
Building Survivable Systems: An Integrated Approach based on Intrusion
Detection and Damage Containment

T. Bowen D. Chee M. Segal
Telcordia Technologies

445 South Street, Morristown, NJ 07960�
bowen,dana,ms � @research.telcordia.com

R. Sekar T. Shanbhag P. Uppuluri
State University of New York

Stony Brook, NY 11794�
sekar,tushar,prem � @cs.sunysb.edu

Abstract

Reliance on networked information systems to support
critical infrastructures prompts interest in making network
information systems survivable, so that they continue func-
tioning even when under attack. To build survivable sys-
tems, attacks must be detected and reacted to before they
impact performance or functionality. Previous survivable
systems research focussed primarily on detecting intru-
sions, rather than on preventing or containing damage due
to intrusions. We have therefore developed a new approach
that combines early attack detection with automated reac-
tion for damage prevention and containment, as well as
tracing and isolation of attack origination point(s). Our ap-
proach is based on specifying security-relevant behaviors
using patterns over sequences of observable events, such
as a process’s system calls and their arguments, and the
contents of network packets. By intercepting actual events
at runtime and comparing them to specifications, attacks
can be detected and operations associated with the deviant
events can be modified to thwart the attack. Being based on
security-relevant behaviors rather than known attack signa-
tures, our approach can protect against unknown attacks.
At the same time, our approach produces few false positives
– a property that is critical for automating reactions. Our
host-based mechanisms for attack detection and isolation
coordinate with network routers enhanced with active net-
working technology in order to trace the origin of the attack
and isolate the attacker.

1 Introduction

Central to our approach is the observation that intrusions
manifest observable events that deviate from the norm.
We extend the current state of the art in event based
intrusion detection by developing a domain-specific lan-
guage called behavioral monitoring specification language
(BMSL). BMSL enables concise specifications of event
based security-relevant properties. These properties can
capture either normal behavior of programs and systems,
or misuse behaviors associated with known exploitations.

In our approach, we compile BMSL specifications into
efficient detection engines. The efficiency of these engines

opens up the possibility of augmenting real-time intrusion
detection with real-time intrusion reaction. We are exper-
imenting with BMSL in two contexts; considering incom-
ing network packets as events, and considering system calls
requested by executing processes as events. For network
packets, BMSL specifications are based on packet contents,
and for system calls, BMSL specifications are based on both
system calls and the values of system call arguments. In
both contexts, BMSL supports a rich set of language con-
structs that allow reasoning about not only singular events,
but also temporally related event sequences. Since our ap-
proach enables real-time reaction, capabilities for specify-
ing the reactions to be invoked when violations are detected
are integrated into BMSL.

While we are currently experimenting with packet and
system call interception, interception of other events is pos-
sible as well. For instance, we may develop a runtime en-
vironment that will generate an event corresponding to the
logging of each entry in the system log file syslog. Sim-
ilarly, the Management Information Bases (MIBs) acces-
sible through the Simple Network Management Protocol
(SNMP) provide important security-relevant data that can
be monitored using BMSL specifications.

The overall architecture of our intrusion detec-
tion/response system is shown in Figure 1. For a given event
stream such as packets or system calls, an interceptor com-
ponent placed in the stream provides efficient interception
of raw events. The interceptors deliver raw event streams
to a runtime environment associated with each stream. The
runtime environments further demultiplex the event streams
into the event streams for individual detection engines,
which implement the actual intrusion detection and reac-
tion specifications. The runtime environments also provide
common functions that facilitate execution of the detection
engines, and isolate the detection engines from the details
of specific interfaces and data formats. Typically, a single
detection engine monitors each defended process, and an-
other detection engine monitors all of the network traffic of
one or more hosts.

Reaction to detected intrusions is enabled by the detec-
tion engine’s interposition capabilities. For example, a sys-
tem call detection engine can interpose a reaction program

2SHUDWLQJ�6\VWHP�.HUQHO

6\VWHP�&DOO�,QWHUFHSWRU

3DFNHW�,QWHUFHSWRU

1HWZRUN�3DFNHWV

6\VORJ�
0RQ�

3� 3Q�������������

�'HWHFWLRQ

(QJLQH6\
VO

RJ
�5

X
QW

LP
H�

6\VFDOO�5
X QWLP

H

3NW�5 X QWLPH�6\V

Figure 1. Runtime view of the system. �������������	��
 are processes; Syslog Mon is a system log watcher.

of arbitrary functionality either before, in place of, or after
executing the intercepted system call’s kernel functionality.
Similarly, the network packet detection engine can alter,
drop or spontaneously generate packets. In our prototype
implementation, interposition capabilities have been imple-
mented for system calls, while a passive interception ca-
pability has been implemented for network packets. Using
interposition, a wide variety of reactions are possible. The
simplest reactions merely terminate intruder access to the
victim host, while the most complicated reactions seek to
entrap the intruder and waste the intruder’s resources by al-
lowing intruder access, but placing compromised processes
an isolated environment where they cannot cause damage to
the victim.

The system call and packet interception defenses and re-
actions can help protect a host from damage, but ultimately
computer security requires identification and isolation of
the intruder. We are experimenting with techniques enabled
by active networking technology to trace and isolate intrud-
ers.

Our main results are:
� BMSL, an expressive, easy-to-use and and robust lan-

guage for capturing behaviors of processes and hosts
as patterns over sequences of events such as system
calls and network packets. Robustness is achieved
by restricting the expressive power of BMSL, and
by strong data typing that offers enhanced expressive
power to capture network packet and system call argu-
ments types. Since the detection engines may operate
within the operating system kernel, robustness is an
important goal for BMSL.

� protection against known as well as unknown attacks.
The intruder’s main goal is to gain unauthorized access
to the resources on the victim host. Unauthorized ac-
cess is difficult to gain when all the programs on the
victim host are observing their security-relevant prop-

erties. By enforcing security-relevant properties, we
protect against known and unknown intrusions.

� efficient enforcement of normal behaviors, and isola-
tion of misbehaving programs. A key to damage pre-
vention and/or isolation is the development of tech-
niques for efficient interception and/or modification of
system calls and network packets.

� fast pattern-matching algorithms that can detect devi-
ations from normal behavior (or adherence to under-
attack behavior) specified in BMSL. In general, the
space required for efficient matching of BMSL pat-
terns can be extremely large. To reduce space require-
ments, we develop a novel runtime model based on
quasi-deterministic extended finite state machines that
trade off space requirements against matching speed
in a selective fashion, and achieve very good detection
speeds and space utilization.

� active-networking based techniques for tracing of at-
tacker origin and isolation.

� effective and efficient implementation. We present an
analysis of the performance of our approach in terms
of effectiveness and efficiency. Our experiments con-
sisted of in-house simulations of attacks, as well as
a standardized evaluation conducted by MIT Lincoln
Labs [11] with the support of DARPA. The evaluation
results indicate that our approach is effective, fast, and
has low memory requirements.

This paper is intended to present a broad overview of
the research results from our “Survivable Active Net-
works” project. A more detailed treatment of our
language design and compilation techniques can be
found in [38] and [37]. Our network monitoring
system design, implementation and evaluation are pre-
sented in more detail in [36]. (Online versions of
these papers can be accessed on the world-wide web at
http://seclab.cs.sunysb.edu/publicat.htm.)

2 Specification Language Overview

The principal goals in the design of BMSL are:
� extensibility to support multiple event types such as

system calls and network packets, and to support data
types corresponding to event arguments

� robustness and type-safety, to reduce specification er-
rors, and the scope of damage that may result due to
such errors

� simplicity, to control language and compiler complex-
ity

� amenability to efficient monitoring, to keep overheads
for runtime behavior monitoring low

� ability to specify responses, to allow automatic initia-
tion of reactions to prevent and/or contain damage

The primary mechanism for achieving the first two goals
is the development of a suitable type system for the lan-
guage. The next two goals are achieved by using a simple
but expressive pattern language. The final goal is achieved
by associating each security property with the reaction to be
taken when the property is violated. We describe the com-
ponents of BSML below.

2.1 Types

BMSL types consist of primitive types such as integers,
booleans and floats, event types that capture the structure
of events, and aggregate types to capture the structure of
system call arguments and network packets. BSML also
supports various utility data structures such as lists, arrays
and tuples. We confine the description below to the types
that are unique to BMSL.

2.1.1 Events

Events may be primitive or user-defined. Primitive events
are generated by a runtime system and constitute the input
to our detection system. Primitive event declarations are of
the form

event ������� ���
	�� ���� 	���	�� � � � ��� ���������
where ������! #"�$%"��'&("�)�*,+ is a list of declarations specifying
the types of the parameters to the event "�-."�/0$%12�� 3" . A
primitive event may correspond to a system call or the trans-
mission or reception of a network packet. It is also possible
to inject higher level information into the detection engine
by building the appropriate runtime system to provide such
information. For instance, the declaration

event telnetConn(���546��� �87 ��� � ��� ��7�9 ��� � � 	:� �)
may denote an event that is generated by a telnet server on
completion of a telnet connection.

User-defined events are abstract events that correspond
to the occurrence of (potentially complex) sequences of
primitive events. They have the form

event ������� ���
	�� ���� 	���	�� ����;#� 	�

where �<�!$ is an event pattern described in Section 2.3. All
of the variables in ������! =+ must appear in �<�!$.
2.1.2 Packet Types

Type systems in existing languages are not sufficiently ex-
pressive to model network packets. In particular, the follow-
ing problems arise in describing network packet structures:

� the compiler or runtime system for the language does
not have the freedom to choose a runtime representa-
tion; rather, the representations are prespecified as part
of protocol standards

� the complete type of a network packet can be deter-
mined only at runtime, so type checking cannot be
completed at compile-time

One way to address the problem is to treat the packet as a
sequence of bytes. For instance, a reference to the protocol
field of an Ethernet header in a packet p may be expressed
using C-like syntax as (short)p[12]. However, iden-
tifying packet fields using offsets is inherently more error-
prone than one based on naming the fields. Moreover, we
lose the benefits provided by a strong type system, such as
protection against memory access errors or misinterpreta-
tion of the contents of a field, e.g., if an integer field is acci-
dentally treated as a short or a float.

We have developed a new type system that can capture
complex packet structures, while providing the capabilities
to dynamically identify packet types at runtime and per-
form all relevant type checks before the packet fields are
accessed. An Ethernet header may be defined in BMSL as
follows:

ether_hdr {
byte e_dst[ETH_LEN]; /*Ethernet destination*/
byte e_src[ETH_LEN]; /*and source addresses*/
short e_type; /*protocol of carried packet*/

}

To capture the nested structure of protocol headers, we em-
ploy a notion of inheritance. For instance, an IP header can
be defined as follows.

ip_hdr: ether_hdr {
bit version[4]; /* ip version */
bit ihl[4]; /* header length */
... /* several fields skipped */
unsigned saddr, daddr; /* Src and Dst IP addr */

}

Similarly, a TCP header inherits all of the data members
from IP header (and Ethernet header). However, simple in-
heritance is not powerful or flexible enough to satisfy our
needs. In particular, the structure describing a lower layer
protocol data unit (PDU) typically has a field identifying the
higher layer data that is carried over the lower layer proto-
col. For instance, the field e_type specifies whether the
upper layer protocol is IP, ARP, or some other protocol. To
capture such conditions, we augment inheritance with con-

straints. The structure for IP header with the constraint in-
formation is as follows.
ip_hdr: ether_hdr with e_type=ETHER_IP {

... /* other fields same as before */
}

Finally, we need to deal with the fact that the same higher
layer data may be carried in different lower layer protocols.
For this purpose, we develop a notion of disjunctive inheri-
tance as follows. To capture the fact that IP may be carried
within either an Ethernet or a token ring packet, we modify
the constraint associated with ip_hdr into:

(ether_hdr with e_type=ETHER_IP) or
(tr_hdr with tr_type=TOKRING_IP)

Disjunctive inheritance asserts that the derived class inherits
properties from exactly one of many base classes. This con-
trasts with traditional notions of single inheritance (where
a derived class inherits properties from exactly one base
class) and multiple inheritance (where a derived class in-
herits the properties of multiple base classes). Viewed al-
ternatively, multiple inheritance would correspond to a con-
junction of constraints, whereas disjunctive inheritance cor-
responds to an exclusive-or operation.

2.2 Class Types

It is not appropriate to describe and manipulate some of the
data that is exchanged over the detection engines’ interfaces
using built-in or record types, because the concrete repre-
sentation may be unknown or hidden. For instance, in the
case of system calls, an argument may be a pointer that re-
sides in the virtual address space of the process being mon-
itored, and thus may not even be accessible within the de-
tection engine. For these reasons, we introduce the concept
of class types (defined by the keyword class) that are essen-
tially abstract data types. The representation of class data
is completely encapsulated and invisible to BMSL, and can
be manipulated only via operations defined as part of the
data type. Sample declaration for a class that corresponds
to C-style strings and another class that corresponds to the
argument to the stat system call are shown below:
class CString {

string getVal() const;
void setVal(string s);

}
class StatBuf {

int getDev()const;
int getIno()const;
....
int getMtime()const;
int getCtime()const;

}

Note that the return type of a member function could itself
be a class type. Whether a member function changes the
value of the object or not is given by the const declaration
associated with the function. This plays an important role
in type checking of BMSL patterns as described later.

2.3 Patterns

Security-relevant properties of programs are captured as
patterns over sequences of events such as system calls and
network packets. In its simplest form, a BMSL pattern cap-
tures the occurrence of a single event. It is of the form
"���� � �����������
����)
	'/�� , where)�	'/�� is a boolean-valued expres-
sion on the event arguments � � �����������
 , as well as other
variables that may appear earlier in the same pattern. The
condition component can make use of standard arithmetic,
comparison and logical operations and several support func-
tions. The support functions allowed in a pattern correspond
to “read” operations that do not modify the state of the mon-
itored process. An example of such a function is �"'�.* ����$��� �
which translates a file name into a canonical form that does
not contain “.”, “..”, or symbolic links.

Sequencing operators are similar to those used in regular
expressions, but operate on events with arguments. We refer
to our pattern language as regular expressions over events
(REE) to indicate this relationship. The meaning of event
patterns and the sequencing operators is best explained by
the following definition of what it means for an event history�

(a sequence of events observed at runtime) to match a
pattern:

� event occurrence: "���� � � ���������
 ���)
	'/�� is satisfied by the
event history "�� - ����������� -
 � if)�	'/�� evaluates to $ ��� "
when variables � � � ���������
 are replaced by the values
- � � ������� -
 .

� event nonoccurrence: � "���� � � ���������
 ���)
	'/�� is matched
by

�
if it does not match "���� � � ���������
 ���)
	'/�� .

� sequencing: ����$ ��� �<��$�� is satisfied by an event history�
of the form

� � � � provided
� � satisfies ����$ � and� � satisfies �<��$�� .

� alternation: ����$	� ��� �<�!$ � is satisfied by an event history�
if either ����$ � or ����$ � is satisfied by

�
.

� repetition: �<�!$�� is satisfied by an event history� � � ������� �
 iff
���

satisfies �<�!$, "!$#&%'# / .
� realtime constraints: �<��$ within $ is satisfied by an

event history
� � if

� � satisfies ����$ and the time inter-
val between the first and last events in

� � is less than
or equal to $.

� atomicity: nonatomic � in ����$ denotes that accesses to
data � be atomic in ����$, i.e., without any intervening
operations by other processes that could modify this
data.

When a variable occurs multiple times within a pattern, an
event history satisfies the pattern only if the history instan-
tiates all occurrences of the variable with the same value.
For instance, the pattern " � ��� �(� ")����� � is not satisfied by the
event history " � �,� � "��*�,+ � , but is satisfied by " � �,� � "��*�6� � .

2.4 Response Actions

The reaction associated with a rule ��� � is launched if
a suffix of the event history matches � . The reaction com-
ponent consists of a sequence of statements, each of which
is either an assignment to a state variable or invocation of
a support function provided by the runtime system1. The
important classes of response actions are specified below.

2.4.1 Data Aggregation Operations

To identify network attacks it is often necessary to aggre-
gate information across many network packets, and act on
the basis of this information. Aggregation needs to be more
sensitive to recently received packets than older packets.
BMSL supports two principal abstractions for such aggre-
gation, decay counters and most-frequently-used (MFU) ta-
bles.

Decay counters are characterized by a time window and
a decay rate. Increments of the decay counter that occurred
beyond a time window are not included in the output of
the counter. Moreover, increments that occurred in the past
within the time window are weighted using an exponentially
decay function that assigns lesser weight to events that oc-
curred in the past.

MFU tables are hash tables where each entry has a de-
cay counter that keeps track of the number of times the en-
try has been accessed in the past. The table is of a fixed
size, with overflows handled by deleting the entries with
the lowest counts. Being based on decay counters, the no-
tion of of most-frequently-used is tilted in favor of entries
that have been accessed recently over those accessed a long
time in the past. MFU table entries can be associated with
functions that are to be invoked when the entry’s count in-
creases above (or falls below) a threshold, or when the entry
is purged from the table.

Key features of the decay counter (and MFU table de-
sign) are that it uses constant memory per counter (one per
MFU table entry), and operations to increment or decrement
the counter (insert or delete entries into the table) take con-
stant time. Thus the data aggregation operation are both
time and space efficient. For a more detailed presentation of
data aggregation operations, the reader is referred to [36].

2.4.2 Event Modification Operations

Event modification operations are realized as a set of sup-
port functions provided by the runtime system. Thus the
event modification capabilities will differ for different run-
time systems. For instance, a packet runtime system may
provide operations to drop, generate or modify packets.
(Our current packet runtime implementation, however, does
not support response operation.) Similarly, our system call

1Knowledge about these support functions are not integrated into
BMSL, but us declared in header files that can be included in the speci-
fication.

runtime system provides operations to prevent a system call
from executing and/or return a fake return value. This is ac-
complished using a support function

� ��� " , which takes an
argument that corresponds to the value to which the variable
"��'�'/�	 should be set to.

2.4.3 Interactions Among Multiple Rules

If multiple patterns match at the same time the associated
reactions of each matching pattern are launched, leading to
a problem if some of launched reactions conflict. We could
solve the conflicting reactions problem by (a) defining a
notion of conflict among operations contained in the reac-
tion components of rules, whether they be assignments to
variables or invocation of support functions provided by the
runtime system, and (b) by stipulating that there must not
exist two patterns with conflicting operations such that for
some sequence of system calls, they can match at the same
point. Potential conflicts can be identified by the automaton
construction algorithms developed in [37] — if there is any
state in the automaton that corresponds to a final state for
two such patterns, then there is a potential conflict. How-
ever, we have not implemented this solution yet, and cur-
rently rely on the specification writer to deal with conflicts.

3 Illustrative Examples

3.1 Simple Examples

To restrict a process from making a set of system calls,
we create a rule whose pattern matches any of the disal-
lowed system calls and whose reaction causes the disal-
lowed system calls to fail. For instance, we may wish to
prevent the server program fingerd from executing any
program, modifying file permissions, creating files or di-
rectories or initiating network connections. The following
example shows such a specification. We use the shorthand
notation of omitting some of the arguments of a system call
(or replacing them with “...”) when we are not interested in
their values.
��� ��� �����	� ��
�� � ��� � �	� �� �
����	� ���
�� ����� � � � 	� �	� ����9 � � 	� �
�	� ������� �
��	� ��� �4 ������	�� ������ � ��!#" �

We may also restrict the files that a process may access
for reading or writing, for example, the the following rule
prevents writes to all files, and reads from any files other
than those mentioned in admFiles defined below.	 � ��$ 4,�5��� ;

{"/etc/utmp","/etc/passwd", "datadir/*"}

 � ��� � ��7 �
%������ � � � 	 � � 	� �<� � �'&(� �)$ 46�����
�	�!� �
%���*&;,+ -/.0+%1/2/3!� �4��	�� ������5���6�7 �98

The following example illustrates sequencing restric-
tions by specifying that a process should never open a file
and close the file without reading or writing the file. Before
defining the pattern, we define abstract events that denote
the occurrence of one of many events. Occurrence of an

abstract event in a pattern is replaced by its definition, after
substitution of parameter names, and renaming of variables
that occur only on the right-hand side of the abstract event
definition so that the names are unique.

 � ��� ���.4 � � � �:� ��� ;
 � ��� ���.4 � ������� 7 � �:��	� � � � 	�� ���.4 � ������� 7 � �:�� � � � � � �:� ��� ; � � 	 � � � �:��	� � � 	 � �4 � � � �:��	� � � 4 � �� � �:�

 � ��� ���.4 � � � �:�988��� � � � � � � �:� �	� 8%�8�
'���� � �:� ��
�

Although regular expressions are not expressive enough

to capture balanced parenthesis, the presence of variables in
REE enables us to capture the close system call matching
an open.

The example below illustrates the use of atomic se-
quence patterns. A popular attack uses race conditions in
setuid programs as follows. Since a setuid process runs with
effective user � 	 	'$, any open system call by the process suc-
ceeds or fails base on the file privilege with respect to � 	 	'$.
If the setuid process wishes to open a file with the respect
to permissions of the real user, it first uses the access sys-
tem call to determines if the real user has access to the file,
and if so, it opens the file. The attacker exploits the time
window between the access and open system calls by creat-
ing a symbolic link as the name of the file in question, and
changing the target of the link between the access and open
system calls, to be a file that is inaccessible to the real user.
To prevent race attack, we ensure that the file referred by
the �.)�)�"+'+ and 	���"�/ system calls is accessed atomically:
�
�� 	�
 � 4 ��� � � ��	���� � � � in
� 	 �8�8�����'� � �98����
 � ��� � � � �	�/8
 � ��� � � � � ����	�� ���� !���� ��� �98

3.2 Case Study: Specification for ftpd

Our starting point in developing a specification of ftpd
is the documentation provided in ftpd’s manual pages. We
identified the following properties for wu-ftpd by examin-
ing its manual page and based on our knowledge of UNIX.
These properties are captured in BMSL in Figure 2. Al-
though we can convert the English descriptions directly into
BMSL specifications we usually cross-check (or “debug”)
the specifications by monitoring ftpd under typical condi-
tions. We use a hybrid approach, where we first manually
inspect system call traces produced by ftpd, and used them
to further narrow down the actions/behaviors that the ftpd
server may exhibit. In most cases, we have not attempted a
sophisticated reaction, instead opting for a simply terminat-
ing ftpd using a support function named $%"��� � � .

Figure 2 shows a partial specification for ftpd. A com-
plete specification can be found in [37], which consists of
about 25 rules and event definitions. Explanations for (some
of) these rules are as follows:

� ftpd attempts to authenticate the client host before pro-
ceeding to user authentication. Precisely identifying
the sequence of system calls that correspond to client
authentication is hard, as it involves a large number
of steps that may vary between installations. We treat

� "�$ ��"'"��'/ �! #" as a marker that indicates client host
authentication related processing. Similarly, we treat
opening of ��"�$%)����<�.+'+�� � as a marker for user authen-
tication related processing. Rules 4 and 5 capture these
English descriptions by stipulating respectively that an
open of the password file should never happen before
invocation of � "�$ �<"'"��'/ �� #" , and that +�"�$ �'")� % � system
call should not be executed before opening of the pass-
word file.

� after user authentication is completed, ftpd sets the
userid to that of the user that just logged in. We re-
member this userid for later use (rule 2).

� prior to user authentication, only files beginning with
names identified in the set ftpAdmFilePrefixes
can be accessed (rule 6).

� certain system calls are never used before user authen-
tication, and others are never used after user authenti-
cation (rules 7 and 8). Let ftpInitBadCall denote
a pattern that matches system calls not used prior to
user authentication. Similarly, let ftpAccessBad-
Call match system calls that are not used after user
authentication. (Definitions of these abstract events are
omitted in order to conserve space.)

� for anonymous users, the userid FTPUSERID is used;
moreover, the chroot system call is used to restrict
access only to the subtree of the filesystem rooted at
˜ftp (rule 9).

� ftpd resets its effective userid to root in order to bind
to socket 20 (ftp data port). The userid is restored to
that of the logged in user immediately afterwards (rule
11).

� to eliminate possible security loopholes, ftpd must
execute a setuid system call to change its real, effec-
tive and saved userid permanently to that of the logged
in user before executing any other program; otherwise,
the executed process may be able to revert its effective
userid back to that of superuser (rule 10). In addition,
we make sure that any file that is opened with supe-
ruser privilege is closed before execve (rule 12).

Typical specifications need not be as comprehensive as
for ftpd – we have made it comprehensive in order to bet-
ter illustrate what sorts of properties can be captured in our
language.

The specification enforces the principle of least privi-
lege, without really paying attention to known vulnerabil-
ities. Nevertheless, it does address most known ftp vulnera-
bilities (many of which have since been fixed) such as FTP
bounce (rule 14), race conditions in signal handling (rules
11) and site-exec (rule 13) [4].

/* Define useful abstract events. We assume that certain abstract events such as privileged (which denotes certain privileged system */
/* calls that are not used by most programs) and wrOpen (which denotes any file open operation that can create or modify the file). */

1. ftpPrivCalls ::= close||uidgidops||socket||setsockopt||(bind(s,sa)|port(sa)=20)
/* Use a state variable to remember the uid of user logging in and client host name */

2. begin();(!setreuid)*;setreuid(r,e)
�

loggedUser := e
3. begin();(!getpeername)*;getpeername exit(fd,sa,l)

�
clientIP := getIPAddress(sa)

/* Host authentication phase must precede user authentication. */
4. begin();(!getpeername)*;open(/etc/passwd)

�
term()

/* User authentication must precede before userid changed to that of the user. */
5. begin();(!open(/etc/passwd))*;setreuid()

�
term()

/* Access limited to admin-related files before user login is completed. */
6. begin();(!setreuid())*;open(f)|(!isExtension(ftpAdmFilePrefixes, f))

�
term()

/* Access limited to certain system calls before user login. */
7. begin();(!setreuid())*;ftpInitBadCall()

�
term()

/* Certain system calls are not permitted after user login is completed. */
8. setreuid();any()*;ftpAccessBadCall()

�
term()

/* Anonymous user login: must do chroot before setreuid. */
9. begin();(!(setreuid||chroot(FTPHOME)))*;setreuid(r,FTPUSERID)

�
term()

/* Userid must be set to that of the logged in user before exec. */
10. begin();(!setuid(loggedUser))*;execve

�
term()

/* Resetting userid to 0 is permitted only for executing a small subset of system calls. */
11. setreuid(r,0);ftpPrivCalls*;

!(setreuid(r1,loggedUser)||setuid(loggedUser)||ftpPrivCalls)
�

term()
/* Any file opened with superuser privilege is either explicitly closed before an exec, or has close-on-exec flag set. */

12. (open exit(f,fl,md,fd)|geteuid()=0);(!close(fd))*;(execve|!closeOnExec(fd))
�

term()
/* Site-specific: ensure ftp cannot execute arbitrary programs. */

13. execve(f)|(f &(ftpValidExecs)
�

term()
/* Site-specific: ftp cannot connect to arbitrary hosts or services. */

14. connect(s, sa)|((getIPAddress(sa)!=clientIP)&&(getPort(sa) &(ftpAccessedSvcs)) � term()

Figure 2. A specification for ftpd.

3.3 Network-Based Attacks

3.3.1 Very Small IP Fragments

We begin with a simple example to identify unusual net-
work packets that can often be used to launch attacks. For
instance, very short IP fragments that are smaller than TCP
headers can be used to bypass packet-filtering firewalls. We
can detect such packets using:

MY_NET = 129.186.44.0
MY_NET_MASK = 255.255.255.0
my_net_addr(a) = ((a&MY_NET_MASK)=MY_NET)
is_frag(p) = (p.more_frags)||(p.frag_offset!=0)

MFUTable tcpFrag(
unsigned int, /*key is IP address, no data*/
100, 30, /*size 100, time window 30 sec*/
1, 0, /* hi, lo thresholds */
tcpFragBegin, tcpFragEnd) /*threshold fns */

rx(p)|my_net_addr(p.daddr) &&
is_frag(p) && p.protocol=IP_TCP &&
p.tot_len < 48 -> tcpFrag.inc(p.saddr)

The functions tcpFragBegin and tcpFragEnd
write records to a log file. They both take an argument that
is the value of the key field corresponding to the table entry
for which the action is being executed.

The threshold values in the example make attack detec-
tion to be very deterministic: an attack is recognized even

if a single packet matching the criteria is received. The rea-
sons for using a table in such a case (as opposed to directly
invoking a function that generates an attack report) are as
follows. First, we are able to distinguish among packets
received with different source addresses and treat them as
separate attacks. Second, the attacking host may generate a
large number of fragmented packets that match this criteria.
Rather than generating many attack messages, we may gen-
erate just two messages that indicate the beginning and end
of the attack.

3.3.2 Teardrop Attack

The teardrop attack involves fragmented IP packets that
overlap. The following pattern captures any such overlap,
without flagging those cases where a fragment is simply du-
plicated.2

frag_begin(p) = p.frag_offset*8
frag_end(p) = frag_begin(p)+p.tot_len-20
same_pkt(p,q) =
p.daddr=q.daddr && p.saddr=q.saddr && p.id=q.id

event overlapping_frag(p1,p2) =

2Not all overlaps correspond to teardrop attacks, but we used this pat-
tern since it is simpler than the one that would permit legitimate fragment
overlaps, and since overlapping IP fragments never appeared in the envi-
ronments where our IDS was tested.

rx(p2)| same_pkt(p1,p2) &&
frag_begin(p2) < frag_end(p1) &&
frag_begin(p1) < frag_end(p2) &&
!(frag_begin(p1)=frag_begin(p2) &&
frag_end(p1)=frag_end(p2))

(rx(p1)|is_frag(p1);(rx|tx)*;
overlapping_frag(p1,p2)) within 60 -> ...

The pattern matches any sequence of packets that spans
a period less than sixty seconds (one may choose a larger or
smaller time frame), begins and ends with fragments of the
same IP packet, and these fragments overlap partially.

3.4 Using Specification for Isolation

The isolation component is integrated seamlessly into our
specification-based framework for detection of attacks on
host and processes. When we detect an attack on a host
that is delivered via network packets, we can quietly drop
those packets. When we detect an attack on a process, we
can use the switch action to switch to a new specification
that contains BMSL rules to isolate the process. The new
specification contains rules to:

� return faked return value, especially for system calls
that can potentially damage the system

� log the activity for later analysis.
� reduce limits on resources that the rogue process can

consume.
� restrict access to files.

For instance, the specification
exec -> chroot("/altroot"); setuid(-1);

nice(20); switch genericIsolate;

changes the root of the calling process to a decoy file system
(called altroot), changes the user ID to nobody, reduces
the priority of the process, and finally switches to a new
monitoring specification called genericIsolate, which may
be specified as below:

connect || sendto || recvfrom
-> sleep(60); fake(ETIMEDOUT)

bind || recv -> sleep(5); fake(EADDRINUSE)
open || read || write -> sleep(1)

There may be several other rules in this module, but the ones
given above are illustrative. Since the process is operating
in a decoy file system, file system operations are allowed go
through. However, network operations are restricted. Most
operations are slowed down using sleep(), so that the
CPU and resource usage on the attacked system are mini-
mized, while the intruder will likely perceive a slow system
and/or congested network.

4 Compilation of BMSL

4.1 Type Checking

BMSL is designed with the idea that code generated from
BMSL specifications may run within operating system ker-

nel space. This means that the code generated from BMSL
(and hence BMSL itself) must be robust and guard against
serious errors such as invalid memory accesses or other ex-
ceptions that could contribute to failures of individual hosts
or legitimate processes running on them. Another factor is
that a hacker planning to attack a host is likely to first try to
cripple the survivability components on the host, and hence
it is important to make these components very robust.

4.1.1 Packet Types

The semantics of the constraints in packet types is that they
must hold before fields corresponding to a derived type are
accessed. In particular, note that at compile time, we do
not know the type of a packet received on a network inter-
face, except for the lowest layer protocol type. For instance,
all packets received on an Ethernet interface must have the
header given by ether_hdr, but we do not know whether
they carry an ARP or IP packet. To ensure type safety, the
constraint associated with the ip_hdr must be checked (at
runtime) before accessing the IP-relevant fields. More gen-
erally, before a field in a structure of a particular type � is
accessed, all constraints associated with all of the base types
of � need to be checked. Based on the type declarations,
our implementation automatically introduces these checks
into the specifications, thus relieving the programmer of the
burden to check these constraints explicitly.

4.1.2 Class Types

As mentioned earlier, BMSL class types may correspond to
data that resides outside the detection engine. References
to such data have to be represented in BMSL as pointers
or handles into the memory space of a runtime system or a
process being monitored. This means that class data refer-
enced by BMSL may get overwritten, or become invalid
in between two events due to operations taking place in
the runtime system or the monitored process. Moreover,
this happens without the detection engine’s knowledge, and
may lead to memory access errors, or at the least, have un-
expected effects on the specifications due to unanticipated
changes. We therefore impose the restriction that class data
cannot be stored in BMSL variables across the delivery of
multiple events. We also require that any external functions
applied to class data should assure that this data would not
be changed by the function. If we wanted to really store
one or more components of some foreign object in BMSL,
we need to use the appropriate accessor functions on this
data to obtain the components of interest and store them as
BMSL native types.

4.2 Compilation of Pattern-Matching

Efficient pattern-matching is key to the performance of our
detection engines. Our approach to pattern-matching is
based on compiling the patterns into a kind of automaton

q q
0 1> t :=x 1 1t =x

a(x) b(x)

b

 > q q
0 1

a(x)
t :=x1

b(x)|t =x1

b(x) |t !=x

b(x)|t =x1

1

(x)|t1 !=xb

Figure 3. A NEFA and its equivalent DEFA

in a manner analogous to compiling regular expressions
into finite-state automata. We call these automata extended
finite-state automata (EFSA). EFSA are simply standard fi-
nite state automata (FSA) that are augmented with a fixed
number of state variables, each capable of storing values of
a bounded size. Every transition in the EFSA is associated
with an event, an enabling condition involving the event
arguments and state variables, and a set of assignments to
state variables. The final states of the EFSA may be anno-
tated with actions, which, in our system, correspond to the
reactions given in our rules. For a transition to be taken,
the associated event must occur and the enabling condition
must hold. When the transition is taken, the assignments
associated with the transition are performed.

An EFSA is normally nondeterministic. The notion of
acceptance by a nondeterministic EFSA (NEFA) is simi-
lar to that of an NFA. A deterministic EFSA (DEFA) is
an EFSA in which at most one of the transitions is en-
abled in any state of the EFSA. A NEFA for the pattern
� ��� �(� +�� � + ��� � is shown in Figure 3. The equivalent DEFA
is also shown in the same figure. We have shown that
translating a NEFA to a DEFA can result in an unaccept-
able increase in the size of the automaton. Therefore we
have developed a new approach that is based on translat-
ing NEFA into a quasi-deterministic extended finite state
automata (QEFA). QEFA eliminate most of the sources of
nondeterminism that are present in the NEFA, while still
ensuring that their sizes are acceptable. A complete treat-
ment of QEFA and the compilation algorithm can be found
in [37].

5 Runtime Infrastructure for System Calls

The BMSL specifications for system call based defenses
must be translated into a detection engine and linked with
a runtime infrastructure to produce an executable. The ex-
ecutable is a single Dynamically Loadable Kernel Module
(DLKM) called imod.o. The runtime infrastructure pro-
vides the following capabilities:

� mechanisms for associating running applications with
BMSL specifications,

� interception of system calls, delivery of an applica-
tion’s intercepted system calls to its associated BMSL
specification,

� delivery of a specification’s response to intercepted
system calls to the application, and

� support functions to simplify BMSL specification de-
velopment.

The runtime infrastructure imposes a few constraints on
BMSL compilation. For each BMSL specification, the
BMSL compiler must generate C++ source code defining
a unique class. The generated classes must be derived from
a default specification class called baseProg. For each
system call that a BMSL specification needs to intercept,
the class must implement interception methods having pre-
defined signatures. The basic idea behind these constraints
is that baseProg implements default methods for inter-
ception of all system calls at entry and exit. The default
methods allow all intercepted system calls to execute nor-
mally. To achieve non-default treatment of selected inter-
cepted system calls, the derived classes override the method
implementations in baseProg corresponding to these sys-
tem calls.

Given a set of BMSL specifications conforming to the
runtime infrastructure’s constraints, translation of the spec-
ifications and the runtime infrastructure into imod.o is ba-
sically a matter of C++ compilation and link editing, with
one important exception. The exception is that the associa-
tion between applications and their defensive specifications
is encoded at compile time. The association requires the
programmer to create a configuration file comprising multi-
ple entries, where each entry gives the command line name
of an application, the name of the C++ class associated with
that application, and the name of the C++ source file defin-
ing that class. A single application can be associated with
only one specification but many applications can be asso-
ciated with a single specification. Using the configuration
file, the translation selects the appropriate BMSL specifica-
tions to link edit into imod.o, and populates data struc-
tures within imod.o so that at runtime, the association be-
tween applications and specifications is known. The trans-
lation also examines the BMSL specifications to determine
what subset of system calls must be intercepted to meet their
combined needs, and uses this information to minimize run-
time overhead by avoiding unnecessary system call inter-
ception.

The primary function of the infrastructure is real-time
system call interposition. System call interposition is ac-
complished by system call table overwriting. The system
call table is a kernel resident table of pointers to functions
implementing system calls that is indexed by predefined
system call numbers. When an application requests a sys-
tem call, the system call’s number is used to select the ap-
propriate function pointer from the system call table. When
imod.o is loaded, it first copies the system call table, and
then overwrites the system call table so that the system call
table entries point at interception functions implemented

in imod.o, rather than at the real system call functions.
(For efficiency, the table entries for system calls that no
BMSL specification requires interception of are not over-
written.) All imod.o interception functions have the same
structure. The interceptor functions start with pre-system
call functionality, implemented by a function called pre-
Trap(), then invoke the real system call, using the entry
in the system call table copy, and conclude with post system
call functionality, implemented by a function called post-
Trap(). The preTrap() and postTrap() functions
are roughly equivalent, consisting of finding the object as-
sociated with the application requesting the system call, or
instantiating such an object based on the application to spec-
ification association if this is the application’s first system
call, and then invoking an interception method on that ob-
ject.

The interception method invoked is the method imple-
mented for the particular system call that was intercepted,
with preTrap() using the intercepted system call’s en-
try method and postTrap using the intercepted system call’s
exit method. Note that if BMSL specification does not spec-
ify special treatment of an intercepted system call, the de-
fault treatment implemented by baseProg is invoked. The
return values of both preTrap() and postTrap() are
used to convey the BMSL specification’s decision regard-
ing treatment of the intercepted system call. The decision
can be normal, meaning the request system call is allowed,
or faked. For pre-system call interception, faked means that
the system call is not to be executed, but instead an im-
mediate return to the application is to be made using sup-
plied results that mimic actual system call execution. For
post-system call interception faked means that the results of
the system call (which has already been executed) are to be
overwritten. In both cases, a decision of faked requires the
BMSL specification to supply appropriate results, such as a
return code and population of output arguments, which vary
between system calls.

A secondary function of the runtime infrastructure is to
provide an environment that is conducive to the develop-
ment of powerful specifications. This functionality is pro-
vided through support functions implemented within the in-
frastructure. The support functions provided are either in
common to a large number of specifications or cannot rea-
sonably be implemented within BMSL specifications. The
following capabilities are currently provided in our imple-
mentation of the support functions:

� a mechanism by which specifications can themselves
use system calls. The infrastructure provides support
for BMSL specifications use of system calls in two
contexts: backwards, or in the application’s context,
and forwards, or in imod.o’s context. Backward sys-
tem calls support defenses that replace requested sys-
tem calls with other system calls, while forward sys-

tem calls enable imod.o to perform operations such
as maintaining its own log files.

� maintenance of a dynamic file descriptor- to-filename
mapping. The mapping between file descriptors in file
names is fluid since many system calls can change the
mapping, and because of inheritance of file descriptors
across system calls such as execve, fork, and clone.
Defenses that are based on file name could implement
the functionality required to maintain file descriptor
to file name mapping themselves, but to do so would
unduly complicate them. Therefore, the functional-
ity is consolidated and the mapping made available to
BMSL specifications through a simple interface.

� a unified method of handling system call arguments
that are pointers. Since BMSL specifications execute
in kernel space, they have to be aware of the differ-
ences between kernel and user memory. Particularly
troublesome are pointers passed through system calls,
since they point at user memory which requires differ-
ent access mechanisms than kernel memory. As men-
tioned earlier, this memory access problem is handled
in BMSL by encapsulating the system call arguments
using class types. The runtime infrastructure provides
the implementation of these class types. The infras-
tructure converts pointer arguments into the appropri-
ate class when the system call interception method is
invoked.

� implementation of subroutines commonly available at
user level through standard system libraries. In gen-
eral, these subroutines are unavailable at kernel level.
Our current approach is to port subroutines on an “as
needed” basis, since their conversion into functions
that can execute at kernel level is sometimes non-
trivial.

6 Global Isolation Via Active Networking

Emerging active network technology presents appealing de-
fensive capabilities to augment those of the host-based sys-
tem call interception approach. There are a variety of at-
tacks for which a host based approach can detect the attack,
but cannot react in a useful manner. Many denial-of-service
(DOS) attacks fall into this category: the host can detect
that it is swamped by meaningless requests, and may even
know the (spoofed) source IP address from which the re-
quests originate, but cannot do anything to preserve itself
under the attack. (Hosts can always respond to the attack
by shutting down the attack services, but this reaction is
not useful, since it accomplishes the aims of the attacker.)
Given emergent active network capabilities, a more useful
reaction would be for the attacked host to inform the near-
est active network element of the attack and request that
active network elements work together to find and isolate

the source of the attack. With such a defensive strategy, not
only can a host protect itself, but also, elimination of attack
traffic near the source benefits all hosts by reducing unnec-
essary traffic.

We have a rudimentary implementation of an active net-
work defense against flooding attacks using PLAN [16].
The implementation allows a host under attack to send a
PLAN packet to its nearest PLAN enabled router. The
packet contains a program which examines the router’s rout-
ing table to see if the IP address responsible for the flood is
immediately adjacent to the router. If so, that IP address
is disabled using the router’s administrative commands, if
not, the PLAN packet is forwarded to the router’s neigh-
bors. Eventually, the PLAN packets is delivered to the
router nearest the attacking IP address, and the flood is shut
off at that point.

We believe that our current research into active net-
work technology for defense is illustrative, but insufficient.
Progress toward truly powerful active network based de-
fenses requires further maturity of the technology, which is
currently in prototype form. In particular, PLAN supports
interception of only PLAN packets, not all other packets
(such as TCP packets). These other packets can be moni-
tored by PLAN programs as they pass through routers, but
they cannot be deflected or have their contents altered, as
envisioned defenses would require. Currently active net-
work based defenses are limited to what can be achieved by
using active packets to cause routers to re-configure them-
selves through their own administrative interface.

7 Performance Results

We have studied the effectiveness and performance of our
approach experimentally. The effectiveness was also mea-
sured via our participation in the intrusion detection evalu-
ation conducted by MIT Lincoln Laboratories.

7.1 ID Evaluation

Our network packet monitoring system (NMS) participated
in the evaluation conducted by MIT Lincoln labs [11]. Due
to the lack of availability of system call data for Linux in
the evaluation, our system call monitoring system (SMS)
did not participate in the evaluation. The focus of NMS and
SMS are complementary. SMS is concerned with attacks
that are targeted at specific processes, and thus manifest
themselves at the system call level. The NMS is concerned
with low-level network attacks that exploit errors in operat-
ing system kernels, and are not directed at any process.

Other participants in the evaluation included research
groups from UC at Santa Barbara, Columbia University,
RST Corporation, and two groups from SRI. A baseline sys-
tem comparable to commercial intrusion detection systems
was also included in the evaluation. It was determined that
all of the systems participating in the evaluation provided

Attack No. of False Score Best score
Category Attacks positives in evaluation

Probe 17 1 86% 86%
DOS 43 4 60% 65%

Figure 4. Scores by attack category.

significantly better detection rates over the baseline system,
while reducing false positive rates by an order of magnitude
or more.

The evaluation organizers set up a dedicated network to
conduct a variety of attacks. Care was taken to ensure the
accuracy of normal traffic as well. All of the network traffic
was recorded in tcpdump format and provided to the par-
ticipants of the evaluation. The data provided consisted of
seven weeks of training data, plus two weeks of test data.
The tcpdump files were 0.4 to 1.2GB in length per day.

The attacks were classified into four categories. Of these,
only two categories related to low-level network attacks that
are the focus of NMS. These two categories were probing
and denial-of-service.

The attacks are identified using rules that are generally
similar to the examples discussed earlier. However, in the
process of training and debugging the system, we have
found that the rules tend to get a bit more complicated than
the examples. At times, we have also had to change the rules
due to certain idiosyncrasies or artifacts in the test data.

Figure 4 shows the overall scores assigned to our sys-
tem by Lincoln Labs [11]. The scoring scheme assigned
fractional credit to each attack based on the percentage of
the attack-containing packets (or sessions) identified by the
IDS being evaluated. For instance, a port sweep may oc-
cur over hundreds or thousands of packets. Any IDS is able
to identify only a subset of these packets as being part of a
port sweep. This scoring procedure is not favorable for sys-
tems such as ours that emphasize low false positives. Such
systems tend to err on the side of not identifying individual
packets as attack-bearing, as long as a substantial number of
packets within the attack can be tagged. Nevertheless, our
system finished among the top two in both categories at low
false-positive rates of 0.05 to 0.1 false alarms per attack. At
false positive rates that are several tens of times higher (e.g.,
2 to 3 false alarms per attack), some of the other systems
perform better than us. However, it is quite likely that our
system would sport higher detection rates if we increased
the false positive rate to such high levels.

Figure 5 shows the scores obtained by our IDS for each
kind of attack. Since it omits some of the higher-level prob-
ing and denial of service attacks that are not addressed by
NMS, the aggregate score shown in this table is an improve-
ment over that given in Figure 4. This table also shows
the result under a different scoring scheme that attempts to

Attack Number Misses Score

Smurf 8 0 100%
Teardrop 4 0 100%
Land 2 0 100%
Ping of Death 5 0 99%
IP Sweep 3 0 96%
satan 2 0 94%
Port Sweep 5 0 90%
saint 2 0 89%
nmap 4 0 78%
Neptune 7 0 70%
mscan 1 0 55%
UDP loop 2 2 0%

Total 45 2 85%

Figure 5. Scores on low-level network attacks.

Week Day Data file Time/GB Memory
size (GB) of data (sec) (MB)

1 Mon 0.41 7.6 � 1
1 Tue 0.84 21.4 � 1
1 Wed 0.46 12.2 � 1
1 Thu 0.76 21.8 � 1
1 Fri 0.43 17.4 � 1
2 Mon 1.20 21.4 � 1
2 Tue 0.45 15.3 � 1
2 Wed 0.54 8.7 � 1
2 Thu 0.60 13.0 � 1
2 Fri 0.50 10.6 � 1

Figure 6. Performance of NMS.

identify whether each an attack is completely missed by a
system. If a substantial fraction of the attack-bearing pack-
ets (say, 50%) are detected by the system, then we treat the
attack as having been detected. Otherwise, we treat the at-
tack as having been missed. Our system demonstrated ex-
cellent detection capability (96%) when using this criteria.
The only attacks missed were due to the fact that the tcp-
dump contained only packets arriving into the network from
outside, while we had assumed that it contained all of the in-
ternal traffic as well. As such, the explosion in the number
of packets expected by our system as part of a UDP loop
attack was not present in the tcpdump data, and hence the
attack was missed by our system.

7.2 Performance of NMS

Our emphasis on efficiency of implementation paid off in
terms of performance, as shown by the CPU and memory
usage of our IDS for the ten days of test data as shown in
Figure 6. While running on a 450MHz Pentium II PC run-
ning RedHat Linux 5.2, our system can sustain intrusion

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e(

se
co

nd
s/

G
B

)

Number of rules

Figure 7. Pattern-matching time Vs number of
rules.

detection at the rate of over 500Mb/second. (In measuring
the CPU time, we considered only the time spent within the
intrusion detection system, and ignored the time for reading
packets from the tcpdump file.) Its memory consumption is
also low, largely the result of our choice of data aggrega-
tion operations. The high performance is the result of our
emphasis on the following aspects:

� insensitivity of the pattern-matcher to the number of
rules. Our IDS currently contains about 75 rules, so
any pattern-matching approach that involves checking
each of this patterns individually will be slow. By
compiling the patterns into an automaton, we are able
to identify all pattern-matches, while spending essen-
tially constant time per packet that is independent of
the number of patterns. Thus the pattern-matching
time remains independent of the number of rules.

� fast implementation of data aggregation operations.
As described earlier, we have implemented the
weighted counter and table data structures so that oper-
ations on them have an amortized

� ��! � cost per opera-
tion. As a result, detection time increases only linearly
(and slowly) with the number of attacks.

We note that the time for detection does not monotonically
increase with the number of rules. This is because of the
fact that the addition of a new rule can reduce the frequency
with which an earlier rule was matching. This factor can
lead to the situation where the addition of rules decreases
the execution time.

7.3 Performance of SMS

We studied the performance of our system with three server
programs, namely, ftpd, telnetd and httpd. The
specification for ftpd was as described earlier. The spec-
ification for telnetd and httpd are not shown, but are
comparable in size and complexity to that of ftpd. All of
the results in this section were taken on a 350MHz Pentium

0

5

10

15

20

10 20 30 40 50 60 70 80

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

/G
B

)

Number of rules

Figure 8. Intrusion detection time Vs number
of rules.

TestCase Time to Time to match Overhead
run(s) all sysCalls

(s)
ftpd 2.2s 0.03 1.5%

telnetd 3.1s 0.04 1.3%
httpd 5.8 0.09 1.5%

Figure 9. System call pattern matching over-
head.

II Linux PC with 128MB memory and 8GB EIDE disk.
In measuring the runtime overhead we have separated

measurements of the cost of system call interception, which
are essentially constant for all system calls, from measure-
ments of the cost of system call pattern matching, which
varies based on the complexity of individual BMSL speci-
fications. Our measurement of the cost of system call inter-
ception indicate that it adds only a minor overhead to most
applications, for example, for ftpd, system call intercep-
tion increases total time spent processing system calls by
about 4.5%. In our test cases, system call processing time
accounted for about 20% of total ftpd processing time, so
4.5% increase in system call processing has a virtually im-
measurable impact on user perceived execution time.

7.3.1 Timing Results

Figure 9 summarizes our experimental results. They show
that in fact, the overheads due to the monitoring are almost
imperceptible for all three applications. The runtime data
storage requirements for the FSM are too small to be mea-
sured.

Figure 10 shows the overhead for matching each sys-
tem call, averaged across the three programs. Although the
graph seems to indicate a slight increase in matching time
per system call with increase in number of system calls,
this increase is too small to be meaningful — the increase
in time is about 5% when the number of system calls has
increased by about 2000%. Thus, it is meaningful to talk

0.5

0.6

0.7

0.8

0.9

1

1.1

1000 2000 3000 4000 5000 6000 7000 8000 9000

M
at

ch
in

g
tim

e
pe

r
sy

st
em

 c
al

l

Number of System Calls

’pmtime.dat’

Figure 10. Matching time per system call.

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250

N
um

be
r

of
 s

ta
te

s

Pattern size

’automaton size’

Figure 11. Increase in automaton size with
specification.

about overhead as a percentage of the total runtime, as was
done in Table 9.

7.3.2 Automaton Size

To evaluate the increase in size of the automaton when the
number or complexity of patterns is increased, we have plot-
ted the automaton size as a function of the size of the pat-
terns. The size measure we use is given by the number of
REE events and operators, taken over all of the patterns.
Event arguments and conditions are not included, as the
number of states is not very much affected by their presence
or absence. The REE patterns of interest were those corre-
sponding to our three benchmark programs, ftpd, tel-
netd and httpd. Randomly chosen subsets of these pat-
terns were compiled and the corresponding size of the au-
tomaton was identified. These were then plotted as shown
in Figure 11.

Although the worst-case automaton size is exponential in

the size of REE, we find that in practice, the size increases
more or less linearly with the total REE size.

8 Related Work

8.1 Host-Based Detection

Host-based techniques are aimed at protecting individual
hosts and operate on the basis of information contained in
audit logs or other similar sources of data. These techniques
can be broadly divided into misuse detection [33, 20],
anomaly detection [1, 8, 13], and specification-based de-
tection [19, 38].

Among misuse-based approaches, a state-transition dia-
gram based approach is used in [33] to capture signatures
of intrusions. [20] uses colored petri nets to specify intru-
sive activity. This language is more expressive than ours in
some ways (e.g., ability to capture occurrence of two con-
current sequences of actions), and less expressive in some
other ways (e.g., ability to capture atomic sequences or the
occurrence of one event immediately following another).
Nevertheless, most intrusion signatures expressed in [20]
can be easily captured in our language as well and hence
our compilation techniques are applicable to their approach.

Among anomaly detection approaches, one of the first
works based on program behaviors (as opposed to user be-
haviors) was that of [8]. Recently, these results have been
improved by [13] using a neural network based approach
that produces very accurate anomaly detectors. These ap-
proaches deal only with system call names, not with ar-
guments. This simplifies the problem of learning normal
behaviors of processes, which is the main focus of their
work. However, for intrusion prevention or confinement,
argument values are indeed important, e.g., we cannot oth-
erwise distinguish an action to write a log file from one to
modify the /etc/passwd file. Thus a language like REE
is more appropriate in this context.

A specification-based approach achieves the accuracy of
misuse detection, while addressing one of its deficiencies,
namely, the inability to deal with unknown intrusions. It
was first proposed in [19]. They use a pattern language
based on context-free grammars extended with variables,
and formulate the intrusion detection problem as one of
parsing the audit logs with respect to these grammars. In
contrast, our language is based on an extension of regular
languages with variables. While context-free languages are
more expressive than regular languages, this is not necessar-
ily true when variables have been added to these languages.
On the other hand, a regular language based formulation
lends itself more readily to an automaton based pattern-
matching approach that can be implemented efficiently.

8.2 Network Intrusion Detection

Most network intrusion detection systems [15, 32, 17, 21,
29, 31, 40, 34] operate by inspecting IP (or lower level)
packets, most of them attempt to reconstruct the higher level
interactions between end hosts and remote users, and iden-
tify anomalous or attack behaviors. Based on this, they at-
tempt to identify a broad class of attacks, focusing particu-
larly on malicious attacks on network servers and other pro-
cesses running on the target system. We employ a different
approach – in particular, attacks that are identifiable using
higher level information are left to be detected by the SMS.
Attacks that are invisible to SMS since they do not manifest
themselves at the level of processes are left to be detected
and handled by the NMS. Thus NMS is mainly concerned
with detecting low-level attacks that exploit vulnerabilities
in the design and implementation of host operating systems
and network protocols. Most surveillance, probing and a
large number of denial-of-service attacks in existence fall
into this category of low-level network attacks. This two-
part approach enables us to simplify the detection of diverse
kinds of intrusions.

A completely different approach is taken for intrusion
detection in [21], where techniques based on data mining
are employed. Several previous works such as [15] also
employed statistical and expert-system based techniques
for detecting anomalous behaviors that could be indicative
of attacks. These techniques largely complement pattern-
matching based schemes such as ours. In particular, the
benefits of our approach are speed, specificity and reduction
of false positives. The downside is that unknown attacks,
hitherto not captured, may go undetected. The anomaly de-
tection systems are typically better at detecting unknown
attacks, but their downside include high false-positive rates,
nonspecific attack indicators, and need for extensive train-
ing. Combination approaches, such as those envisioned in
EMERALD, can give us the benefits of both approaches
while largely avoiding their drawbacks.

8.3 Related Work in Languages for Network In-
trusion Detection and Packet Filtering

The use of special-purpose languages for network intrusion
detection has been studied earlier. The choices range from
scripting languages that make it easier to write intrusion de-
tection code [34], C-like-but-strongly-typed languages such
as that used in Bro [31], to a pattern-matching language in
NetSTAT [40]. A common feature of these languages is that
they are based on an imperative programming paradigm,
whereas our language is declarative. Moreover, our lan-
guage permits us to more easily capture patterns on se-
quences of packets, as opposed to other languages where
patterns can characterize only individual events. This capa-
bility, together with the data aggregation features provided
by our language, contributes to the conciseness of intru-

sion specifications. Another important distinction of our ap-
proach is that our language is designed to support efficient
implementations of the pattern-matching and data aggrega-
tion operations.

Our type system for network packets is similar to packet
types that have been developed independently in [5]. Their
notion of type refinement is similar to our notion of in-
heritance for packets in that both approaches make use of
constraints to augment the traditional notion of inheritance.
This gives both approaches the ability to model layering of
protocols. However, there are several significant differences
as well. For instance, our notion of disjunctive inheritance
is not captured in [5]. Moreover, we provide a general pur-
pose algorithm that avoids repetition of constraint checking
operations even if they are repeated along an inheritance
chain or within rules. A more detailed treatment of the dif-
ferences can be found in [36].

8.4 System Call Interposition

Interception of system calls, followed by interposition of
arbitrary code at this point, has been proposed by many re-
searchers as a way to confine applications. The Janus sys-
tem [14] incorporates a user-level implementation of system
call interception. It is aimed at confining helper applica-
tions (such as those launched by web-browsers) so that they
are restricted in their use of system calls. Our approach
improves on theirs by providing a more powerful language
for capturing allowable behaviors. The kernel hypervisor
[28] approach is similar to the Janus approach, but is imple-
mented within an operating system kernel using loadable
modules.

A more comprehensive set of system call interposition
capabilities was developed in [10]. [9] focuses on the re-
lated problem of developing languages customized for writ-
ing interposition code (also known as wrapper code), and
runtime infrastructure for their installation and manage-
ment. Unlike the preceding approaches, their language can
more easily capture sequencing relationships among system
calls. But they do not focus on pattern-based techniques for
intrusion detection. Moreover, computational issues in ef-
ficient matching of system call sequences, or robustness of
interposition code, are not addressed.

9 Conclusions

In this paper we presented an approach for building surviv-
able systems. Our approach is based on monitoring events
such as system calls and network packets, comparing them
against patterns characterizing normal (or abnormal) event
sequences, and initiating appropriate responses when (po-
tentially) damaging events are intercepted. These responses
may preempt intrusion, or otherwise isolate and contain any
damage. Since attacks can be prevented and/or contained,
our approach can satisfactorily address intrusions arising

due to software errors in otherwise trustworthy programs,
as well as malicious programs (e.g., Trojan horses) from
untrusted sources. Moreover, when new vulnerabilities (not
protected by existing specifications) are identified, we can
protect against them using appropriate specifications, in-
stead of disabling vulnerable software until the vendor pro-
vides a patch.

One of the main challenges in making our approach prac-
tical is the ability to perform runtime prevention/detection
that is fast enough to be included as part of processing every
system call made by every process. We proposed a solu-
tion to this problem in this paper by developing appropriate
compilation and runtime techniques. Our implementation
results demonstrate that the overhead for intrusion detec-
tion is low. A key benefit of our approach (supported by
theory as well as performance experiments) is that the de-
tection time is insensitive to the complexity or number of
patterns used in the specification. In most cases, our al-
gorithm takes a constant time per system call intercepted,
and uses a constant amount of storage. These advantages
mean that specification developer can focus exclusively on
conciseness, clarity and correctness of specifications, rather
than be concerned about efficiency. Many of these advan-
tages make our algorithm attractive for methods other than
our own.

Future work will focus on tools and techniques to sim-
plify the task of developing specifications.

References
[1] D. Anderson, T. Lunt, H. Javitz, A. Tamaru, and A.

Valdes, Next-generation Intrusion Detection Expert System
(NIDES): A Summary, SRI-CSL-95-07, SRI International,
1995.

[2] G. Berry, P. Couronne and G. Gonthier, Synchronous Pro-
gramming of Reactive Systems: An Introduction to Esterel,
Technical Report 647, INRIA, Paris, 1987.

[3] M. Bishop, M. Dilger, Checking for Race Conditions in File
Access. Computing Systems 9(2), 1996, pp. 131-152.

[4] CERT Coordination Center Advisories 1988–1998,
http://www.cert.org/advisories/index.html.

[5] S. Chandra and P. McCann, Packet Types, Workshop on
Compilers Support for Systems Software.

[6] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle and Q. Zhang, StackGuard: Automatic
Adaptive Detection and Prevention of Buffer-Overflow At-
tacks, 7th USENIX Security Symposium, 1998.

[7] D. Denning, An Intrusion Detection Model, IEEE Trans. on
Software Engineering, Feb 1987.

[8] S. Forrest, S. Hofmeyr and A. Somayaji, Computer Im-
munology, Comm. of ACM 40(10), 1997.

[9] T. Fraser, L. Badger, M. Feldman, Hardening COTS soft-
ware with Generic Software Wrappers, IEEE Symposium on
Security and Privacy, 1999.

[10] D. Ghormley, D. Petrou, S. Rodrigues, and T. Anderson,
SLIC: An Extensibility System for Commodity Operating
Systems, USENIX Annual Technical Conference, 1998.

[11] I. Graf, R. Lippmann, R. Cunningham, D. Fried, K.
Kendall, S. Webster and M. Zissman, Results of
DARPA 1998 Offline Intrusion Detection Evaluation,
http://ideval.ll.mit.edu/results-html-
dir/index.htm, 1998.

[12] B. Guha and B. Mukherjee, Network Security via Reverse
Engineering of TCP Code: Vulnerability Analysis and Pro-
posed Solutions, Proc. of the IEEE Infocom, March 1996.

[13] A.K. Ghosh, A. Schwartzbard and M. Schatz, Learning Pro-
gram Behavior Profiles for Intrusion Detection, 1st USENIX
Workshop on Intrusion Detection and Network Monitoring,
1999.

[14] I. Goldberg, D. Wagner, R. Thomas, and E. Brewer, A Secure
Environment for Untrusted Helper Applications, USENIX
Security Symposium, 1996.

[15] L. Heberlein et al, A Network Security Monitor, Symposium
on Research Security and Privacy, 1990.

[16] M. Hicks, P. Kakkar, J. Moore, C. Gunter, and S. Nettles,
PLAN: A Packet Language for Active Networks, Proceed-
ings of the Third International Conference on Functional
Programming Languages, pages 86-93, ACM, 1998.

[17] J. Hochberg et al, NADIR: An Automated System for Detect-
ing Network Intrusion and Misuse, Computers and Security
12(3), May 1993.

[18] M. Jones, Interposition Agents: Transparently Interposing
User Code at the System Interface, 14th ACM Symposium
on Operating Systems Principles, December 1993.

[19] C. Ko, Execution Monitoring of Security-Critical Programs
in a Distributed System: A Specification-Based Approach,
Ph.D. Thesis, Dept. Computer Science, University of Cali-
fornia at Davis, 1996.

[20] S.Kumar, Classification and Detection of Computer Intru-
sions, Ph.D Dissertation, Department of Computer Science,
Purdue University, 1995.

[21] W. Lee, C. Park and S. Stolfo, Automated Intrusion Detec-
tion using NFR: Methods and Experiences, USENIX Intru-
sion Detection Workshop, 1999.

[22] R.W. Lo, K.N. Levitt, R.A. Olsson, MCF: a Malicious Code
Filter, Computers and Security, Vol.14, No.6, 1995.

[23] D. Luckham and J. Vera, An Event-Based Architecture Def-
inition Language, IEEE Transactions on Software Engineer-
ing, 21(9), 1995.

[24] T. Lunt et al, A Real-Time Intrusion Detection Expert Sys-
tem (IDES) - Final Report, SRI-CSL-92-05, SRI Interna-
tional, 1992.

[25] T. Lunt, A survey of Intrusion Detection Techniques, Com-
puters and Security, 12(4), June 1993.

[26] S. McCanne and V. Jacobson, The BSD Packet Filter: A New
Architecture for User-level Packet Capture, Lawrence Berke-
ley Laboratory, Berkeley, CA, 1992.

[27] R. McNaughton and H. Yamada, Regular expressions and
state graphs for automata, IRE Trans. on Electronic Comput.,
EC-9(1), 1960.

[28] T. Mitchem, R. Lu, R. O’Brien, Using Kernel Hypervisors to
Secure Applications, Annual Computer Security Application
Conference, December 1997.

[29] B. Mukherjee, L. Heberlein and K. Levitt, Network Intrusion
Detection, IEEE Network, May/June 1994.

[30] K. Olender and L. Osterweil, Cecil: A Sequencing Con-
straint Language for Automatic Static Analysis Generation,
IEEE Transactions on Software Engineering, 16(3), 1990.

[31] V. Paxson, Bro: A System for Detecting Network Intruders
in Real-Time, USENIX Security Symposium, 1998.

[32] P. Porras and P. Neumann, EMERALD: Event Monitoring
Enabled Responses to Anomalous Live Disturbances, Na-
tional Information Systems Security Conference, 1997.

[33] P. Porras and R. Kemmerer, Penetration State Transi-
tion Analysis:A Rule based Intrusion Detection Approach,
Eighth Annual Computer Security Applications Conference,
1992.

[34] M. Ranum et al, Implementing A Generalized Tool For Net-
work Monitoring, LISA, 1997.

[35] F. Schneider, Enforceable Security Policies, TR 98-1664,
Department of Computer Science, Cornell University,
Ithaca, NY, 1998.

[36] R. Sekar, Y. Guang, T. Shanbhag and S. Verma, A High-
Performance Network Intrusion Detection System, ACM
Computer and Communication Security Conference, 1999.

[37] R. Sekar and P. Uppuluri, Synthesizing Fast Intrusion Pre-
vention/Detection Systems from High-Level Specifications,
USENIX Security Symposium, 1999.

[38] R. Sekar, T. Bowen and M. Segal, On Preventing Intrusions
by Process Behavior Monitoring, USENIX Intrusion Detec-
tion Workshop, 1999.

[39] Common Intrusion Detection Framework, S. Staniford-Chen
et al, http://seclab.cs.ucdavis.edu/cidf.

[40] G. Vigna and R. Kemmerer, NetSTAT: A Network-based
Intrusion Detection Approach, Computer Security Applica-
tions Conference, 1998.

