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Feedback Control Applied to Survivability:
A Host-Based Autonomic Defense System

O. Patrick Kreidl, Student Member, IEEE, and Tiffany M. Frazier, Member, IEEE

Abstract—We address the problem of information system
survivability, or dynamically preserving intended functionality
& computational performance, in the face of malicious intrusive
activity. A feedback control approach is proposed which enables
tradeoffs between the failure cost of a compromised information
system and the maintenance cost of ongoing defensive coun-
termeasures. Online implementation features an inexpensive
computation architecture consisting of a sensor-driven recursive
estimator followed by an estimate-driven response selector. Offline
design features a systematic empirical procedure utilizing a suite
of mathematical modeling and numerical optimization tools. The
engineering challenge is to generate domain models and decision
strategies offline via tractable methods, while achieving online
effectiveness. We illustrate the approach with experimentation
results for a prototype autonomic defense system which protects
its host, a Linux-based web-server, against an automated Internet
worm attack. The overall approach applies to other types of
computer attacks, network-level security and other domains
which could benefit from automatic decision-making based on a
sequence of sensor measurements.

Index Terms—Computer security, empirical methods, intrusion
tolerance, Markovian processes, numerical optimization, sensor
uncertainty, stochastic control, survivable systems.

ACRONYMS
ADS Autonomic Defense System
ATCK data tag for attack step
DFLT data tag for default actuator command

1P data tag for sensor report on network activity

KER data tag for sensor report on kernel activity
KILL data tag for kill-process actuator command
MDP Markov Decision Process

NRML data tag for web-server load

PID data tag for sensor report on process activity

PO-MDP Partially Observable Markov Decision Process

RCVR data event tag for recovery actuator command
NOTATION

S={1,2,...,n} state space of cardinality n

C=1{1,2,...,m} control space of cardinality m
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decision stage index

state of the process during
stage k

observation received in stage k
control applied in stage k
observable information by
stage k

probabilistic state at stage k
state transition probabilities
system model, m n X n ma-
trices

state transition costs

cost function, m n X n ma-
trices

sensor observation probabili-
ties

observation model, m n X ¢
matrices

estimation policy

response policy

average error per stage
average cost per stage
detector input measurement
detector binary output
detector decision rule

detector binary threshold
detection expected cost
detection measurement distri-
bution

detection prior distribution
detection cost function

1. INTRODUCTION

HE increasing reliance on information systems within crit-
ical military and civilian operations coupled with the pro-

liferation of malicious intrusive activity [1] motivates continued
improvements in computer security. Malicious intrusions can
be described at many levels, including in terms of information
system impact (e.g., denial of service, theft of service, etc [2])
or in terms of attacker objectives (e.g., defacing a government
web server in order to make a political statement). An intelli-
gent attacker can automate the execution of successive intru-
sion attempts, perhaps even mutating its key properties before
each attempt to evade or bypass static security mechanisms, and
potentially compromise the information system’s ability to pro-
vide essential services [3].

0018-9529/04$20.00 © 2004 IEEE
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The desirable capability of an information system to dynam-
ically preserve its essential functionality and computational
performance in the presence of security intrusions is defined
as survivability [4]-[6]. A survivability objective, especially
when considering the dynamic & uncertain nature of secu-
rity failures due to malicious intrusions, mandates that offline
techniques employed during design be supplemented by online
techniques to be employed during operation [7]-[9]. Proven
design paradigms for fault-tolerant and safety-critical systems
also suggest survivability can be achieved through a sequence
of system partitioning, subsystem design, and system-wide in-
tegration [10]. For example, improved survivability of each
single computer within a networked information system can
buy time for upper level components of a multi-layer secu-
rity architecture to react with more coordinated diagnosis and
counter-attack strategies, ultimately enabling improved global
security.

Most automated security-related responses built upon
real-time intrusion detectors [11]-[15] have been ad-hoc,
typically relying on just individual reports at a point in time.
However, intrusion detection is a relatively new & immature
area [16], [17]; and the frequency of false positives leads to a
high potential for inappropriate ad-hoc response. In addition to
false positives, there can be false negatives which analogously
confound ad-hoc response selection. In principle, security-re-
lated actuators are not limited to responses to thwart immediate
attack objectives, but may also include responses related to
sensor management, adjustments to system functionality as
well as responses related to security posture or recovery. Es-
pecially when considering multi-stage intrusions, it is possible
that certain preemptive responses may suppress or interfere
with subsequent sensor reports. From these perspectives,
prudent response selection needs to anticipate the outcome
of initiated actuators with regard to both immediate & future
attack detection & defense.

Modern control theory provides a well-established mathe-
matical framework for capturing competing decision objectives
over an extended period of time within a dynamic & uncertain
environment. The solution to a control-theoretic problem for-
mulation distinctly recognizes the opportunity of information
feedback during online operation; that is, the form of the opti-
mized decision strategies allow for each online decision to di-
rectly depend on the most recent information available from all
observable data. The use of information feedback can dynam-
ically merge and correlate multiple sensor streams over time,
yielding better decision-making than would be achievable by
considering each sensor stream in isolation. Feedback also al-
lows the modeled effectiveness and usage history of multiple
response actuators to factor into subsequent decision-making.

This paper focuses on the application of feedback control
theory to improve survivability for a single host computer,
emphasizing the real-time sensing of locally apparent intrusive
activity with automated response selection. In particular, we
leverage control-theoretic architectures, mathematical models
and numerical algorithms [18]-[30] to prototype in software a
real-time, host-based Autonomic Defense System (ADS). Fig. 1
illustrates the general ADS architecture, integrating:

i) the information system to be protected,
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Fig. 1. Host-based autonomic defense system integrates a model-based

feedback controller with security-related sensors and actuators to dynamically
defend against security intrusions.

ii) a set of sensors which repeatedly report on the presence
or absence of normal or intrusive activity,

iii) a set of actuators which implement security-related de-
fensive responses, and

iv) a controller which orchestrates all available sensor and
actuator assets to maximize host survivability.

The controller is decomposed into a recursive estimator and
a response selector, where the recursive estimator processes a
stream of sensor observations, repeatedly updating its state esti-
mate, to drive the response selector which dynamically chooses
from available defensive actuators.

Feedback control refers to the process of repeatedly:

* receiving a new sensor observation,

* estimating its implication within the context established
from past observations & responses, and

* using that estimate to drive the selection of a new response.

Even though the nature of an intrusive attack, the implications
of a sensor observation, or the outcome of an actuator response,
may not be fully predictable; all are anticipated using statis-
tical models before each control decision is made. The sur-
vivability objective is expressed as the minimization of a cer-
tain mathematical cost that quantifies a tradeoff between an
overall “maintenance cost” associated with defensive response,
reducing the probability of an attack’s completion, versus an
overall “failure cost” associated with an attack’s completion.
The feedback controller can relate, by way of estimation and re-
sponse strategies optimized with respect to expected total cost,
any specific sequence of sensory input to a specific sequence of
commanded output which alters the future evolution of the in-
formation system’s security status in desired ways.

The remainder of the paper is organized as follows. Section II
characterizes the host-based survivability problem as a sequen-
tial decision process under uncertainty so that well-established
control-theoretic formulations can be applied. A particularly
well-studied feedback control problem, called a stationary Par-
tially-Observable Markov Decision Process (PO-MDP), is iden-
tified as the basis to develop a prototype ADS. Section III de-
scribes the experimental setup of a specific security scenario, to
protect a Linux-based web server from automated Internet worm
attacks, where sensors are provided by a commercially avail-
able intrusion detection package. We describe the main features
of the emulated, threatened web server environment, the design
& integration of the host-based security assets, as well as the
data collection process. Section IV illustrates, for this practical



150

setting, the key model development steps and concludes with
encouraging results while operating the prototype ADS within
the laboratory web server environment.

II. METHODOLOGY

This section first discusses the rationale for applying feed-
back control theory to the computer security domain. We state
the main constructs of general feedback control problems, qual-
itatively highlighting important aspects of the supporting math-
ematical models and optimization algorithms. The interested
reader is referred to [18]-[30] for specific mathematical details
and supporting formal proofs. A basic and well-studied feed-
back control problem, called a stationary Partially-Observable
Markov Decision Process (PO-MDP), is precisely described be-
cause it serves as the specific model and algorithm leveraged in
Sections III and I'V.

A. Technical Rationale

General control theory addresses the design of decision
strategies to minimize a cost function, or maximize a reward
function, as the state of a dynamic environment evolves over an
extended period of time. In the presence of uncertainty, either
in the way the state evolves or in the way the state is observed
or both, it is not a well-posed problem to optimize this criterion
directly. Rather, stochastic control formulations optimize an
expected value of the cost, resulting in control strategies that
best satisfy the survivability objective in an on-average sense.
With inherent uncertainty of the computer security domain in
mind, casting the survivability objective to meet probabilistic
guarantees is a more realistic goal than requiring deterministic
guarantees, and making severe assumptions to achieve them.
Stochastic control has been applied to safeguard operation and
optimize the performance of a wide variety of systems, ranging
from decision-making for economic and social systems, to
trajectory control for robots & vehicles.

For both signature & anomaly detectors, the design challenge
involves the definition of a suitable model, either a signature or
a profile, and the development of an underlying pattern recog-
nition algorithm which monitors ongoing activity and can mea-
sure a distance from that model. During operation, the detector
throws its alert when ongoing activity produces a distance ex-
ceeding a specified threshold, or a maximum tolerance on the
magnitude of that distance, which introduces the problem of
selecting the threshold value. Choosing too large a threshold
results in a detector that potentially fails to yield alerts when
the activity of interest is truly present, an event commonly re-
ferred to as a missed detection or false negative; choosing too
low a threshold results in a detector that potentially sounds alerts
when the activity of interest is truly absent, an event commonly
referred to as a false alarm or false positive. There is also the
operational challenge of detector calibration, or training the
supporting model and pattern recognition algorithm within the
target information system to be monitored. Naturally, the re-
liability of the estimated state that is based on these alerts is
strongly dependent on the adequacy of this calibration, some-
thing acknowledged as difficult & tedious to quantify in prac-
tice [16], [31], [32].
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With regard to ad-hoc response, frequent missed detections
increase the potential for costly security failures while frequent
false alarms increase the potential for costly over-application of
defensive countermeasures. The inherent degree of uncertainty
associated with the output from either category of detectors mo-
tivates a statistical characterization of intrusion sensors [33],
[34]. Such statistical methods rely on systematic procedures to
select the distance thresholds and experimentally quantify rates
of missed detection and false alarm [20]-[22]. Given the sta-
tistical accuracy of a detector, a sequence of measurements can
be processed to infer context for response selection which can
be more reliable than reacting to any single measurement in
isolation. However, characterizing a software-based detector is
complicated by the fact that, being deeply instrumented into
the target information system, the act of sensing itself affects
overall operation. Thus, any attempt to benchmark the detector’s
statistical accuracy prior to integration into the target informa-
tion system may yield a characterization which does not match
with the operational detector [32], significantly confounding the
ability to reliably infer response context from the measurements.

Even accurately modeled sensor & actuator uncertainty
results in the possibility of applying inappropriate response, by
either selecting defensive action under nonintrusive activity,
or inaction during intrusive activity. There is an inherent
survivability tradeoff: inappropriate action draws from the
host’s total resources whereas inappropriate inaction permits
attack progression. A stochastic control formulation accepts
that all decisions must be made based on imperfect information
from sensors and imperfect effectiveness from actuators and,
furthermore, recognizes the inherent tradeoff between an
expected “maintenance” cost due to action versus an expected
“failure” cost due to inaction.

The application of control theory to the computer security
problem domain has been proposed several times [34]-[37],
each emphasizing different aspects of the broadly applicable
mathematical framework. In [34], and [35], motivated by an
analogy between intrusion detection and statistical process con-
trol, the emphasis is on architecture & design as well as the
statistical characterization of intrusion detectors via a system-
atic empirical procedure using experimentation data. [36] also
discusses architecture and recognizes the inherent sensor uncer-
tainty, arguing a role for signal processing methods to amplify
the attack signal from normal noise within a sequence of mea-
surements. However, [34]-[36] do not address the impact of ar-
chitecture and sensor uncertainty with emphasis on automated
response to meet a survivability objective. Finally, [37] advo-
cates a full feedback loop in its approach to circumvent the lim-
itations of rule-based responses and also addresses the value of
simulation-based strategy optimization to synthesize the con-
troller. However, the underlying problem formulation does not
appear to explicitly account for sensor uncertainty, and perti-
nent details about the supporting models are omitted, including
how to develop them in either a systematic or empirical manner.
While perhaps not treating any single issue to the extent of
[34]-[37], our approach touches on all of them in a comprehen-
sive mathematical framework, providing insight into how each
issue impacts another when the ultimate objective is real-time,
host-based autonomic defense.
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B. Feedback Control Overview

A typical feedback control problem formulation consists of
three key mathematical models. Firstly, a multi-stage system
model characterizes the stochastic evolution of the state and
its dependence on control. Secondly, a cost function charac-
terizes the relative undesirability of all possible controls and
single-stage outcomes defined by the system model. Thirdly, un-
less we are assuming the controller has perfect access to the true
state, a multi-stage observation model characterizes the control-
dependent statistical correlation of each observation, or pro-
cessed measurement, with the true state. Here, state is defined
according to Markovian assumptions so that knowledge of its
current value implies any additional information about the past
is redundant or irrelevant for choosing future controls. A control
is defined as any response available to the controller with poten-
tial to influence the outcome of either present or future decision
stages. Active controls refer to responses that may directly alter
the true state, while passive controls only influence how obser-
vations are made in the future. Of course, a control may poten-
tially influence both future states & future observations, being
simultaneously active & passive.

The concepts of controllability, observability, and stability are
of paramount importance in control theory. Qualitatively, con-
trollability refers to a measure of how effective the controls are
with respect to altering the true state. If a state is uncontrollable,
applying control has no predictable influence on how the future
evolves from that state. Complete controllability, on the other
hand, implies it is possible through some finite sequence of ac-
tions to alter the true state to any other desired state. Similarly,
observability refers to a measure of how informative the sensor
observations are with respect to estimating the true state. If a
state is unobservable, the sensor observations have no useful in-
formation content to help infer that true state. Complete observ-
ability, on the other hand, implies it is possible through some
finite sequence of observations to uniquely determine the true
state. Finally, stability refers to a system which, in the absence
of external input, eventually settles to some equilibrium state.
When stability of the controlled system is not satisfied, the im-
mediate objective must be to stabilize the system and, only upon
stabilization, is it possible to proceed with objectives to improve
controller performance. Provided the system model is at least a
partially controllable characterization, the observation model is
at least a partially observable characterization, and the stability
guarantees are preserved, then the cost function allows the per-
formance problem to be stated in a manner well-suited for math-
ematical optimization tools.

In adynamic and uncertain multi-stage process, a single-stage
decision cannot be viewed in isolation. Rather, the desire for
low immediate cost must be balanced against the undesirability
of high expected future costs. Numerical optimization via dy-
namic programming mathematically captures this tradeoff, ex-
plicitly accounting for all modeled uncertainty in the process.
The technique supports a general problem formulation and, con-
ceptually, characterizes a numerical algorithm which terminates
with a minimum-cost, or optimal, solution. The solution to a dy-
namic program is computed offline but, when applied online,
is not just a specific sequence of controls. Rather, the solution

is a control strategy which explicitly recognizes the sequential
nature of the problem, and exploits information feedback; al-
lowing each decision stage to depend on information gathered
over previous stages. While the exact dynamic programming
algorithm is computationally prohibitive when scaled to most
practical problems, the mathematical framework retains a prac-
tical value via the insight it provides to determine an appropriate
balance between problem representation & solution computa-
tion, and, ultimately, guide the development of tractable yet ef-
fective sub-optimal solutions.

Conceptually, dynamic programming algorithms treat imper-
fect state information problems no differently from perfect state
information problems. Instead of a control strategy relying on
the true state which summarizes all essential context, there is
a “state of information” which summarizes all observable con-
text consisting, at best, of all received observations and all past
controls. With imperfect state information, each stage of the
on-line control strategy is commonly decomposed into two steps
involving a statistical estimate of the true state: an estimation
policy that recursively generates the current estimate as a func-
tion of the previous estimate, preceding control, and the cur-
rent observation; followed by a response policy that selects the
current control as a function of the resulting estimate. Ideally,
each recursive estimate is equivalent in information content to
directly feeding the controller with all observable data up to the
control decision, a property defined as sufficient. More typically,
the decomposition into a recursive estimator and a response se-
lector is a sub-optimal solution exercised in the interest of com-
putational tractability.

Markov Decision Process (MDP) models describe a par-
ticular class of multi-stage feedback control problems which
have been studied extensively and repeatedly applied within,
for example, the realm of operations research, economics, and
computer & communication networks. Dynamic programming
techniques are especially well-developed for stationary MDP
models with finite state and control spaces. A finite-state,
finite-control MDP model applies when, at each decision stage,
response selection from a finite set of possible actions depends
on only a finite set of essential considerations. Under certain
technical conditions, the dynamic programming algorithm
can be reduced to a special system of nonlinear equations,
enabling specialized algorithms which guarantee convergence
to the optimal solution, and do so with significantly greater
computational efficiency than for general dynamic programs.

A PFartially-Observable (PO) MDP model assumes imperfect
state information where the controller receives at each stage
one of a finite set of possible sensor observations. A finite-state,
finite-control, finite-observation PO-MDP can, under certain
technical conditions, be reformulated to an equivalent MDP
involving the same finite control-space but an infinite state
space corresponding to all possible values of the probabilistic
state, or a sufficient statistic having the intuitive form of
a probability distribution on the original finite state-space.
Moreover, the recursive estimation policy which generates
successive probabilistic state estimates has a closed-form
optimal solution. While the dynamic programming solution no
longer reduces to the same computationally efficient form as
for fully-observable MDPs, the optimal response policy of a



152

PO-MDP has an intuitively appealing structure for the purposes
of approximation and implementation by computer.

C. Stationary PO-MDP Formulation

A stationary MDP involving a finite set of states and a finite
set of controls is structurally characterized by a state space S
of n distinct states, or S = {1,2,...,n}, and a control space
C of m distinct controls, or C = {1,2,...,m}. Consider a
sequence of decision stages where each stage k£ begins in one
of the n states, x;, € S. The controller then selects one of the
m controls, u; € C, upon which a transition to the next state,
Tr4+1 € S, occurs according tom-n-n = mmn? known state tran-
sition probabilities Pr (g4 1|z, ur). The state transition event
simultaneously ends the kth decision stage and begins the next.
The conditional dependence of the transition probabilities on the
current state z;, and the selected control uy, reflects the extent to
which anticipated dynamics and the outcomes of the active con-
trols must be modeled. The relative undesirability of each of the
mn? possible single-stage outcomes, involving the current state
z, applied control uj and next state x4, are quantified by
state transition costs ¢ (2, ug, Zx+1). Note that the arguments
of the transition costs, (zx, ur, Zr4+1), are identical to the ar-
guments that define each possible single-stage outcome in the
system model.

We assume the controller cannot access the exact state
but instead receives one sensor observation zj, prior to selecting
each control uy. A finite-observation PO-MDP is structurally
characterized by an observation space Z of ¢ distinct sensor ob-
servations, or Z = {1,2,...,q}, in addition to a state space
S and a control space C. Each observation z;, € Z occurs
according to m - m - ¢ known sensor observation probabilities
Pr (zg|zk, ur—1). The conditional dependence of the observa-
tion probabilities on the current state x; and the previously se-
lected control uy_1 reflects the extent to which the anticipated
implications of a sensor observation and the outcomes of the
passive controls must be modeled.

All the parameters of a stationary finite-state, finite-control,
finite-observation PO-MDP model can be conveniently orga-
nized into a family of control-dependent matrices: m n X n
transition probability matrices F, m n X n transition cost
matrices G and m m X g observation probability matrices
H. More precisely, for each 7, j € S & a € C, let the
given transition probability Pr(zg41 = jlog =i, ux = a)
correspond to the element in the ¢th row and jth column
of matrix F (a). Similarly, let the given transition costs
¢(zp = i,ur, = a,x,41 = j) populate the matrices G (a). Fi-
nally, foreachi € S,a € C & o € Z, let the given observation
probability Pr(zx = o|zy = 4,ur_1 = a) correspond to the
ith row and oth column of matrix H(a).

The above stationary model may utilize the infinite-horizon
assumption so that the optimal control strategy is also stationary.
The above model also satisfies all technical assumptions re-
quired to utilize the probabilistic state estimate as a sufficient
statistic and optimally decompose the feedback controller
into a recursive estimator followed by a response selector.
Specifically, let I denote all observable information received
prior to selecting the kth control uy. Let By denote the stage k
estimate having the form of a column vector of length n whose
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Fig.2. Decomposition of the stationary PO-MDP controller and the associated
online data flows captured by the transition and observation probabilities.

ith element is Pr(zj = i|I}). Note that each probabilistic
state estimate is an element from the uncountable space,
By € {vel0,1]"|>°"_, [v], = 1.0} where [v], denotes the
ith component of a vector v. Intuitively, each 2th element of By,
represents the relative confidence that state  is indeed the true
state in stage k. Thus, if state 7 is without a doubt the true state,
By, is a unit vector in the ¢th component; conversely, when no
meaningful information has been provided to the estimator, By,
might be the uniform distribution over the n states.

Based on the probabilistic state estimate, each stage of the
on-line control strategy is implemented via two straightforward
function evaluations: an estimation policy ¢ that outputs each
estimate By, according to a recursion

Bi. = ¢ (2, -1, Br—1) M

where zj, denotes the current observation, uy_ the preceding
control, and By, _1 the preceding estimate;, and a response policy
w that outputs the selected control uy, according to

u = 1 (Bk) - @

Fig. 2 depicts the controller decomposition, the associated on-
line data flows characterizing each decision stage, and the role
of the system and observation models. Note that the cost func-
tion influences the optimization which yields desirable response
policies.

Consider a specific stationary PO-MDP model characterized
by the family of matrices F, G and H. Let d ( By, zy) denote a
given distance metric between the statistic By, and the true state
z.. For the probabilistic state estimate, a valid distance metric
is

d (B, z1) = | B — 1, (1) (€)

=
V2
where ||e|| denotes the Euclidean norm and 1, (¢) denotes the
ith unit vector in an /-dimensional vector space. Dividing by the
factor /2 normalizes the error distance to units of probability.
Then, for any specific estimation policy ¢ of the form in (1), the
average error per stage is defined by

Alggo K

1 K-1

k=0

£(p|H,F) =
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where the expectation E [e] is over all random variables implied
by the probabilities F and H, as well as the particular estimation
policy . Also given any specific response policy p of the form
in (2), the average cost per stage is defined by

K

ZC T, W(Bi) s we4)| Hop, F

N, ,u|H,F,G):K1im

—hm—

KooK

(&)

where the expectation E [e] is over all random variables implied
by the probabilities F and H, as well as the particular estimation
policy ¢.

In general, the overall control objective is to minimize A in
(5) with the simultaneous design of estimation and response
policies, ¢ and . When the statistical estimate is known to be
sufficient, the overall control objective can be decomposed into
isolated estimation and response objectives without loss of op-
timality. The overall estimation objective is to minimize ¢ in
(4) with the design of estimation policy ¢. For the stationary
PO-MDP model, probabilistic analysis yields the optimal esti-
mation policy, denoted by ¢*, via the closed-form recursion

‘P* (Zk =0,Uk—1 = a7Bk—1) =

where
A’ denotes the transpose of a matrix A,
[A], is the column vector corresponding to the oth column
of matrix A,
[v], is the ith coordinate of a vector v, and
vi*vais the vector whose ith coordinate is the scalar
[vali[vali-

Once the estimation policy ¢ is fixed, the overall response
objective is to minimize A in (5) with the design of response
policy p.. The optimal stationary response policy, denoted by p*,
can be parameterized by a straightforward matrix multiplication
with the length-n probabilistic state vector,

p* (By) = arg Héin Q" (Br) By, @)
uR €

where the minimum element of the resulting length-m vector
maps to the optimal control. Here, Q* is a function to be de-
signed, mapping the probabilistic state space into a set of m x n
matrices. For a given state estimate By, the a:th element of ma-
trix Q*(By) corresponds to the average cost per stage if state
x, = ¢ is in fact true, control u;, = a gets selected, and optimal
control continues for all future decision stages. While exact de-
termination of Q™ is typically not possible, (7) provides a useful
parameterization from which approximation methods can be en-
gineered offline. Online operation then consists of a “look-up”
to obtain the matrix whose multiplication with the realized prob-
abilistic state vector, itself recursively generated through ele-
mentary matrix calculations via (6), yields optimized response
selections via the operation expressed in (7).

D. Practical Remarks

Strict stability for a finite-state, finite-control stationary MDP
model is not of concern. Under broadly technical assumptions,
the probability of occurrence of each modeled single-stage out-
come (zy, uk, Tr+1) tends to a steady-state distribution which
depends exclusively on the system model F, the observation
model H, and fixed stationary policies ¢ & . There can be pe-
riodic behavior, yielding distinct steady-state solutions for each
stage of the period, but the MDP is still technically considered
a stable process.

Together, the controllability & observability properties of the
modeled PO-MDP correspond directly to the achievable perfor-
mance of a control strategy. Once the controllability & observ-
ability properties are deemed acceptable, the following tech-
nical assumptions must be satisfied for the simplest recursive
state estimator ¢* & the response selector p* defined by (6) &
(7), respectively, to apply exactly:

* The stationary model applies over an infinite number of
stages, implying the control strategy is stationary.

* Conditioned on the true state and previous control, the ob-
servation distribution at each stage is s-independent from
all information related to past decision stages.

» Sensor measurement and actuator response delays are neg-
ligible compared to the typical duration of each decision
stage.

In practice, the first assumption is never strictly satisfied but
(6) & (7) may still perform well when the process parameters
vary slowly over a large number of stages.

The second assumption implies the recursive estimates gener-
ated by (6) are sufficient, allowing the feedback controller to be
decomposed into a recursive estimator followed by a response
selector without loss of optimality. The assumption is usually
not satisfied in practice; for example, a single sensor stream may
be correlated with itself across time and multiple sensor streams
may be cross-correlated. Regardless, the controller decomposi-
tion is typically exercised in the interest of tractability. Utilizing
correlation filters when processing incoming measurements is
one way to yield an observation stream which better satisfies the
assumption, but introduces additional computational expense to
every stage of online operation.

The third assumption allows the simple matrix-based models
& computations defined by (1) through (7) to suffice in gener-
ating estimates and selecting controls. If delays are significant,
the system model has to be generalized to include a temporal-de-
pendence on the transition probabilities used in each decision
stage. Unfortunately, as for handling correlated sensors, han-
dling delays adds computational expense to each stage of online
operation.

III. EXPERIMENTATION SCENARIO

This section describes the design of a prototype host-based
ADS intended to protect a Linux-based web server from auto-
mated Internet worm attacks. Automatic response is desired be-
cause the attack phases of

i) vulnerability identification and exploitation,
ii) local damage infliction, and
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iii) subsequent transformation of the host into an attacker
evolve at machine speed, making it impractical for
manual intervention to detect the attack and prevent the
worm from spreading.

The relevance of this scenario is supported by [38], where
recent statistics reflect both the growing numbers of organiza-
tions experiencing web-server attacks and the proliferation of
Internet worms. Fig. 3 illustrates the overall laboratory setup,
and the basic integration architecture for all of the security as-
sets composing the prototype ADS; namely the sensors, the ac-
tuators, and the model-based feedback controller. The following
subsections provide details.

A. Laboratory Setup

The goal of the laboratory setup is to emulate a security sce-
nario involving a vulnerable web server. Several Dell Optiplex
GX110 PCs, each running Red Hat Linux v6.2 with a 733 MHz
Pentium III processor & 256 Mb of memory, are networked by
100 Mb/sec Ethernet connections. During experimentation, one
machine is designated as the protected web server and the others
as clients. The clients generate normal web traffic via random
page requests to the server. On the server, normal user session
and cgi-script activity is generated through a number of Bourne
Shell, Perl, & Expect scripts executing basic Unix commands.
Both the web traffic, and the local user sessions on the server
can be set to “low,” “medium,” and “high” activity levels.

A client can also, at any time, initiate an Internet worm attack.
The particular worm we use as an exemplar is a variation on the
Ramen worm [39], a cataloged attack which exploits vulnera-
bilities present in relatively recent Linux distributions. Though
the experiments involve a specific Internet worm, the goal is to
develop the prototype ADS to recognize a broader class of In-
ternet worm attacks. Table I outlines an Internet worm’s generic
steps grouped into separate phases according to the sub-objec-
tives of the attack sequence [2]. The typical characteristics of an
Internet worm attack include:

* port scanning and probing to identify potential victim sys-
tems & specific vulnerabilities present on those systems,
* user-to-root access exploitation,

| .
Serverrequests: http, +—— l

Redhat Linux Kernel Process

ftp, etc.

-~

Basic laboratory setup for the experimentation scenario considering a web-server under the threat of an automated Internet-worm attack.

* downloading and installing an attack payload, and,

* ultimately, conversion of the victim into a new attacker.
Some candidate countermeasures are common to each of these
steps as well, though specifics, e.g., which attack process to kill,
may differ significantly.

We have instrumented the attack to utilize one of three root
shell exploits (wu-ftpd, rpc.statd, & named), and one of two
port scanners (nmap & synscan). This instrumentation provides
essentially six main variations of a malicious worm with which
to attack the victim. We can also insert random delays into the
instrumented attack to vary the timing between key attack steps.
Variations on the attack are useful to determine the extent to
which the prototype ADS, whose underlying feedback controller
is trained using a particular instance of the worm attack, can
defend against attacks which are distinct from those used in the
training set. Finally, to facilitate batch data collection, the attack
instrumentation also includes a “clean-up” script which undoes
attack damage, and reinstates the security of all machines, as well
as restarts normal operation across the laboratory network.

B. Security Assets

The sensors on the host machine are software-based anomaly
detectors included as part of the commercially-available Cy-
lantSecure system [15] developed by Software Systems Inter-
national [40]. CylantSecure consists of:

* a specially instrumented Linux kernel,
* anormal system behavior database,
* a separate process called “Watcher,” and
* (optionally) a “Console” that is the security manager’s in-
terface to CylantSecure.
The instrumented Linux kernel contains software probes, which
continuously collect data about the behavior of the running
system. These behavior data are divided into three separate
categories:
* one for probes associated with process activity (PID),
* one for network activity (IP), and
* the remainder for general kernel activity (KER) for what
remains.
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TABLE 1
KEY PROPERTIES OF AN AUTOMATED INTERNET WORM ATTACK

Step  Attack Objectives

Candidate Countermeasures

Phase 1: Gain privileged access to victim's configuration

1 Scan network and probe each computer in
search of vulnerable wictim

2 Bypass security of an identified victim by
exploiting the vulnerability

heighten awareness, scrutinize port activity,
ighore suspicious source [P

block entrance port, sleep/kill exploited
Process or service

Phase 2: Inflict local damage on victim

3 Download the payload onto the victim

containing programs that propagate the attack

4 Install the downloaded programs to be
executable by the victim

sleep/kill shell connection, sleepfkill
download, block disk access

sleep/kill shell connection, delete payload,
sleepfkill installation utility, block disk access

Phase 3: Convert victim to an attacker

5  E=xecute the installed programs that propagate

the worm

halt operations and alert administrator to
initiate recovery sequence

During online operation, these data streams are sent to the
“Watcher” process which compares each stream of incoming
execution profiles with its normal profile (generated during a
calibration phase) to produce numerical distance measurements
quantifying the measured level of anomalous kernel behavior.
Note that all three streams provide a distance value per report,
but the PID stream also includes context about the associated
process and the IP stream includes context about the associated
network connection. The rate of sensor reports during normal
operation is directly dependent on the amount of kernel activity,
which during our experimentation ranged from one report every
10 to 1000 milliseconds on-average under the varying loading
conditions.

We consider three different actuators, corresponding to the
minimal set of responses necessary to potentially counter or
recover from a generic worm attack. The first actuator corre-
sponds to the default response and is purely passive, meaning
it influences only the way a future observation is generated but
offers no potential to modify the evolution of an actual attack.
An actuator that can kill a process has potential to counter the
worm during its first two phases, providing the correct process
is identified and killed in time. Targeting a nonattack process
degrades quality-of-service and is assumed undesirable. By the
time the worm has entered its third and final phase, attack objec-
tives are no longer effectively countered by simply killing pro-
cesses, and a more elaborate recovery mechanism is required.
This recovery mechanism is assumed to severely disrupt the
normal operation of the host, so is considered an appropriate
response only after the attack enters its third phase. Ideally, the
less drastic kill-process actuator is appropriately applied in the
earlier phases so that the recover action need never be utilized.
Denote the default, kill-process, and recovery actuator by DFLT,
KILL, and RCVR, respectively.

Note that the feedback controller, relying on a PO-MDP
model & policy as described in Section II to perform the
recursive estimation & response selection calculations, is
implemented as a separate software process on the host
machine. It serially receives, via a shared-memory interface,
each measurement generated by CylantSecure. To fit the
PO-MDP formulation, a mapping from this time-stamped

sequence of real-valued distances to a discrete-time sequence
of single-stage observations must be specified. The default
actuator, denoted by DFLT, represents this repeated activity
of processing incoming measurements for the next decision
stage. It is, in effect, a “wait-and-see” action parameterized by
a staging scheme, or rule by which the next decision stage is
generated; and a detection scheme, or rule by which multiple
real-valued measurements received within a stage get mapped
to a finite observation space.

For simplicity, we restrict ourselves to a staging & detection
scheme which independently considers each of the three data
streams, KER, PID, & IP, in a similar manner. Let the staging
scheme per stream ¢ be parameterized by an interval of time be-
tween estimator updates, or the update period 14, coupled with
how all distance values received in a single period are reduced
to a single value, or the aggregation rule p,. Fixing a staging
scheme (7¢, p¢), we can rely on Bayesian methods to optimize a
detection scheme. The general form of the optimal detector is a
decision rule 6 which partitions the infinite measurement space
into 7 disjoint decision regions, each region corresponding to
one of a finite number r of possible output observations.

Again for simplicity, we assume a binary detector output, or
r = 2, per measurement stream ¢, with each stream’s decision
rule parameterized by a single threshold value ~y,. That is, given
a single-stage (perhaps aggregated) measurement Dy € R on
stream ¢, we consider decision rules 6y : ® — {0,1} of the
form

0, Do<

b¢ (Do) = { 1, Do >y ®)

where output “0” denotes the safe observation and “1” the alert
observation. Note that the true state from which any one mea-
surement is produced is one of the n components of the state
space S. Viewing any Dy as a realization of random variable
D, optimal threshold selection depends on:
i) n measurement distributions Pr(D|xy,) which can be ex-
tracted from collected data,
i) a prior probability distribution Pr(x}), obtained via a
combination of assumptions and data, and
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iii) a detector cost function C : {0,1} x S — R, where
C(Y), ) represents the relative undesirability associated
with detector output Yy € {0,1} when i € S is the true
state.

For any fixed threshold ~yy, its expected detection cost is then
defined by (9), as shown at the bottom of the page, and thus,
within the specific class of binary decision rules described
by (8), the optimal threshold y; minimizes (9). So, given
collected data as well as the prior probability distributions and
detector cost functions, applying (8) & (9) reduces the detection
scheme parameterization to consist of three binary thresholds
(VikER> YoID: YVip)» one per CylantSecure data stream.

The kill-process actuator, KILL, extends the DFLT parame-
terization with a parameter which also specifies the rargeting
scheme op1p to be employed, based on the context provided by
the CylantSecure PID stream. In other words, the KILL actu-
ator maintains a table of processes associated with anomalous
PID reports, or PID reports with distance values above a spec-
ified value epp, and, upon command from the controller, em-
ploys the targeting rule to select the process to be killed. For
example, the actuator can note the time associated with each
anomalous PID report, and then target the process reported most
recently, denoted by opip = RCN'T. Alternatively, the actuator
can keep a running average of all anomalous distances reported
per process, and then target the process with highest average
distance, denoted by opp = DIST.

The recovery actuator, RCVR, indicates to the security ad-
ministrator that manual intervention is desired, and halts the
host, denying further propagation of the worm to other vulner-
able hosts. Within the scope of our experimentation, this actu-
ator simply posts a message to the terminal. We assume that
prematurely selecting RCVR is viewed as no less detrimental
to survivability objectives than permitting the final phase of the
attack to ensue.

C. Data Collection

While operating in experimentation mode, the prototype ADS
logs three key types of events to a file in support of offline
model/strategy development for the controller as well as sub-
sequent online validation.

 Sensor events correspond directly to the measurement re-
ports sent to the controller by each of the three available
CylantSecure streams: KER, PID & IP.

* Response events correspond directly to the commands
sent by the controller to each of the three available
actuators: the passive DFLT parameterized by per-stream
staging schemes (7o, p¢) and detection schemes v}, the
active KILL further parameterized by targeting scheme
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opip & anomalous-process indicator eprp, and the
passive RCVR.

* Truth events correspond to special markers which reveal
the true state trajectory (i.e., the true activity of the remote
client machines and the attacker), and are inserted strictly
for offline model development & experimental evaluation.
Messages marking truth events are sent to the controller
by the load generation utilities on the client machines,
from which the actual loading condition placed on the web
server can be derived, and by the specially instrumented
attack script to indicate the beginning and ending of each
attack step. We denote these two categories of truth events
by NRML and ATCK, respectively. While the controller
can reliably mark the initiation of any response, note that
truth events reliably marking the actual outcome of an ac-
tive response (e.g., whether a KILL response has thwarted
the attack) can require further instrumentation of the at-
tack script, or perhaps special messages from the actuators
themselves.

Table II lists the parameterizations assumed for all of these
key event types during our experimentation. During actual
operation, sensor & response events are directly observable by
the decision-making components of the feedback controller;
whereas truth events, which would obviously not be present
except during our experimentation, are assumed completely
unobservable. Truth events simply allow all sensor events to
be associated with a particular state/control pair of a PO-MDP
model, which is essential to extract the probability parameters
from a collected data set during offline controller design.
Furthermore, for any single data run during online controller
experimentation, knowledge of the true state trajectory is
also essential for computing the associated evaluation metrics
defined by (4) & (5) in Section II.

In design mode, the purpose of data collection is to yield a
training set from which empirical development of a PO-MDP
model, including binary threshold selections, can proceed.
The particular control strategy is not relevant during training
set generation; rather, it is controlled only in the sense of
producing an adequate number of samples under all loading
conditions & instrumented attack steps, as well as active
actuation. For each loading condition, a training set includes at
least one long run of normal operation (on the order of twenty
minutes), and many repeated runs of attack operation (each
on the order of a couple minutes, with the first two phases
occurring within tens of seconds). In each attack run, the attack
starts randomly relative to the underlying normal operation. In
experimentation mode, once an operational model and strategy
are available, the purpose of data collection is to support
controller evaluation.

J(ve) = ZPr(a:k =1)[C(0,0)Pr(D < yelzr = 1) +C(1,4)Pr(D > velay = 1)) )
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KEY EVENTS AND PARAMETERIZATIOE?EOLIF D,IAITA COLLECTION IN EXPERIMENTATION
E,I‘.’;;t Data Parameters
Sensor Events
KEE time stamp distance
PID time stamp distance process ID Process name UZEr name uzer ID
P time stamp distance source [P source port destination [P destination port
Response Events
DFLT time stamp staging scheme (iectﬁ;:;n
KILL time stamp staging scheme dg?ﬁg::;n t:iﬁz:;neg target process
. . detecti
RCVE time stamp staging scheme SECE;_:;H
Truth Events
MNEML titne stamp client ID load setting
ATCE time stamp step ID step name

IV. EXPERIMENTATION RESULTS

To operate the prototype ADS within the described exper-
imentation scenario, we must yet specialize the stationary
PO-MDP formulation in Section II to support the two main
decision-making components of the feedback controller:

1) the recursive estimator driven by the statistical system &

observation models, F & H, respectively, and

2) the response selector driven by its policy, .

The training set from which the PO-MDP model is empirically
developed concerns only the “low” workload condition on the
web-server and, during attack operation, the worm variant that
utilizes the nmap scan & wu-ftp exploit. The resulting con-
troller is shown to achieve sub-second response, successfully
diagnosing the attack’s key stages, and, most importantly, pre-
venting the host from being transformed into an attacker that
would further propagate the worm. This result is accomplished
even for a variant of the worm not appearing in the training set,
namely one utilizing the named exploit. We have demonstrated
that the prototype ADS defeats an attack that it has never previ-
ously seen. We also illustrate the superiority, from a survivability
standpoint, of the feedback control approach over an ad-hoc
rule-based approach which ignores uncertainty in the sensor ob-
servations & response outcomes.

A. Model/Strategy Development

The first key step is to establish the structure of the PO-MDP
model by specifying the state space S of cardinality n, the con-
trol space C' of cardinality m, and the observation space Z of
cardinality q. The second key step is to specify the mn? state
transition probabilities Pr (zyy1|zr, ur), and the mng sensor
observation probabilities Pr (zx|zk, ur—1) via a combination
of engineering assumptions & empirical approximation from a
training set of collected data. The third step, assuming the sta-

tistical models are at least partially controllable & observable,
is to populate the mn expected cost-to-go values composing re-
sponse policy x4 via numerical optimization, given F and H, as
well as the mn? state transition costs ¢ (2, ug, 714 1) stored in
a cost function G.

1) Structural Specification: Insisting that a choice for S di-
rectly reflect the true, low-level state of the information system
being protected is neither sensible for computer security objec-
tives nor practical for a feedback control approach. Instead, S
must abstract the security environment, both the modes of antic-
ipated normal activity & the steps of anticipated attack activity,
atalevel of detail consistent with the capabilities of the available
security assets. Denote by L, M, & H the “low,” “medium,” &
“high” server workload conditions, respectively, as the normal
modes of operation characterized in Section III-A. The attack
steps can start as fine-grained as the ATCK event markers in-
jected into the collected data by the instrumented attack script.
However, we appeal to Table I; and denote

* the first two phases of the attack by states A1, Ao, - - -, Ay,
* the final phase of the attack by F’, and, in addition,
« the absence of all attack activity by state V.

More specifically, assuming a constant workload:

* A transition from N to A; corresponds to the beginning of
the “scan” step, initiating the first phase of the automated
attack.

* A transition from Ay to A, corresponds to the beginning
of the access control “bypass” step.

» Simultaneously ending the first phase of the attack and be-
ginning the second phase, a transition from A5 to As cor-
responds to the first command executed from the success-
fully attained user shell, typically initiating the “down-
load” of the payload to the victim.

¢ A transition from Aj to A4 corresponds to the “installa-
tion” of the payload on the victim.
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* Finally, a transition from A4 to F' corresponds to the secu-
rity failure, entering the final phase of the attack at which
time the victim begins to attack other vulnerable machines
in order to propagate the worm.

In summary, recognizing that an attack can occur regardless
of the current server workload, we choose a state space S =
{L,M,H} X {N./A17...,A4,F}, orn = 18.

We anticipate that different actuator parameterizations are
generally going to result in different per-stage transition/obser-
vation probabilities and maintenance costs. Let W and W4
be two passive controls, with nominal and alternative param-
eterizations respectively, for the DFLT actuator. Both utilize
the same staging scheme for the three measurement streams,
namely an update period of 0.2 sec and an aggregation rule
which averages all raw distances received within a single pe-
riod; that is, we set

(TkER, PKER) = (TPID, pPID) = (T1P, p1P) = (0.2, AVG).

Both of these controls employ the same detector cost function
which expresses a minimum probability-of-error criterion
where errors correspond to outputting “alerts” while in state IV,
or “safes” when not in state N:

5, Yo=1i=N
O(Y()Z) =<1, Yo = 0,2 € {Al,...,A4,F} .

0, otherwise

(10)

However, control Wy optimizes the thresholds assuming an
equally-likely prior probability distribution while W 4 biases the
priors associated with the intermediate attack states to be pro-
portional to the number of measurement samples in the training
set associated with that state. In effect, this bias will capture the
relative duration of the intermediate states of the worm variant
used to generate the training set.

Let control K be tied to the active KILL actuator, utilizing the
same staging and detection schemes as for W4 and a targeting
scheme against the most recent anomalous process reported on
the PID stream, or (0pp, epip) = (RCNT, 10~10). Control R
also shares the same staging and detection scheme as W4 but
represents the initiation of the RCVR actuator, which within the
scope of our initial experimentation acts as the purely passive
indicator of a detected failure. In summary, we choose a control
space C' = {Wx, W4, K, R}, orm = 4.

Choosing a finite observation space Z should reflect the
three CylantSecure measurement streams which each output
a real-valued “distance” per measurement, KER, PID and
IP, coupled with the detection schemes employed for all
controls. Assuming a binary detection scheme applied to
each stream independently, the KER stream can be either
below or above its threshold, denoted by KER:0 or KER:1,
respectively. Similarly, the thresholded PID stream produces
two possible values, PID:0 and PID:1, and the thresholded
IP stream produces two possible values, IP:0 and IP:1. Thus,
7 = {KER:0,KER:1,PID:0,PID: 1,IP : 0,IP : 1}, or
qg = 6.

2) Statistical Parameterization: Given the structural speci-
fication of a PO-MDP, the second step is to determine numer-
ical values for the per-stream, control-dependent measurement
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distributions Pr(D|z, ur—1) (so that control-dependent sensor
thresholds can be optimized) as well as the state transition prob-
abilities Pr(xg41|zk, ur) and sensor observation probabilities
Pr(zk|z, up—1). Theoretically, these conditional probabilities
are interpreted as the relative frequency, over an infinite number
of trials, of each random event given each state/control pair de-
fined by the state & control spaces S & C'. Practically, many
of the transition probabilities, and all of the measurement dis-
tributions & observation probabilities can be empirically ap-
proximated from the training set. Clearly, for each state/con-
trol pair, the more samples present in the training set, the more
likely the empirical approximation satisfies the theoretical inter-
pretation. Given a training set, empirically approximating the
probability distributions is as straightforward as counting the
number of occurrences of all events represented by each condi-
tional distribution.

Recall that the training set concerns only the “low” workload
condition on the web-server. Thus, during normal operation,
state (L,N) is the only state encountered. During attack
operation, the five states L X {Ay, ..., A4, F'} are all sampled
and, under passive controls Wy, W4 & R, the only potentially
nonzero transition probabilities are for self-transitions in all
states, as well as transitions between successive steps of the
automated worm attack, remaining in state (L, F') indefinitely
upon completion of the attack. Under active control K, the
other potentially nonzero transition probabilities are for tran-
sitions from L x {A;, As, A3, Ay, F'} back to state (L, N).
Fig. 4 shows the state transition probabilities empirically
obtained from the available training set, concerning only
the attack variant which utilizes the nmap scan & wu-ftp
exploit. The nonzero probabilities of transitioning from states
L x {Ay, A3, A4} back to state (L, N) for active control K
imply at least a partially controllable model F. Fig. 5 shows
the empirical results of applying (8)—(10) to derive the binary
thresholds per measurement stream using the available training
set. Because the distributions differ noticeably across the states
L x {Aq, Ay, A3, Ay, F'}, we can conclude to have at least a
partially observable model H.

The only statistics which cannot be reliably approximated
from training data correspond to the transition from the ab-
sence of an attack, or state (L,N), to initiation of the at-
tack. In other words, we must specify the conditional distri-
bution Pr(zgy1|xr = (L, N),ui) using engineering assump-
tions which reflect a “best guess” as to the likelihood of
experiencing an attack. Letting parameter p4 represent the
per-stage likelihood of being attacked, and assuming a fixed
“low” workload as well as the class of automated worm-like
attacks, we select

1 —PA, wk-{—l:(L?N)
Pr(@py1ler=(L,N),ur)=q pa, Tpp1=(L, A1)
0, otherwise
(11)

During operation, the numerical value assigned to probability
p4 directly impacts the readiness of the estimator to infer the
presence of attack activity based on sensor alerts. Overall, the
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Fig. 4. System model used during experimentation: normal workload fixed at “low” level; attack using nmap scan & wu-ftp exploit.

better the sensors can observe the attack activity, the less depen-
dent controller performance becomes on the assigned numerical
value for the typically unknown parameter p 4.

3) Policy Selection: Ideally, given system model F & ob-
servation model H, expressing the cost function G allows a
dynamic programming algorithm to automatically generate the
optimal response policy. Beyond the interpretation of cost to
the administrator, the absolute values are not critical because
the form of the response policy recognizes cost tradeoffs based
only on the relative values. Practically, however, the com-
plexity associated with its exact solution is prohibitive; and
approximation methods must be engineered, which we con-
sider beyond the scope of our initial experimentation. Instead,
we employ a heuristic response policy whose numerical pa-
rameters are manually selected prior to controller operation. In
this case, the cost function G is only relevant for computing
the primary evaluation metric in (5) for any data run during
experimentation.

Our response policy assumes the appropriate control is Wy
when the process is truly in state V. At the other extreme, when
in state F', the policy assumes the appropriate control is K.
During the intermediate attack states, let W4 be the appropriate
control when truly in state A;; and K be the appropriate con-
trol when in any one of the partially-controllable states, Ay, As,
or A,. Recall that the execution of active control K depends on
the KILL actuator being aware of at least one anomalous process
which can be targeted; if no such process is available, the control

defaults to W 4. A cost function G which reflects these assump-
tions is populated by transition costs

(T, Uk, Tlg1)
c1, T € {Al,AQ} and up, = Wy
c2, T € {A3,A4} and uy € {WN,WA}
c3, xp=Fandu# Rorxy # Fandu = R
T € {N7A1} andup = K
Ck, Tk € {A27A37A4} and up, = K
0, otherwise
(12)

where

i) parameters c¢; & co reflect the “failure” cost associated
with allowing a single stage of the first & second phases,
respectively, of the attack to proceed without selecting
appropriate control,

ii) parameter cs reflects the “failure” cost & equivalent
“maintenance” cost associated with inappropriate nons-
election & selection, respectively, of passive control R,
and

iii) parameters cx & cy reflect the “maintenance” cost as-
sociated with the inappropriate & appropriate selection,
respectively, of active control K.

We consider the intuitive class of policies p which select out
of the m = 4 candidate controls based on three independently
selected sensitivity parameters, na,ni,nr € (0,1), carefully
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Empirical Observation Probabilities Pr(zk|xk,uk_1) for Fixed Normal Mode L
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Fig. 5.

applied to the components of the probabilistic state estimate.
More specifically, apply control W as long as the estimator’s
s-confidence in state N exceeds probability 1 — 74; otherwise,
considering the s-confidence in state A; relative to the total
s-confidence in all other attack states, apply control W4 pro-
vided this relative s-confidence exceeds probability 1 — 7 ; oth-
erwise, considering the total s-confidence in controllable states
A,, Ag or Ay relative to the s-confidence in state F', apply con-
trol K provided this relative s-confidence exceeds probability
1 — ng; otherwise, apply control R. Mathematically, as a func-
tion of the n = 6 components of the probabilistic state By,
and the three sensitivity parameters (14, 7k, g ), this heuristic
policy is expressed by

1 (Br)
Wn, na<[Bi]i <1
Wa, [Bili <naandng < % <1
K,  [Bgl2(1 = [Bg]1) < nx and np < [§f]6
R, otherwise

(13)

where bx = [By|;+[Br],+[B:]; represents the total estimator
s-confidence in any one of the partially-controllable states. Note
that a lower numerical value for a sensitivity parameter implies
the estimator’s s-confidence must exceed a higher probability
threshold before the corresponding control is triggered. In short,
a lower sensitivity implies a less likely control.

Observation model used during experimentation: normal workload fixed at “low” level; attack using nmap scan & wu-ftp exploit.

B. Controller Evaluation

Given the statistical models depicted in Figs. 4 and 5, and the
policy of the form expressed in (13), we are ready to operate
the prototype ADS in the laboratory web-server environment.
In all data runs which follow, the normal workload generated
on the server is fixed at the “low” configuration, matching
the training set from which the PO-MDP model was derived.
However, as highlighted above, we will experiment with a
worm variant which is distinct from any attack contained in
the training set. We assign a numerical value of p4, = 1076
to the unknown probability of being attacked, and initialize
the inputs to the recursive estimator to be u_; = Wjy and
B_y =[1—-pa pa 0 0 0 O0].Finally, so that the av-
erage cost per stage can be computed for each run, the following
numerical values are assigned to the cost parameters listed in
(12): ¢1 = 10, c2 = 100, c¢g = 1000, cx = 50 and cx = 20.

Fig. 6 shows a total of eighteen separate time-tagged data se-
ries related to a single ADS experiment, where the origin on the
time axis is purposely marked sufficiently after the fading of
any start-up transients in emulating normal web traffic & user
sessions on the laboratory network. The vertical scale of each
time series, though not explicitly labeled, is from zero to one.
Most of these time series represent the inputs & outputs of the
controller process, but a few also represent unobservable infor-
mation to support experimental evaluation.

* The top three time series, labeled Streams, are the raw,
nonnegative distance values reported by each of CylantSe-
cure’s streams. Most of these distances fall below unity,
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Recursive estimator achieves good diagnosis during most of the key stages of the attack
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Fig. 6. ADS experimentation: normal workload at “low” level; attack using nmap scan and wu-ftp exploit; feedback controller using “uncontrolled” policy.

but occasionally a distance report can spill into a neigh-
boring time series (e.g., the IP distance approximately nine
seconds into the data run). The occasional negative-valued
stem along the PID stream indicates that an anomalous
process, whose distance exceeded the value of eprp, was
added to the list of potential target processes maintained
by the KILL actuator.

The next three series, labeled Observations, are the in-
puts to the recursive estimator, and correspond to the fi-
nite-valued sequence generated from the real-valued mea-
surement sequence via the staging & detection schemes.
The next four time series, labeled Controls, is the output
of the response selector which, under the “uncontrolled”
policy, is fixed at Wy

Finally, the next six time series, labeled State Estimate,
are the nonnegative-valued components of the proba-
bilistic state vector in each decision stage. Though not
observable by either decision-making component of the
controller, the negative-valued stems in the estimate
output indicate the true state trajectory. For example,
in Fig. 6, the process begins in state N, and the attack
initiates after approximately nine seconds of normal oper-
ation, indicated by the negative-valued stems in the time
series for the first attack state A;. Attack state A, begins
approximately two seconds later, state A3 approximately
ten seconds later, and so on.

The final two time series, labeled Metrics, are the empir-
ical evaluation of the average error per stage £ and average
cost per stage A defined in (4) & (5), respectively. In Fig. 6,
we see that the estimator achieves good diagnosis on most
of the key stages of the attack, and therefore £ remains rel-
atively low. However, because of the absence of control,

the attack proceeds to completion, and large “failure” costs
accrue. For the assigned numerical cost values, note that
A can easily exceed a value of unity. The negative-valued
stems on the time series for A represent a doubling of the
vertical scaling; thus, the saw-tooth nature of this time se-
ries in Fig. 6, coupled with negative-valued stems, repre-
sents monotonically increasing cost.

1) ADS Thwarts Attack Objectives in Real Time: Fig. 7(a)
depicts controller operation under the *“heuristic” policy,
parameterized by sensitivity values (na,nx,nr) =
(0.5,0.1,0.1), for the exact same sensor input as shown
in Fig. 6. In other words, the controller is operating on previ-
ously logged data originally generated under an “uncontrolled”
policy, and, thus, actuation of any selected active control can
have no effect. While Fig. 7(a) indicates where active control
K would have been selected under the “heuristic” policy, the
true response as far as future decision-making is concerned
is K’s passive counterpart, control W 4. The negative-valued
stems on the time series labeled Controls convey precisely
this notion; that is, when considering historical data with a
control policy which differs from the policy used during the
initial generation of the data, a distinction between selected
responses and actuated responses exists for active controls. The
negative-valued stems correspond to the actuated responses
recorded during live operation. Note that the distinction does
not arise with purely passive controls.

A comparison between Figs. 6 and 7(a) illustrates the po-
tential that the ADS provides for improving host survivability.
Not only would ADS initiate kills in the appropriate steps of
the attack, but it also quickly diagnoses the costly state F' as
indicated by the selection of control R only a few seconds
upon compromise. This could prevent the compromised host



162

(a) Feedback controller would initiate kil
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Is and recovery in appropriate stages of the attack
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Fig. 7. ADS experimentation: normal workload at “low” level; attack using
(a) disabled and (b) enabled.

from further propagating the worm to other vulnerable hosts.
Based on the cost function, these benefits are quantified by
the reduced average cost per stage, or metric A, in Fig. 7(a),
compared to Fig. 6.

Fig. 7(b) shows the output of a live data run where actuation
is enabled, using the same policy as used in Fig. 7(a). The ADS
successfully thwarts the attack before it completes the bypass,
and gains a privileged shell. In this particular data run, note that
it also prematurely applied control K, and mistakenly targeted a
friendly process while that attack was still in the scan state, A;.

nmap scan & wu-ftp exploit; controller using “heuristic” policy with actuation

It was the unusual density of sensor alerts while in state A, that
misled the controller, but it subsequently thwarts the attack, and
correctly recognizes the return of normal operation. Note again
that, compared to Figs. 6 and 7(a) and (b) shows a significantly
lower evaluation of the cost metric.

2) ADS Defeats Previously Unseen Attacks : Fig. 8(a) and
(b) are the analogous illustrations to Fig. 7(a) and (b), except
that the attack uses the named exploit, a variant of the worm
not present in the training set. A comparison of Figs. 7(a) and
8(a) give a sense of how the two attack variants differ. The worm
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(a) Despite degraded diagnosis, controller would respond appropriately to "unknown" attack

—Model: p, =107,(¢,,¢,.¢5,¢.¢, ) =(10,100,1000,50,20)  Policy: (17,.17,.1,)=(0.5,0.1,0.1)
2 1
& KER| o &+ ¢ o R R AP PP A AR RN ARRBAAAIRAAARARARBARAA|
c‘;"; PID L 4 v L ﬁv a e - v W Y v
P &
w
< KERl ¢+ 4+ o1l g .%, ot .JJTTTTT‘ITT’TTTTTTTTTTHTTTTTT'm?‘!
§ PIDfes . L onme s -
2 P ¢ s ‘
<)
z R RO SR NS
e K - D “ e -
s W W EEE SUBSMSIDNANNSINEED. B
&} WNW &
g o NI bt e Lo .
EE 4
FE A
<t 4
BE “4
@ F
w
3
=
0 10 20 30 40
Time (sec)

(b) Feecback controller thwarts "unknown" attack before significant failure costs accrue
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Fig. 8. ADS experimentation: normal workload at “low” level; attack using nmap scan & named exploit; controller using “heuristic” policy with actuation
(a) disabled and (b) enabled.

using the named exploit exhibits a shorter bypass step, or time  with the controller killing the fraudulently obtained shell privi-
spent in state Ao, but longer download and install steps as con-  lege immediately upon completion of the bypass.

veyed by the time spent in states A3 and Ay, respectively. In 3) ADS Overcomes Limitations of Ad-Hod Response: Figs.7
addition, the density of anomalous process activity as reported and 8 have illustrated how an ADS driven by a feedback con-
by the PID stream seems to be lower for the named exploit than  troller can reduce the “failure” cost incurred by thwarting at-
for the wu-ftp exploit. Though Fig. 8(a) shows degraded attack  tack objectives in real-time. Another benefit of feedback con-
step diagnosis & a corresponding increase in the error metric  trol is how it addresses the limitations identified with ad-hoc re-
&, the controller still initiates kills in the appropriate states &  sponse schemes. As discussed in Section I, automated response
quickly indicates the state of failure with control R. Fig. 8(b) based on static rules which typically consider single alerts at a
shows the output for a live data run of the named attack variant, time, especially when considering anomaly detectors, have been
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(a) Rule — based controller thwarts attack but kills friendly processes about once / min

because of false alarms, incurring undesired maintenance costs
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(b) Feedback controller thwarts attack and rejects false alarms, reducing maintenance costs
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Fig. 9. ADS experimentation: normal workload fixed at “low” level; attack using nmap scan & wu-ftp exploit; comparison of (a) rule-based controller &

(b) feedback controller.

plagued by intolerable rates of false alarms, leading to costly
over-application of security-related defenses.

We assume a rule-based controller that is equipped with ex-
actly the same sensor & actuators as the feedback controller.
However, it does not use the PO-MDP model to make decisions,
but rather ignores any uncertainty associated with the sensor
alerts as well as the outcome of the active controls. It uses the
following simple rules:

i) every sensor alert toggles the confidence from being in
state N to being under attack,

ii) while confident of being under attack, the application of
active control K toggles the confidence back to being in
state N, and

iii) while confident of being under attack, if the PID stream
has not yet identified an anomalous process to be tar-
geted, passive control W4 is applied until an anomalous
process is identified.

Fig. 9(a) and (b) show the output of the rule-based controller
& feedback controller, respectively, during an extended period
of normal operation after which point an attack is initiated.
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While both controllers successfully thwart the attack, during
the three minutes of normal operation which preceded the
attack, the rule-based controller targets a friendly process on
three separate occasions, whereas the feedback controller suc-
cessfully rejects all of the false alarms. The feedback controller
reduces the rate of inappropriately applied response, resulting
in a reduced “maintenance” cost.

V. CONCLUSION

While the offline design effort required in support of feed-
back control might exceed that required to support rule-based
control, a feedback control approach includes a systematic, em-
pirically-driven design methodology which ultimately realizes
significant gains in online effectiveness, & consequently, overall
information system survivability. The experimentation results
presented here are only single sample paths of a modeled sta-
tistical process; thus, while the feasibility and potential of our
approach is certainly established, a more comprehensive as-
sessment demands experiments which measure the survivability
gain with statistical significance. Future plans also include fur-
ther experimentation to investigate the impact of client loading
on the web server, the impact of more intelligent or persistent
worm-like attacks, and the development of policy generation
algorithms which apply to more elaborate sets of security as-
sets against multiple types of attacks. Longer-term questions
concern the feasibility of a feedback control approach, demon-
strated in this work only for host-based security, to network-
level & router-level information security.
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