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Foretelling these attacks, the President’s Commis-
sion on Critical Infrastructure Protection (PCCIP)
announced in October of 1997 that the increasing
dependence of U.S. critical infrastructures on infor-
mation and communications has made them vulnera-
ble to information warfare attacks. The commission
found that while the resources needed to conduct a
physical attack against these infrastructures have not
dramatically changed, the resources necessary to
launch a comparable-scale attack via information war-
fare are commonplace and consist of a personal com-
puter and an Internet connection. Furthermore, the
ubiquity of Internet access and the easy availability of

hacker tools on underground Internet sites have sig-
nificantly reduced both financial and intellectual bar-
riers to launching effective attacks against critical
systems. 

With roughly 95% of Defense Department com-
munications relying on commercial infrastructures,
the government finds itself as a major stakeholder in
the security of commercial systems and is now
proposing to spend $1.46 billion in fiscal year 2000
to directly address the threat of cyberterrorism. 

The federal sector is not alone, however, in its con-
cerns over information warfare. Wholesale payment
systems such as the Federal Reserve’s FedWire and

In early 1998, several dozen computer systems in

U.S. military installations and government facilities were successfully hacked, resulting in a full-

scale Defense Department response now known as Operation Solar Sunrise. The attacks suc-

cessfully broke into systems belonging to the Navy and Air Force as well as to federally funded

research laboratories including Oak Ridge National Laboratory, Brookhaven National Labora-

tories, U.C. Berkeley, and MIT. Although no classified systems were allegedly compromised,

the attackers were able to obtain system privileges that could be used to read password files,

delete files, or create back doors for later re-entry. Despite being called “the most organized and

systematic attack’’ to date against the Department of Defense systems by the U.S. Deputy

Defense Secretary, these attacks were not the work of an organized terrorist group or nation;

rather, authorities believe two northern California teenagers under the tutelage of an Israeli

computer hacker were responsible for breaking into these systems, simply because they could.
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Inoculating software for

SURVIVABILITY
An old adage holds true for software:

you can build a stronger system by first breaking it. 
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automated clearinghouses (ACHs) move trillions of
dollars over electronic networks. A compromise of the
Federal Reserve system could dissolve trust in the elec-
tronic payments and clearing system on which all
banking transactions rely. As more corporations move
their business to the Internet—an inherently insecure
medium—their trade and financial secrets are being
exposed and placed at risk.

As societies transition to paperless commerce, indi-
vidual privacy is threatened with each transaction. In
short, as society becomes more “wired,” the security,
privacy, and integrity of information becomes para-
mount. Likewise, the threat of information warfare
looms ever larger.  

At the heart of the U.S.
national information infra-
structure (NII) is software.
Software is used to enable the
entire information infrastruc-
ture from the ubiquitous
Web browser to telecommu-
nications switching software
to front-end network servers,
middleware components, and
back-office computing. Soft-
ware is pervasive in every com-
ponent that enables the
information economy. The
greatest risk to our NII is failing
software, be it from inadvertent
flaws or from malicious attacks. The
most dangerous attacks against the
information infrastructure are attacks
against the software that comprises it.  

In this article, we are concerned with the
survivability of the infrastructure to software flaws,
anomalous events, and malicious attacks. In the past,
finding and removing software flaws have tradition-
ally been the realm of software testing. Software test-
ing has largely concerned itself with ensuring that
software behaves correctly—an intractable problem
for any nontrivial piece of software. In this article, we
present “off-nominal’’ testing techniques that are not
concerned with the correctness of the software, but
with the survivability of the software in the face of
anomalous events and malicious attacks. Software
testing is focused on ensuring that the software com-
putes the specified function correctly. We are con-
cerned that the software continues to operate in the
presence of unusual system events or malicious
attacks. 

The off-nominal testing approach uses fault injec-
tion analysis to determine the effect of unusual or
malicious attacks against software. Fault injection is

the process corrupting a data state during program
execution. Fault injection analysis is the process of
determining the effect of that corruption. The analy-
sis may consist of simply measuring whether the cor-
rupted state affected a particular output, or the
analysis may determine whether system attributes
such as safety, security, or survivability have been
affected [12]. 

We describe two applications of fault injection
analysis: one to improve the survivability of software
before release and one to test the survivability of soft-
ware once deployed in a fielded system. The former
approach is aimed at software vendors to provide
additional assurance prior to releasing software (as a

complement to standard test-
ing) that the software has been
exercised under unusual condi-
tions that might be otherwise
unattainable via standard testing.
Fault injection analysis is per-
formed via software source code
instrumentation in order to iden-
tify vulnerabilities in the source
that can be potentially exploited to
compromise system security and

survivability. The results from the
analysis can be used to harden the soft-

ware against anomalous events or mali-
cious attack, as we illustrate here with

several case studies.  
The second approach of using fault

injection analysis addresses the growing need
to provide assurance of survivability in systems

comprised of commercial off-the-shelf (COTS) soft-
ware. The purpose of using fault injection analysis is,
as before, to simulate anomalous conditions that
would otherwise be difficult to obtain via standard
testing, and to observe the resulting effect on system
survivability. Today, few systems are built from the
ground up, using custom-written software compo-
nents. Instead, today’s software systems are a mixture
of COTS software, legacy software, and custom-writ-
ten software. Therefore, we must develop techniques
that can provide assurance of survivability without
requiring access to source code.  

We describe an approach and a tool that permit
assessment for how robust a software program is under
anomalous system resource conditions. For instance, if
the operating system throws an exception during oper-
ation, the analysis can determine a priori how robust
the software is to these anomalous conditions. The dis-
cussion describes a prototype tool for testing the
robustness of Windows NT application software
under anomalous operating system conditions.
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Developing More Survivable Systems   
Two approaches to improving the survivability of the
NII are to: (1) develop more survivable systems
before releasing them, and (2) make fielded systems
more robust and survivable. In an ideal world, soft-
ware development firms would spend an appropriate
amount of time and resources to developing more
survivable systems. In reality, however, the commer-
cial pressures to bring a product to market usually
override concerns over providing rigorous assurance
of security or survivability. As a result, little secu-
rity/survivability testing is performed in software
products prior to their release, in spite of the histor-
ical evidence that software flaws adversely affect sys-
tem security and survivability. However, even
without market pressures, there is little tool support
for security and survivability-oriented testing that
even the best intentioned software development
firms can use. 

We present an approach and a tool that support the
first approach for improving the survivability of the
NII, that is, enabling the development of more 
survivable systems by providing security and surviv-
ability assurance technologies during software devel-
opment. (See [1, 3, 6–8] for other related
security-oriented testing technologies.) Later in the
article we describe an approach and tool for assessing
and improving the survivability of fielded COTS sys-
tems. The approach recognizes that no matter how
good (or inadequate) the efforts made to develop
more survivable systems are, the complexity of
today’s systems combined with different operational
environments in which software is deployed makes
the deployment of perfectly survivable systems prac-

tically impossible. Thus, tech-
nologies that assess the surviv-
ability of fielded systems in a
particular environment to anom-
alous conditions are essential for
finding vulnerabilities and retro-
fitting software with survivable
mechanisms such as software
wrappers. 

Fault injection originated out
of testing of integrated circuits,
but recent advances have allowed
it to be applied to testing the
safety properties of safety-critical
systems. In [12], case studies of
fault injection analysis are
described that detected serious
flaws in the safety-monitoring
routine of a nuclear control appli-
cation, potential safety-critical

hazards in a computer-controlled surgical device, and
safety-critical flaws in a metropolitan subway control
system.

Having demonstrated value to safety-critical sys-
tems, fault injection analysis has since been developed
to analyze security properties in security-critical soft-
ware systems. Specifically, it was theorized in [11] that
fault injection can be used to find locations in source
code where security-related vulnerabilities might exist.
The idea is simple: perform fault injection in locations
throughout the software source code, and then
observe  whether the program exhibits insecure or
non-robust behavior. Those locations in which fault
injection resulted in undesirable behavior would
require strengthening (or fault tolerance) to ensure
that the corrupted internal states will not manifest
during the actual use of the program. An application
of fault injection analysis to security-critical software
is described in detail in [4].

By discovering where critical flaws may be during
product development using automated fault injection
analysis, the opportunity to develop more survivable
software systems—before damage has occurred—is
afforded to software vendors. If this proactive
approach is employed by vendors of critical software
within the information infrastructure (for  example,
operating systems, system utilities, network servers
and clients) one result is that, on the whole, the infor-
mation infrastructure will be more survivable. 

A tool for fault injection security analysis. Fault
injection analysis for identifying potential vulnerabil-
ities in software has been implemented in a working
tool named the Fault Injection Security Tool (FIST).
The tool automates fault injection analysis of software
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Figure 1. Overview of the fault injection security tool.
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using program inputs, fault injection functions, and
assertions in programs written in C and C++. 

A schematic diagram of FIST is shown in Figure 1.
The fault injection engine provides the analyst with
the ability to instrument data variables with fault
injection functions. The security policy assertion
component provides the ability to capture security
constraints on the software and to determine if a secu-
rity violation occurs during testing. As shown in Fig-
ure 1, a program, P, is instrumented with fault
injection functions and assertions of its security pol-
icy (based on the vulnerability knowledge of the pro-
gram). The program is exercised using program
inputs. The security policy is evaluated online by
examining program and system states. If a security
policy assertion is violated during the dynamic
analysis, the specific input and fault injection func-
tion that triggered the violation is identified. 

When a program is loaded into FIST, it is automat-
ically instrumented with fault injection functions to
corrupt all possible data variables. Fault injection func-
tions are instrumented by default for each different data
type. For example, Booleans are corrupted to their
opposite value during execution, integers are corrupted
using a random function with a uniform distribution
centered around their current value, character strings
are corrupted using random values. In addition to these
default settings, the user can programmatically instru-
ment functions such as appending a particular string
command to the end of a random string or instru-
menting buffer overrun functions. 

The buffer overrun function overwrites the return
address of the stack frame in which the buffer variable
is allocated with the address of the buffer itself. By
tracing the frame pointer back through the stack, the
fault injection function is able to determine where to
overwrite the return address. The opcodes for
machine instructions are written into the buffer being
corrupted. If the program is vulnerable to a buffer
overrun attack, the activation record containing the
modified return address will be popped off the pro-
gram stack and the program will jump to the machine
instructions embedded by the fault injection func-
tion. These instructions will be executed as if they
were a part of the normal operation of the program.
This fault injection function can determine whether
buffer variables are susceptible to buffer overrun
attacks.

Once instrumented, the program is iteratively run.
For each test case, a different fault injection function
is triggered on each run until all test cases and all fea-
sible fault injection functions are executed (see [4] for
the algorithm). This process is automated in an itera-
tive execution environment. The effect of a single

injected fault on program security is assessed by deter-
mining which assertions fire. The specific fault injec-
tion function that triggers a particular security
assertion is identified. As a result, the analyst can tie
the violation of security policy to a specific line of
source code that when corrupted violates security.
This information allows the developer to harden the
code with fault-tolerant or survivable mechanisms
such as assertions or stack guards [2].  

Case studies of fault injection analysis. In a case
study of fault injection analysis for software security,
five common network services were analyzed [4]. Net-
work daemons are interesting from a security stand-
point because they provide services to untrusted users.
Most network daemons allow connections from any-
where on the Internet, opening them up to attack
from malicious users anywhere. Network daemons
sometimes run with super-user, or root, privilege lev-
els in order to bind to sockets on reserved ports, or to
navigate the entire file system without being denied
access. Successfully exploiting a weakness in a daemon
running with high privileges can allow the attacker
complete access to the server. Therefore, it is impera-
tive that network daemons be free from security-
related flaws that could permit untrusted users access
to high privilege accounts on the server.

The programs analyzed were NCSA httpd version
1.5.2.a, the Washington University wu-ftpd version
2.4, kfingerd version 0.07, the Samba daemon ver-
sion 1.9.17p3, and pop3d version 1.005h. The source
code for these programs is publicly available on the
Internet. Samba, httpd, and wu-ftpd are popular
programs and can be found running on many sites on
the Internet. The analysis of those programs was per-
formed on a Sparc machine running SunOS 4.1.3 U.
The other programs, pop3d and kfingerd, are
Linux programs found in public repositories for Linux
source code on the Internet. The analysis of those pro-
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grams was performed on a Linux 2.0.0 kernel. The
programs were instrumented with both simple fault
injection functions as well as the buffer overrun func-
tions where applicable.    

A summary of results from the analysis is shown in
Table 1. The table shows the total number of instru-
mented locations together with the number of simple
corruptions and buffer overrun corruptions that
resulted in security violations. Clearly, the automated
analysis shows a number of “trouble’’ spots in which
fault injection functions violated the security policy of
the software. In the case of buffer overruns, the secu-
rity policy was simply that the program did not allow
the buffer overrun function to execute its own code.
In the case of the simple corruptions, the security pol-
icy involved illegal accesses to protected files. 

The last column of Table 1 shows the percentage of
the functions in the source code that were executed as
a result of the test cases employed. Higher coverage
results can be achieved through more testing and may
result in more potential security hazards flushed out
through the analysis.  

Assessing the Survivability of 
COTS-based Systems 
The preceding section described fault injection
analysis as a viable technique for improving the sur-
vivability of software before its release. The
approach, however, is not a silver bullet solution for
survivability, and market pressures tend to reward
quicker release cycles of products with more fea-
tures, that is, complexity rather than stronger secu-
rity and survivability. As a result, we cannot depend
on software development and testing to produce
survivable systems. Furthermore, even with the
open-source software movement currently afoot,
most commercial software firms are reluctant to
release source code, which would permit peer review
to identify bugs and vulnerabilities. As a result, we are

bound by the practical con-
straints of commercial software
releases to develop assurance
technologies that can work with
COTS software.  

Here we describe an approach
to software assurance that is
designed for COTS software
when the source code is not avail-
able, but executable binaries and
application programming inter-
faces (APIs) are. The approach
leverages fault injection analysis
of software interfaces to analyze a
critical attribute of survivabil-

ity—robustness of software to anomalous events.
Robustness is defined by the IEEE Standard Glossary
of Software Engineering Terminology as “the degree to
which a system or component can function correctly
in the presence of invalid inputs or stressful environ-
mental conditions.” In order to assure survivability of
deployed software systems, we are concerned with
unusual or stressful conditions that often arise in the
field that are rarely tested by the software vendor.

In a break from traditional dependability research,
we have applied this approach to the Microsoft Win-
dows 32-bit (Win32) platform—Windows 95, 98,
NT, CE, and 2000—which represents the most pop-
ular commercial platform and is increasingly being
used in critical applications. For example, under the
information technology in the 21st century (IT-21)
directive, the U.S. Navy requires its ships to migrate
to Windows NT workstations and servers. While
modernizing the fleet’s technology base is appropri-
ate, the risks of migrating to new platforms are great,
particularly in mission-critical applications. A stark
example of the risks is illustrated by the saga of the
USS Yorktown, a U.S. Navy Aegis missile cruiser,
which suffered a significant software problem in the
NT-based systems that control the “smart ship.’’
Reportedly, an exception thrown by the NT platform
crashed the ship’s propulsion system software [10].
The end result: the ship had to be towed back to the
Norfolk Naval shipyard. 

In order to assess the survivability of COTS-based
systems, we employ fault injection analysis on the
interfaces between the software application and the
operating system (OS). The fault injection functions
simulate the effect of failing system resources, such as
memory allocation errors, network failures, file
input/output (I/O) problems, as well as the range of
exceptions that can be thrown by OS functions when
improperly used. The fault injection analysis tests the
robustness of the application to unusual, anomalous,
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Samba v1.9.17p3 45.5%

NCSA 
http v1.5.2a

40.14%

wu-ftpd v2.4 58.62%

pop3d v1.005h 63.64%

Instrumented
Locations

Successful 
Simple

Corruptions

Successful 
Buffer

Overruns

Function
Coverage

Program

1264

463

476

73

kfingerd v0.07 38.1%146

12

27

11

2

12

15

3

3

1

5

Table 1. Results from fault injection analysis of network daemons.
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potentially malicious, and stressful environment con-
ditions. An application is considered robust when it
does not hang, crash, or disrupt the system in the
presence of anomalous or invalid inputs, or stressful
environmental conditions.  

In our previous studies of the Windows platform,
we analyzed the robustness of Windows NT OS func-
tions to unexpected or anomalous inputs [5, 9]. We
developed test harnesses and test data generators for
testing OS functions with combinations of valid and
anomalous inputs. Results from these studies show
non-robust behavior from a large percentage of tested
DLL functions when anomalous inputs were pre-
sented. This information is particularly relevant to
application developers that use these functions. Unless
application developers are building in robustness to
handle exceptions thrown by these functions, their
applications may crash if they use these functions in
unexpected ways.

Using nominal testing techniques to test an appli-
cation’s robustness to exceptional OS behavior is very
difficult in practice because of the difficulty in trig-
gering exceptional OS behavior via application test-
ing. As a result, we employ fault injection functions at
the software interface between the application and the
operating system to artificially trigger non-robust
operating system behavior in order to assess the
robustness of the application.  

A failure simulation tool for Windows applica-
tions. The approach to fault injection analysis of
binary executables involves “wrapping’’ the software’s
interface to the Win32 API with our own functions.

The Win32 API is a set of functions standard on
Windows 95, 98, NT, and CE platforms. These func-
tions exist in dynamically linked libraries (DLLs) and
represent the programmer’s interface to the Windows
operating system. The application’s import address
table (IAT), which is used to look up the addresses of
imported DLL functions, is modified to point to our
own wrapper DLL. When a target function is called
by the application, the wrapper DLL is called instead.
The wrapper DLL in turn executes, providing the
ability to replace the value returned by the requested
DLL function with an exception. Only exceptions
that have been documented as part of the function’s
interface or verified through actual testing are
returned by the wrapper.   

A failure simulation tool has been written to enable
the user to interactively fail system functions during
testing. If the application crashes, then we know that
the application is non-robust to these exceptions
thrown by the OS function. 

Figure 2 shows the graphical user interface to the
failure simulation tool that allows selective failing of
operating system resources. The tool allows the user
to interactively fail OS functions when they are
called. The panel on the right side of the image
shows a log of the calls made and the failures simu-
lated, if any, for each cell. The window shows the
example memory functions that can be wrapped with
failure or success functions. Other functions (such as
file I/O functions) are available for instrumentation
via the System tab shown in the window in Figure 2.
The tool can be applied to any Win32 program. 
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Retrofitting Survivability into 
COTS-based Systems 
By using the failure simulation tool described in the
preceding section, we can determine how robust or
survivable a given application is to unusual or stress-
ful environmental conditions (such as those one
might encounter in a mission-critical environment).
There are two options that would increase the sur-
vivability of the vulnerable software: (1) inform the
software vendor of robustness/survivability prob-
lems and hope for a patch, or (2) harden the appli-
cation with software wrappers. The former option is
attractive, as it fixes the problem at its source; how-
ever, the response might be less than desirable.
Unless it can be demonstrated that the failure of the
application occurred in a non-simulated environ-
ment, that is, a real mission-critical failure, and that
the non-robustness will impact a significant number
of users, it is unlikely that the vendor will rectify the
problem. Of course, waiting for a mission-critical
failure to occur before complaining about a problem
does not ensure survivability. Thus the second
option is attractive and we pursue it briefly here. 

The approach leverages the wrapping method
described in the preceding section. In a case in which
an application is non-robust to an exception thrown
by an operating system function, the program can be
wrapped to make it more robust. Instead of throwing
exceptions to test robustness, the wrapper will catch
any exceptions thrown by OS functions and return
them as a specified error code. While many program-
mers will not handle exceptions, the return value
from a function is almost always checked for specified
error values. Thus handling an exception thrown by
an OS function at the wrapper and returning a spec-
ified error value is a robust way of dealing with a non-
robust OS function. 

Using the wrapping approach to test for robustness
as described in the preceding section, the robustness of
an application to error codes can be verified a priori.
Therefore, the robustness of the wrapping approach to
handling exceptions can be known before online
deployment. The wrapper approach is particularly
useful for mission-critical COTS software, when
access to the source code is not available, but when
robustness is important. The wrapper can be deployed
with the application such that whenever the applica-
tion is started, it is started with the wrapper in place. 

Conclusions 
The fault injection approaches we described in this
article as off-nominal testing can be thought of as a
means of inoculating software for survivability. The
analogy to vaccinations is apt. People are inoculated

against disease by injecting infectious matter into
the body in nonlethal forms. The body builds
appropriate antibodies to the infectious matter in
order to combat future infections of a more lethal
instance of the disease. In the same way, fault injec-
tion analysis injects faults into an executing program
in order to determine where it is vulnerable. Unfor-
tunately, today we do not have automatic learning
systems for protecting software states, though it is
the subject of ongoing research. Instead, once the
program is found to be vulnerable through fault injec-
tion analysis, it can be retrofitted with fault-tolerant
mechanisms in order to increase its likelihood of sur-
vivability.
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