literaturenighest percentage is still smaller than 35%. Both results
[22], which claims 99.9% precision using binaries with demonstrate that the overhead of binary-rewriting RAD
relocation information, but most of their experiments is quite reasonable for practical applications, given the
were on smaller programs, all of which were plain com- additional protection it provides.
mand line programs without any GUI callback functions, Because the cost of invoking an epilogue RAD code
which makes disassembly tougher. Furthermore, thehrough an exception handler is around four times as ex-
presence of symbol table information in binaries (pos-pensive as that through a jump instruction, it is important
sibly inadvertently) eliminates problems regarding func- to find out how frequent epilogue RAD code is invoked
tion boundary identification. However, there is a ques-through an exception handling mechanism. If it occurs
tion of the symbol table format. It could either be the frequently, then perhaps a more sophisticated mecha-
generic COFF symbol table, supported by the PE/COFFism needs to be developed. Table 7 also shows the
binary formats, or it could be a compiler specific format, percentage of functions in the test applications whose
like the VC++ .pdb. Apparently, compilers tend to fa- epilogue RAD code is triggered via an exception han-
vor their proprietary formats for symbol table over the dler. The statistics in Table 7 show that the percentage
generic COFF format. This is evident since the defaultof functions that do not have enough instruction space
compilation options for generating debug information do for a jump instruction is fairly low, less than 3%, which
not produce COFF symbol tables, and generate proprijustifies our design decision of using this expensive solu-
etary symbol tables instead. tion in these infrequent cases. Please note that, these are

. results of static analysis. It is possible that, at run-time
5.2.2 Run-Time Overhead one of these functions get invoked 50% of the times,
An important consideration in the design of RAD in which case the performance might get seriously hit.
is the minimization of performance overhead due toWhile it is possible to instrument binaries to report the
per-function prologue and epilogue RAD code. The % of functions called at run-time which need the use of
relative performance overhead of RAD with respect to athe | NT 3 software interrupt, we are not clear if that
test application is defined as would say much, since at the end of the day, we can still
just say that, since the % of such functions (from our ex-
periments) is typically 0.03% to 2.5%, probabilistically
the % of such functions among those called at run-time
would be of a similar order.

Ezxecution time with RAD — Execution Time w/o RAD
Program Execution Time without RAD

The results are in Table 6, which shows the run—time5_3 Resilience to Buffer Overflow Attacks
performance overhead of binary-rewriting RAD for typ-

ical Internet applications is quite small, around 1%. TheThe Windows help program (Winhlp32.exe) on Win-
space overhead of binary-rewriting RAD for real appli- dows NT 4.0 with Service Pack 4 has a buffer over-

222 2003 USENIX Annual Technical Conference USENIX Association

Application % Covered by Control Flow Analysis | % of Indirect Branch Instructions
WFtpd (Ftp server) 97.13% 5.81%
BIND (DNS server) 97.32% 5.42%
MS Access 84.57% 8.29%
Notepad 97.54% 1.73%
MS Powerpoint 80.11% 7.54%
Windows Help 99.67% 1.41%
MS FrontPage 87.20% 8.98%
MS Publisher 93.86% 8.94%

Table 5: Column 2 shows the percentage of a program’s code section bytes that is detected purely through control flow analysis.

Column 3 shows the percentage of indirect branch instructions among all the branch instriREbsstructions are not included

in this count.
Application Original execution | Binary RAD execution | % Overhead
time (msec) time (msec)
BIND 122.56 123.85 1.05%
DHCP server 122 1235 1.23%
PowerPoint 145 150 3.44%
Outlook Express 138.2 140 1.29%

Table 6:Whole program performance overhead due to the insertion of binary-rewriting RAD code. For BIND, the response time
measurement is averaged over 10 queries issued using the client pidiggarexe. For the DHCP server, the measurement is

the startup and initialization time averaged over 6 runs. For PowerPoint, the measurement is the time taken to render a 90Kbyte
presentation averaged over 6 runs. For Outlook Express, the measurement is the startup and initialization time averaged over 6
runs.

flow vulnerability, which occurs when it reads a content to protect legacy applications whose source code is not
file ((CNT) with a very long heading string. We instru- available against buffer overflow attacks, and thus signif-
mented Winhlp32.exe using our binary-rewriting RAD icantly broadens the applicability of buffer overflow de-
tool, and the augmented binary successfully resists théense mechanisms developed in the research literature.
attack mounted by a published exploit code [3]. Although, it may not achieve the stated goal of provid-
ing the same level of protection as its compiler-based
counterpart, in a few cases, it is primarily due to a fun-

6 Conclusions and Future Work
We have presented a buffer overflow defense meChaf_}lamental deficiency, one that none of the known works

nism using static binary translation based on the RADlnthe binary translation literature have done better with,
[1] model. To the best of our knowledge, this is the first as far as we can tell.

work reported in the open literature that applies static cyrrently, we are exploring more robust and foolproof
binary translation technology to a concrete applicationfa||-back mechanisms to deal with scenarios of incorrect
security problem. While a robust binary rewriting in- disassembly and lack of sufficient space for 'in place’
frastructure, such as tools like Etch [7], does exist, pub-translation. As an immediate next step, we intend to
lished papers on these systems have never document@§tperiment our binary translation engine with Dynam-
in detail, the design and implementation issues involvedically Linked Libraries (DLLS), since a major chunk of

the solutions adopted to address them and their effectiveyyindows services are implemented as DLLs. Finally,
ness in a quantitative manner. Our contribution lies, notye aim to apply the lessons from exploring static bi-

in inventing new approaches to static binary translationnary translation techniques to build copy- and tamper-
but in being the first study to implement state-of-the-artyesistant software.

techniques into a working system and evaluate their ef-

fectiveness on commercial-grade Windows applications.

We believe that t_his paper exhausti_/ely covers most bi7 Acknowledgments

nary translation issues in substantial depth and detai

and presents a comprehensive set of experimental results

to demonstrate the efficacy of the design decisions welo Sang Cho for his open source disassembler [13] and
have made. Finally, the resulting binary-rewriting RAD to our shepherd, Dawn Song and the anonymous review-
system achieves qualified success as an important toars for their valuable feedback.

USENIX Association 2003 USENIX Annual Technical Conference 223

Application % Increase in Size of Executable File| % of Functions Using thel NT 3 Handler
WFtpd (Ftp server) 34.06% 2.57%
BIND (DNS server) 32.65% 0.00%
MS Access 11.29% 2.61%
MS Powerpoint 9.74% 0.83%
Windows Help 32.79% 0.098%
MS FrontPage 16.45% 0.031%
MS Publisher 10.84% 1.58%

Table 7: Column 2 shows the space overhead of binary-rewriting RAD for different test applications in terms of percentage
increase in size of the executable file after rewriting. Column 3 shows the percentage of functions among those identified that need
to invoke RAD epilogue code through th&T 3 handler

References [15] CASH: Checking Array Bound Vio-

[1] Tzi-cker Chiueh and Fu-hau HsRAD: A compile time Iathn Using Segmentation ngdware
solution for buffer overflow attack@1st IEEE Interna- http://lwww.ecsl.cs.sunysb.edu/softsecure/project.html

tional Conference on Distributed Computing Systems [16] R. J_ones and P. Kglly, Backwards-
(ICDCS), Phoenix, AZ, April 2001 compatible bounds checking for arrays
' v and pointers in C programs http://www-

ala.doc.ic.ac.uk/ phjk/BoundsChecking.html
[17] Intel Architecture Software Developer’'s Manual: Vol-

[2] Aleph One, Smashing the stack for fun and profit
Phrack Magazine 7 (49), November 1996

[3] David LitChfiE|d, Windows NT buffer over- ume 3: System Programmer’s Guide
runs Winhlp32: http://community.core- [18] Bulba and Kil3r. Bypassing StackGuard and Stack-
sdi.com/ juliano/mnemonix-whlpbo.htm Shield. Phrack, 5(56), May 2000.

[4] dark spyrit, Win32 Buffer Overflows - Location, Ex- [19] Phrack Magazine 55 (8), May 2000: Klog - The frame
ploitation and DefensePhrack Magazine 55 (15), May pointer overwrite
2000 [20] Arash Baratloo, Timothy Tsai, and Navjot Singhans-

[5] A. Srivastava and A. EustacdTOM: A System for parent run-time defense against stack smashing attacks
Building Customized Program Analysis TqolSIG- USENIX Annual Technical Conference, June 2000.
PLAN Conference on Programming Language De- [21] Vladimir Kiriansky, Derek Bruening, Saman Amaras-
sign and Implementation (PLDI), pages 196—205, June inghe, Secure Execution Via Program Shepherding
1994. 11th USENIX Security Symposium, August 2002, San

[6] James Larus and Eric SchnarfEL: Machine- Francisco, California.
independent executable editi§lGPLAN Conference [22] Benjamin Schwarz, Saumya Debray, Gregory Andrews,

on Programming Languages, Design and Implementa- Disassembly of executable code revisitétforking
tion, pages 291-300, June 1995. Conference on Reverse Engineering, Oct 2002.

[23] C. Cifuentes, M. Van EmmerilRecovery of Jump Table
Case Statements from Binary Cotlgernational Work-
shop on Program Comprehension, May 1999

[7] Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman,
Wayne Wong, Hank Levy, and Brian Bershadstru-
mentation and optimization of win32/intel executables

using Etch In USENIX Windows NT Workshop, 1997, [24] Galen Hunt and Doug Brubachéetours: Binary In-
terception of Win32 Function8rd Usenix NT Sympo-

[8] LEEL, http://www.geocities.com/fasterlu/leel.htm sium, Seattle, July 1999.

[9] C. Cifuentes and M. Van EmmerikJQBT: Adapt- [25] Matt PietrekAn In-Depth Look into the Win32 Portable
able Binary Translation at Low CostEEE Computer, Executable File FormatMSDN magazine’ Feb 2002
March 2000. [26] Matt Pietrek, Under the Hood, Microsoft Systems Jour-

[10] Crispin Cowan et al.Stackguard: Automatic adaptive nal, 11(5), May 1996.
detection and prevention of buffer-overflow attgck$ [27] Barton P. Miller, Mark D. Callaghan, Jonathan M.
USENIX Security Symposium, San Antonio, TX, Jan- Cargille, Jeffrey K. Hollingsworth, R. Bruce Irvin,
uary 1998. Karen L. Karavanic, Krishna Kunchithapadam and Tia

[11] Microsoft compiler extension for buffer overflow de- Newhall, The Paradyn Parallel Performance Measure-
fense http://go.microsoft.com/fwlink/?Linkid=7260 E"enltg;g’gS'EEE Computer 28, 11, pp.37-46 (Novem-

.) . er .

[12] St.acksh|.eldwww.angelflre.com./ék/stackshleld/ [28] Jun Xu, Zbigniew Kalbarczyk, Sanjay Patel and Ravis-

[13] Win32 Disassemblemww.geocities.com/ sangcho hankar K. lyer,Compiler and Architecture Support for

[14] Hiroaki Etoh. GCC extension for protect- Defense against Buffer Overflow Attackd Work-
ing applications from stack-smashing attacks. shop on Evaluating and Architecting System Depend-
http://lwww.trl.ibm.co.jp/projects/security/ssp ability (EASY), San Jose, CA, October, 2002

224 2003 USENIX Annual Technical Conference USENIX Association

